-初中数学竞赛——几何变换——旋转
初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转典型例题【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE,△是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以及线段BM,DK的中点是某正方形的顶点.L【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线,AD DK .求证:HBD △也是等边三角形.ECHDBA【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点,M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证:RM QS =.【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB =,PD =求正方形ABCD的面积.Q⋅SMPCBAR D【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长.【例7】 设O 是等边ABC △内一点,已知115AOB ︒∠=,125BOC ︒∠=,求以线段OA 、OB、OC 为边所构成的三角形的各内角大小.【例8】 如图,在ABC △中,90ACB ︒∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =,2PC =,求BPC ∠.APC【例9】 如图,已知ABC △中,90A =o ,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=.【例10】 如图,在等腰直角ABC △中,90ACB ︒∠=,CA CB =,P 、Q 在斜边AB 上,且45PCQ ︒∠=,求证:222PQ AP BQ =+.ADCBAQBCP【例11】 在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,满足EF BE DF =+,AE 、AF 分别与对角线BD 交于M 、N .求证:(1)45EAF ︒∠=; (2)222MN BM DN =+.【例12】 如图,在梯形ABCD 中,AD BC ∥,AD CD ⊥,2BC CD AD ==,E 是CD 上一点,且45ABE ︒∠=,AD α=.求CE 的长.EDCBADF【例13】 已知:ABC △中,120A ︒∠≥,P 是不与A 重合的定点,求证:PA PB PC AB AC +++>.【例14】 已知:如图,ABD △是等边三角形,ABC △中,BC a =,CA b =.问:当ACB ∠为何值时,C 、D 两点的距离最大?最大值是多少?P CBA【例15】 已知ABC △,以其各边为底边,向ABC △的外部作等腰三角形ABD 、BCE 、CAF ,使顶角都等于120 ,求证:DEF △是正三角形.EBDAFC【例16】 已知:ABC △是锐角三角形,三边长分别是a 、b 、c ,O 是ABC △内的一点,120AOB BOC COA ︒∠=∠=∠=,OA u =,OB v =,OC w =,DEF △是等边三角形,P 是DEF △内一点,PD a =,PE b =,PF c =. 求证:DEF △的边长等于u v w ++.【例17】 已知:三条平行直线l 、m 、n ,求证:存在一个等边三角形ABC ,使顶点A 、B 、C 分别在l 、m 、n 上.作业1. 已知:ABCD 是正方形,O 是其中心,OEFG 也是正方形,两个正方形的边长都是a ,OG 、OE 分别交CD 、BC 于H 、K .求证:214OKCH S a =.2. 已知:如图,ABCD 是正方形,12∠=∠.求证:BE DF AE +=.3.ABC △是等边三角形,P 是其内的一点,3PA =,4PB =,5PC =,求ABC △的面积.1FDEAC2B4.P 是等边ABC △内部一点,APB ∠、BPC ∠、CPA ∠的大小之比是5:6:7,求以PA 、PB 、PC 为边的三角形的三个角的大小之比.5. 等边ABC △的边长a =,点P 是ABC △内一点,且222PA PB PC +=,若5PC =,求PA 、PB 的长.6. 在梯形ABCD 中,AD BC ∥(BC AD >),90D ︒∠=,12BC CD ==,E 在CD 上,45ABE ︒∠=,若10AE =,求CE 的长.7. 如图,P 、Q 是边长为1的正方形ABCD 内两点,使得45PAQ PCQ ︒∠=∠=.求PAB PCQ QAD S S S ∆∆∆++的值.E DCBA。
九年级数学竞赛专题 旋转变换_答案

专题13 旋转变换例1 如图,连接OB 1,OB 2,B 1B 2,则OB 1=OB 2,∠OB 1B 2=∠OB 2B 1.又∠OB 1C =30°=∠OB 2C ,∴∠CB 1B 2=∠CB 2B 1,故CB 1=CB 2.同理,B 2D =DC 1.设CB 1=x ,则CB 2=x ,CD=x ,DC 1=DB 2=2x ,于是x +x +2x =1x ⇒=,故ABCDEF S 六边形=22223A B C B CD SS -213324x x -⨯==.例2 ∵N ,M 分别为线段AB ,CB 的中点,∴MN =12AC .同理MQ =12BD ,PQ =12AC ,PN =12BD .∵AC =BD ,∴MN =MQ =PQ =PN ,∴四边形NMQP 为菱形.∵MN ∥AC ,MQ ∥BD ,∴AC ⊥BD ,∴∠NMQ =90°,∴菱形NMQP 为正方形.例3 APM AP C '≌,AP AP '=,APB AP C '∠∠=,P C PB '=.连接PP ',由AP AP'=得APP AP P ''∠∠=,而APB APC ∠∠<,即AP C APC '∠∠<,∴PP C P PC ''∠∠<,于是P C PC '>,即PB PC >.例4 (1)60° 45° (2)90°-12α (3)∠AFB =90°-12α ∠AFB =90°+12α对∠AFB =90°-12α证明如下:∵AB =AC ,EC =ED ,∠BAC =∠CED ,∴△ABC ∽△EDC ,得∠ACