合理使用参数法进行化归和转化——高中数学解题基本方法系列讲座(6)

合集下载

高中数学 转化与化归思想

高中数学 转化与化归思想

第四讲转化与化归思想知识整合一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:构造一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.8.类比法:运用类比推理,猜测问题的结论,易于探求.9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A使原问题获得解决,体现了正难则反的原则.1.特殊与一般的转化典题例析例1(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=45.[思路探究]看到a,b,c成等差数列,可联想到等边三角形举特例求解.[解析]显然△ABC为等边三角形时符合题设条件,所以cos A+cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=__2_020__.[思路探究] 看到求f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2 019)+f (2 020)=1,所以f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=2 020. 规律总结化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为__(0,-1)__.[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( C )A .20B .15C .36D .6[解析] 方法一:由BM →=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM →=AB →+34AD →,AN →=AD →+DN →=AD→+23AB →,所以NM →=AM →-AN →=AB →+34AD →-(AD →+23AB →)=13AB →-14AD →,所以AM →·NM →=(AB →+34AD →)·(13AB →-14AD →)=13(AB →+34AD →)·(AB →-34AD →)=13(AB →2-916AD →2)=13(144-916×64)=36,故选C.方法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM →=12×4+6×(-2)=36,故选C.2.函数、方程、不等式之间的转化 典题例析例2 (1)已知e 为自然对数的底数,若对任意的x ∈[1e ,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( B )A .[1e ,e]B .(2e ,e]C .(2e,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ].设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[1e ,e],∴2e<a ≤e ,故选B.(2)(文)(2019·沈阳模拟)已知函数f (x )=x +4x ,g (x )=2x +a ,若对∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( C )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)[解析] 当x ∈[12,3]时,f (x )≥2x ·4x=4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(理)(2019·济南调研)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( A )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定[解析] 由不等式可得1n 2-1m 2<ln m -ln n ,即1n 2+ln n <1m 2+ln m .设f (x )=1x 2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A . 规律总结函数、方程与不等式相互转化的应用1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.1.已知函数f (x )=ax 2-2x +2,若对一切x ∈[12,2],f (x )>0都成立,则实数a 的取值范围为( B )A .[12,+∞)B .(12,+∞)C .[-4,+∞)D .(-4,+∞)[解析] 由题意得,对一切x ∈[12,2],f (x )>0都成立,即a >2x -2x 2=-2x 2+2x =-2(1x -12)2+12在x ∈[12,2]上恒成立,而-2(1x -12)2+12≤12,则实数a 的取值范围为(12,+∞). 2.已知a =13ln 94,b =45ln 54,c =14ln4,则( B )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln(32)2=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln4=14×2ln2=ln22.故构造函数f (x )=ln x x ,则a =f (32),b =f (54),c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0, 函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f (54)<f (32)<f (2),即b <a <c ,故选B.3.正难则反的转化 典题例析例3 (1)若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为 (0,18) .[解析] f ′(x )=2ax -1+1x.(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12(1x -1x2).①令t =1x ,因为x ∈(1,2),所以t =1x ∈(12,1).设h (t )=12(t -t 2)=-12(t -12)2+18,t ∈(12,1),显然函数y =h (t )在区间(12,1)上单调递减,所以h (1)<h (t )<h (12),即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12(1x -1x2).②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪[18,+∞).所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为(0,18).规律总结转化化归思想遵循的原则1.熟悉化原则:将陌生的问题转化为我们熟悉的问题. 2.简单化原则:将复杂的问题通过变换转化为简单的问题.3.直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).4.正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是 (-3,32) .[解析] 若在区间[-1,1]内不存在c 满足f (c )>0, 因为Δ=36p 2≥0恒成立,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0解得⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32,即满足题意的实数p 的取值范围是(-3,32).4.形体位置关系的转化 典题例析例4 (1)如图所示,已知多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为__4__.[解析] 方法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =(12×2×1)×2=2,V 三棱柱EBF -CHG =S △BEF ·DE =(12×2×1)×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.方法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8, 故所求几何体的体积为V 多面体ABCDEGH =12×8=4.(2)如图1所示,正△ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,使翻折后平面ACD ⊥平面BCD (如图2),求三棱锥C -DEF 的体积.[解析] 方法一:如图,取CD 的中点M ,连接EM ,则EM ∥AD ,且EM =12AD =a2,又AD ⊥平面BDC ,故EM 为三棱锥E -DFC 的高.求三棱锥C -DEF 的体积,即求三棱锥E -DFC 的体积. 由题意,知CD ⊥BD ,AD ⊥CD ,F 为BC 的中点, 所以S △CDF =12S △BCD =12×12CD ·BD =14(2a )2-a 2·a =34a 2.所以V 三棱锥E -CDF =13S △CDF ·EM =13×34a 2×12a =324a 3.即V 三棱锥C -DEF =324a 2.方法二:如图所示,知三棱锥C -DEF 与三棱锥E -DFC 的体积相等,且三棱锥E -DFC 是三棱锥A -BDC 的一部分.因为平面ACD ⊥平面BCD ,点E ,F 分别是AC ,BC 的中点,故三棱锥E -DFC 的底面积和高分别是三棱锥A -BDC 的底面积和高的一半.由题意,知CD ⊥BD ,AD ⊥CD ,AD ⊥BD ,AD =BD =a ,DC =3a ,所以S △BCD =12×3a ·a =32a 2. 故V 三棱锥A -BDC =13S △BCD ·AD =13×32a 2×a =36a 3,则V 三棱锥C -DEF =14V 三棱锥A -BCD =14×36a 3=324a 3. 规律总结形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1.(2019·吉林模拟)已知如图,四边形ABCD 和四边形BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,∠BCD =∠BCE =π2,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2,则五面体EGBADC的体积为 73.[解析] 如图所示,连接DG ,BD .由平面ABCD ⊥平面BCEG , ∠BCD =∠BCE =π2,可知EC ⊥平面ABCD , 又CE ∥GB , 所以GB ⊥平面ABCD .又BC =CD =CE =2,AD =BG =1,所以V 五面体EGBADC =V 四棱锥D -BCEG +V 三棱锥G -ABD=13S 梯形BCEG ·DC +13S △ABD ·BG =13×2+12×2×2+13×12×1×2×1=73.故填73. 2.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.[解析] (1)证明:如图,取AD 的中点O ,连接OP ,OC ,AC ,由题意可知△P AD ,△ACD 均为正三角形,所以OC ⊥AD ,OP ⊥AD .又OC ∩OP =O ,所以AD ⊥平面POC , 又PC ⊂平面POC ,所以PC ⊥AD .(2)点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知,PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P -ACD 的高.在Rt △POC 中,PO =OC =3,PC =6,在△P AC 中, 因为P A =AC =2,PC =6,所以边PC 上的高 AM =P A 2-PM 2=22-(62)2=102, 所以△P AC 的面积S △P AC =12PC ·AM =12×6×102=152.设点D 到平面P AC 的距离为h ,由V D -P AC =V P -ACD ,得13S △P AC ·h =13S △ACD ·PO ,又S △ACD =12×2×3=3,所以13×152×h =13×3×3,解得h =2155.故点D 到平面P AM 的距离为2155.。

高三数学二轮复习讲座等价转化与化归

高三数学二轮复习讲座等价转化与化归

等价转化与化归思想举例1、已知曲线E 上的点(,)x y 满足参数方程21sin 2cos x y θθ⎧=-⎨=⎩()θ为参数,直线1:(2)0l x m y +-=,2:10l x ny +-=,则下列说法正确的是(A) 2l 与曲线E 相交所得的弦长为8的直线存在且有两条 (B) 0m =是1l 与曲线E 的相切的充分不必要条件 (C)若(,)x y 为曲线E 上的点,则22y x -的最大值为3(D) 与曲线E 相交所得弦的中点为(2,2)的直线方程为0x y -=2、已知函数2ln ()(0)axf x a x=>. (Ⅰ)求函数()f x 的定义域及单调区间;(Ⅱ)当1a >时,若|()(1)0x t x f ax a⎧⎫'∈-≥⎨⎬⎩⎭,且方程()f t am =恒有实数解,求实数m 的取值范围.3、已知函数()ln pf x px x x=--,()222ln 1p e e g x x x p ⎛⎫-=-+ ⎪⎝⎭,其中无理数 2.71828e =.(Ⅰ)若0p =,求证:()1f x x ≥-;(Ⅱ)若()f x 在其定义域内是单调函数,求p 的取值范围;(Ⅲ)对于区间(1,2)中的任意常数p ,是否存在00x >使()()00f x g x ≤成立?若存在,求出符合条件的一个0x ;否则,说明理由.参考答案1、解.(Ⅰ)由[][]()()()n mf m n f m f n⋅==得:00(0)(02)(2)41f f f=⨯===。

[]2(2)(12)(1)4,f f f=⨯==又()0,(1)2f x f>∴=,(1)(1) 2.f f-==(Ⅱ)22)(1)f f f f⎡⎤≤⇔=≤⎢⎥⎣⎦,又当0x>时,其导函数()0f x'>恒成立,[)()1y f x=+∞在区间,上为单调递增函数,22)121)40kx k x kx≤⇔+≤⇔-+≤(,①当1k=时,(],0x∈-∞;②当1k=-时,[)0,x∈+∞;③当0k=时,{}0x∈;④当10k-<<时,222444()00,0,111k k kx x x xk k k⎡⎤+≤⇔≤≤∴∈⎢⎥---⎣⎦;⑤当01k<<时,222444()00,,0111k k kx x x xk k k⎡⎤+≤⇔≤≤∴∈⎢⎥---⎣⎦。

化归与转化思想PPT教学课件

化归与转化思想PPT教学课件
两个定点的距离之和为定值却是一个熟悉的结论,即动点的轨迹是椭圆,而动点 P 是两条直线的交点,这又是一个熟悉的问题,因此,本题就转化为,两条直线交点 的轨迹是否为椭圆的问题.解题的方向明确了.求出直线方程,再求交点的轨迹,然 后判断这一轨迹是否为椭圆,其焦点是否为定点.
因为 c (0,a) , i (1,0) ,,所以 c i ,a , i 2c 1,2a.
4.化归与转化思想
化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问 题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思 想方法,化归与转化思想的核心是把生题转化为熟题。事实上,解题的过程就 是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是 未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化 归。例如,对于立体几何问题,通常要转化为平面几何问题,对于多元问题, 要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是 熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等 等.事实上,前面讲的函数和方程思想就是把表面不是函数的问题化归为函数问 题求解,分类与整合思想是把一个复杂的题目分解成若干个小题求解,而数形结 合思想则是把代数问题转化为图形求解,或者把几何问题转化为代数运算求解.
r2 a ex1
2
2 2 x1 ,
所以,
r1r2
2
1 2
x12
,

这里, r1 与 r2 的积用 x1 的代数式来表示.
直线方程为
y
y1
x1 2 y1
x
x1
,
即 x1x 2 y1 y 2 y12 x1 0 ,

因为
A x1,

高中数学思想----转化与化归思想

高中数学思想----转化与化归思想

转化与化归思想[思想方法解读] 转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性. 转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.体验高考1.(2016·课标全国乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.(2016·课标全国丙)已知4213532,4,25,a b c ===则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b答案 A解析 因为4243552,42,a b ===由函数y =2x 在R 上为增函数知b <a ;又因为24213,33324,255a c ====由函数23y x =在(0,+∞)上为增函数知a <c .综上得b <a <c .故选A.3.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.高考必会题型题型一 正难则反的转化例1 已知集合A ={x ∈R |x 2-4mx +2m +6=0},B ={x ∈R |x <0},若A ∩B ≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 即U ={m |m ≤-1或m ≥32}.若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.点评 本题中,A ∩B ≠∅,所以A 是方程x 2-4mx +2m +6=0①的实数解组成的非空集合,并且方程①的根有三种情况:(1)两负根;(2)一负根和一零根;(3)一负根和一正根.分别求解比较麻烦,我们可以从问题的反面考虑,采取“正难则反”的解题策略,即先由Δ≥0,求出全集U ,然后求①的两根均为非负时m 的取值范围,最后利用“补集思想”求解,这就是正难则反这种转化思想的应用,也称为“补集思想”.变式训练1 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0, 即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.题型二 函数、方程、不等式之间的转化 例2 已知函数f (x )=eln x ,g (x )=1e f (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x -1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1). 取t =1n (n ∈N *)时,则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n ,叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n )=ln(n +1).即1+12+13+…+1n >ln(n +1).点评 解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围. 变式训练2 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减 ↘2-2ln 2+2a单调递增 ↗故f (x )的单调递减区间是(-∞,ln 2), 单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 题型三 主与次的转化例3 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 答案 ⎝⎛⎭⎫-23,1 解析 由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0, 即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0, 解得-23<x <1.故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 点评 主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.变式训练3 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________. 答案 (-∞,-1]∪[0,+∞) 解析 ∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].(*) (*)式可化为(x -1)a +x 2+1≥0对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0, 解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞). 题型四 以换元为手段的转化与化归例4 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,请说明理由. 解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t ,则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1.当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去);当0≤a2≤1,即0≤a ≤2时,则t =a2时函数有最大值,y max =a 24+58a -12=1,解得a =32或a =-4(舍去);当a2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a -12=1,解得a =125>0(舍去),综上所述,存在实数a =32,使得函数在闭区间[0,π2]上有最大值1.点评 换元有整体代换、特值代换、三角换元等情况.本题是关于三角函数最值的存在性问题,通过换元,设cos x =t ,转化为关于t 的二次函数问题,把三角函数的最值问题转化为二次函数y =-(t -a 2)2+a 24+58a -12,0≤t ≤1的最值问题,然后分类讨论解决问题.变式训练4 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝⎛⎭⎫t +4t , ∵t >0,∴-⎝⎛⎭⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].高考题型精练1.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A .(-∞,518] B .(-∞,3]C .[518,+∞) D .[3,+∞)答案 C解析 f ′(x )=3x 2-2tx +3, 由于f (x )在区间[1,4]上单调递减, 则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32(x +1x )在[1,4]上恒成立,因为y =32(x +1x )在[1,4]上单调递增,所以t ≥32(4+14)=518,故选C.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞) 答案 D解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2a B.12a C .4a D.4a答案 C解析 抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F (0,14a ),取过焦点F 的直线垂直于y 轴, 则|PF |=|QF |=12a ,所以1p +1q=4a .4.已知函数f (x )=(e 2x +1+1)(ax +3a -1),若存在x ∈(0,+∞),使得不等式f (x )<1成立,则实数a 的取值范围是( ) A .(0,e +23(e +1))B .(0,2e +1)C .(-∞,e +23(e +1))D .(-∞,1e +1)答案 C解析 因为x ∈(0,+∞),所以2x +1>1, 则e 2x +1+1>e +1,要使f (x )<1,则ax +3a -1<1e +1,可转化为:存在x ∈(0,+∞)使得a <e +2e +1·1x +3成立.设g (x )=e +2e +1·1x +3,则a <g (x )max , 因为x >0,则x +3>3, 从而1x +3<13,所以g (x )<e +23(e +1),即a <e +23(e +1),选C.5.已知f (x )=33x +3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.答案 2 016解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1, ∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016.6.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,求实数p 的取值范围是________. 答案 (-3,32)解析 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为(-3,32).7.对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围是________________. 答案 (7-12,3+12) 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立, 即|m |≤2时,(x 2-1)m -2x +1<0恒成立. 设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0, 解得7-12<x <3+12, 即实数x 的取值范围为(7-12,3+12). 8.(2016·天津模拟)已知一个几何体的三视图如图所示,如果点P ,Q 在正视图中所示位置:点P 为所在线段的中点,点Q 为顶点,则在几何体侧面上,从P 点到Q 点的最短路径的长为________.答案 a 1+π2解析 由三视图,知此几何体是一个圆锥和一个圆柱的组合体,分别沿P 点与Q 点所在母线剪开圆柱侧面并展开铺平,如图所示.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2. 所以P ,Q 两点在侧面上的最短路径的长为a 1+π2.9.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.即x 的取值范围为(-∞,2)∪(4,+∞).10.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,有f (m )+f (n )m +n>0. (1)证明f (x )在[-1,1]上是增函数;(2)解不等式f (x 2-1)+f (3-3x )<0;(3)若f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. 解 (1)任取-1≤x 1<x 2≤1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1-x 2(x 1-x 2). ∵-1≤x 1<x 2≤1,∴x 1+(-x 2)≠0,由已知f (x 1)+f (-x 2)x 1-x 2>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上是增函数.(2)因为f (x )是定义在[-1,1]上的奇函数,且在[-1,1]上是增函数,不等式化为f (x 2-1)<f (3x -3),所以⎩⎪⎨⎪⎧ x 2-1<3x -3,-1≤x 2-1≤1,-1≤3x -3≤1,解得x ∈(1,43]. (3)由(1)知,f (x )在[-1,1]上是增函数,所以f (x )在[-1,1]上的最大值为f (1)=1,要使f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,只要t 2-2at +1≥1⇒t 2-2at ≥0,设g (a )=t 2-2at ,对∀a ∈[-1,1],g (a )≥0恒成立,所以⎩⎪⎨⎪⎧g (-1)=t 2+2t ≥0,g (1)=t 2-2t ≥0 ⇒⎩⎪⎨⎪⎧t ≥0或t ≤-2,t ≥2或t ≤0, 所以t ≥2或t ≤-2或t =0.11.已知函数f (x )=2|x -1|-a ,g (x )=-|2x +m |,a ,m ∈R ,若关于x 的不等式g (x )≥-1的整数解有且仅有一解-2.(1)求整数m 的值;(2)若函数y =f (x )的图象恒在函数y =12g (x )的图象的上方,求实数a 的取值范围. 解 (1)由g (x )≥-1,即-|2x +m |≥-1,|2x +m |≤1,得-m -12≤x ≤-m +12. ∵不等式的整数解为-2,∴-m -12≤-2≤-m +12, 解得3≤m ≤5.又∵不等式仅有一个整数解-2,∴m =4.(2)函数y =f (x )的图象恒在函数y =12g (x )的上方, 故f (x )-12g (x )>0对任意x ∈R 恒成立, ∴a <2|x -1|+|x +2|对任意x ∈R 恒成立.设h (x )=2|x -1|+|x +2|,则h (x )=⎩⎪⎨⎪⎧ -3x ,x ≤-2,4-x ,-2<x ≤1,3x ,x >1,则h(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,∴当x=1时,h(x)取得最小值3,故a<3,∴实数a的取值范围是(-∞,3).--。

巧用分离常(参)数法进行等价转化——高中数学解题基本方法系列讲座(8)

巧用分离常(参)数法进行等价转化——高中数学解题基本方法系列讲座(8)

前 n 项和为 Sn, 且 S1+a1, S3+a3, S2+a2 成等差数列.
20 广东教育·高中 2018 年第 2 期
(1) 求{an}的通项公式;
(2)
若数列{bn}满足an+1=(
1 2
)anbn,
Tn 为数列{bn}前 n 项和,
若 Tn >m 恒成立, 求 m 的最大值.
【解析】 (1) 由题意可知: 2(S3+a3)=(S1+a1)+(S2+a2),∴S3-
2

上是增函数, 则实数 a 的取值范围 ______.
【解析】 ∵f′(x)=x+2a- 1 ≥0 在[ 1 ,2]恒成立, 即 2a≥-x+


1 x
在[
1 3
,2]恒成立,
∵(-x+
1 x
)max=
8 3

∴2a≥
8 3

即 a≥
4 3
.
二、 分离参数法
分离参数法是求参数的取值范围的一种常用方法, 通过

y=
ax2+bx+c mx2+nx+p

y=
m·ax+n p·ax+q

y=
m·sinx+n p·sinx+q
等,
解题的关键是通过恒等变形从分式函数中分离
出常数.
例 2. 函数 y= x2+2 (x>1) 的最小值是 ( ) x-1
A. 2 姨 3 +2 B. 2 姨 3 -2 C. 2 姨 3 D. 2
(
)((2x-2, x≥3

高中数学中转化与化归思想方法

高中数学中转化与化归思想方法

高中数学中转化与化归思想方法转化与化归思想是高中数学中非常重要的解题方法之一、它通过转化和化归问题的方式,将原问题转化为已知问题或相对简单的问题,从而更方便地解决问题。

接下来,我们将详细介绍转化与化归思想的基本原理、步骤和一些常见应用。

转化与化归思想的基本原理可以总结为两点:一是利用数学中的等价关系,将问题中的未知量或条件转化为已知量或更简单的条件;二是通过变量代换、形式转化等方式,改变问题的表达方式或结构,使其更适合我们已知的解题方法。

在具体解题过程中,我们可以按照以下步骤进行:1.通读题目,理解问题的要求和条件。

这一步非常重要,要确保我们对问题的内容和目标有清晰的理解。

2.找到问题中的关键信息和未知量。

这些信息和未知量通常会包含在问题的描述、条件或要求中,我们需要将其抽象出来并进行变量表示。

3.分析问题的性质和特点。

我们需要考虑问题的数学特征、结构和求解方法,以便选择合适的转化和化归方法。

4.进行变量代换或形式转化。

基于问题的性质和特点,我们可以选择合适的变量代换或形式转化方式,将问题转化为已知问题或者更简单的问题。

常用的方法包括平移到原点、找到对称性、消元法等。

5.解决转化后的问题。

一旦将问题转化为已知问题或相对简单的问题,我们可以利用已有的数学知识和解题方法来解决问题。

6.反向思考,回归原问题。

解决了转化后的问题后,我们需要反向思考,将解答归还给原问题,确保解答符合原有的要求和条件。

转化与化归思想在高中数学中的应用非常广泛。

1.几何问题。

几何问题中涉及的角、线段、面积等都可以进行变量代换和形式转化,从而简化计算和求解。

2.代数问题。

代数问题中的方程、不等式、函数等可以通过变量代换和形式转化来简化计算和解决问题。

3.概率问题。

概率问题中涉及到的事件、概率等可以通过变量代换和形式转化来简化计算和求解。

4.数列问题。

数列问题中的数列、通项公式等可以通过变量代换和形式转化来简化计算和求解。

总之,转化与化归思想在高中数学中是一种非常重要的解题方法。

高考数学冲刺之划归与转化

高考数学冲刺之划归与转化

划归转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

1.转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。

2.常见的转化方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;(2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题;(3)参数法:引进参数,使原问题的变换具有灵活性,易于转化;(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;(5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径;(6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径;(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题;(8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化;(9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的;(10)补集法:(正难则反)若过正面问题难以解决,可将问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决。

3.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

马井堂-高中数学-专题-转化与化归思想

马井堂-高中数学-专题-转化与化归思想

第四讲 转化与化归思想Z 知识整合hi shi zheng he一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. 2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的. 5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. 8.类比法:运用类比推理,猜测问题的结论,易于探求. 9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 使原问题获得解决,体现了正难则反的原则.命题方向1 特殊与一般的转化例1 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C =45.[思路探究] 看到a ,b ,c 成等差数列,可联想到等边三角形举特例求解. [解析] 显然△ABC 为等边三角形时符合题设条件,所以cos A +cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)=2019.[思路探究] 看到求f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2018)+f (2019)=1,所以f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)=2019. 『规律总结』 化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.G 跟踪训练en zong xun lian1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为(0,-1).[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.已知数列{x n }满足x n +3=x n ,x n +2=|x n +1-x n |(n ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),则数列{x n }的前2019项和S 2019=1346.[解析] 根据题意,特殊化可得x 3=|x 2-x 1|=|a -1|=1-a (a ≤1,a ≠0),则x 1+x 2+x 3=2又因为x n +3=x n ,所以x 4=x 1,x 5=x 2,x 6=x 3,即x 4+x 5+x 6=x 1+x 2+x 3=2.同理,x 7+x 8+x 9=2,x 10+x 11+x 12=2,…,而2019=673×3,则S 2019=2×673=1346.命题方向2 函数、方程、不等式之间的转化例2 已知e 为自然对数的底数,若对任意的x ∈[1e,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( A )A .[1e,e]B .(2e,e]C .(2e ,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ];设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[0,e],解得1e≤a ≤e.『规律总结』函数、方程与不等式相互转化的应用(1)函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.(2)解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.G 跟踪训练en zong xun lian已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为(-23,1).[解析] 由题意得g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1,对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0解得-23<x <1.故x 的取值范围是(-23,1).命题方向3 正难则反的转化例3 若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.『规律总结』转化化归思想遵循的原则(1)熟悉化原则:将陌生的问题转化为我们熟悉的问题. (2)简单化原则:将复杂的问题通过变换转化为简单的问题.(3)直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).(4)正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.G 跟踪训练en zong xun lian若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合理使用参数法进行化归和转化
高中数 学解 题基本方法 系列讲座 ( 6 )
■北京市第十二 中学 高慧明
参 数法是 指在解 题过程 中 。通 过适 当引入一些 与题 目研
t — a

( 。 ≤t )
究 的数学对象发生联 系的新变量 ( 参数 ) ,以此作 为媒 介 ,再 进行 分析和综合 .从而解决 问题. 直线与二 次曲线 的参数 方程 都是 用参 数法解题的例证. 换元法也是引入参数 的典型例子 . 辨证唯 物论肯定 了事 物之 间的联系是 无穷 的 ,联 系的方 式是丰 富多采 的 ,科学 的任务就 是要揭示 事物 之间 的内在联 系 ,从而发现事 物 的变化 规律 . 参 数 的作用 就是刻 画事 物的变 化状态 .揭示变化 因素之 间的内在联系. 参数体 现了近代数学 中运动 与变化 的思想 ,其 观点 已经渗透 到 中学 数学 的各 个分 支. 运用参数法解题 已经 比较普遍 . 参数法解题的关键是恰 到好处地引进参数 ,沟通 已知和未 知之间的内在联系 ,利用参数提供的信息。顺利地解答问题. 纵观近 几年 高考 对 于参数法 的考查 ,重点 放在参数 法在
入参数 的范 围的确定学生难 以把握 ,不会灵 活运用 . 分析原因 ,
( 1 ) 当 6 } + 1 时 , ) = ( + 2 ) 2 + 1 , 故 其 对 称 轴 为 一 手 ・
当Ⅱ ≤一 2时 ,g ( 。 ) , ( 1 ) = _ - + c 卧 2 .
函数 、三角 、数 列 、解 析几何 、不等式 、立体 几何等 问题上 应用 ,主要 考查 适时合 理的 引人 参数处 理与 函数 、三 角 、数



( 0 ≥f 。 )
,、
当 。 ≤ f 时 , 厂 ( ) = 1 争≥ 在 I 1 , 2 】 恒 。 0
到 高次化为低 次 、无 理化有 理 、超 越式化 为代数式 、复杂 问 题简单化 、陌生问题 熟悉 化的作用.


由于 0 ≤6 — 2 n ≤1 ,因 此
1_ 二 ≤1 ) .


例1 . 已知函数, ( ) = I 一 告l ,其在区间【 o , l 】 上单调递
成立 ,必有 0 ≥_ t,可求得一 - 1 ≤n ≤1 ;当 0 ≥t 时, f( £ ) = 一 1 -
5 。 5 - >0在 【 I 1 , 2 1 恒成 立 ,必有 0 ≤一 t ,与 n ≥z 矛盾 ,所 以此时
t T t 不存 在. 故选 c .
例 2 . 设 函数 _ 厂 ( x ) = x Z + a x + b , ( 口 , b ∈R ) .
( 1 )当6 = 竿+ 1 时, 求函 数I 厂 ( ) 在f . 1 , 1 ] 上的最小值g ( 。 )
的表 达式 : ( 2 )已知函数 ) 在【 一 1 , 1 1 3  ̄ . 存在零点 ,O ≤6 — 2 Ⅱ ≤1 ,求 b的取值范 围.
【 解析 】
列 、解析几何 、不等式 、立体 几何等问题. 要 求学生有较强 的 转化与化归意识和准确 的计算 能力. 从实 际教 学来 看 ,学生对 引入参 数的时机 、引人 什么样 的参数 、引人参 数 的作 用及 引
当一 2 < 口 ≤ 2 时, g ( n ) 一 罢 一 ) = 1 .
枷 ,n≤ - 2 - 2 < a <2  ̄
除 了参 数法较难 把握 外 ,主要 是学生 没有 真正掌握参 数 的实
质 .以至于遇到需要用参数 的题 目便产 生畏惧 心理. 参数法在 函数 问题 中的应 用 在 求解 函数 问题 时 ,特别 是在求 复合 函数解析式 、研 究


当 2 时 ,
1, 一 1 ) = } 吨 也 综 上 , 。 ) =
手 卅,
( 2 ) 设 , 为 方 程 I 厂 ( ) = 0 的 解, 且 一 1 ≤ £ ≤ 1 , 则{ ■ ’
L sF - - O.
复合 函数性 质 、求 复合 函数 值域或最 值 、利用导数研 究 函数 图像 与性质 中 ,常用 “ 整体 代换 ”的方法 引入参数 ,往往 起
Gu AN 8 00N G J l A 0 Y U GA O Z HoN G
二 .参数法在三角 中的应用
在研 究 函数 f ( x ) - - A s i n ( t o x -  ̄) 像与性质求 函数在某 个 区 间上 的值域 或最值或 在求与三 角函数有关 的复合 函数的值域
增 ,则 。 的取值范 围为 (
A. [ 0 , 1 】 B . 【 - 1 , 0 】

1 1
C . 【 - 1 , 1 】


D. 【 一 1, 1】
二 二
— l

【 解析】 令t = 2 , 则 ∈ [ 1 , 2 ] , - 厂 ( ) = 1 2 x _ 告l 在区间[ 0 , l 】 上
和 一 3 ≤ 箐< 0 , 所 以 一 3 ≤ .
综 E 可 知 .6的 取 值 范 围 是 『 一 3 . 9 — 4 、 / 厂 1 .
单调递增, 转化为, ( t ) = l 一 J 在[ 1 , 2 1 上单调递增, 又, ( ) =
3 0 广东教育 ・ 离中 2 0 1 7年第 1 2 期
I ~ l
当 0 ≤ t ≤ 1 时 , 鲁 ≤ 6 ≤ t - 2 t 2 , 由 于 一 ≤ ≤ o 和 一 } ≤ 专 等≤ 9 — 4 、 / , 所 以 一 ≤ 6 ≤ 9 — 4 、 / . 当 一 1 ≤ z ≤ 0 时 , 气 ≤ 6 ≤ 鲁, 由 于 一 2 ≤ 鲁< 0
相关文档
最新文档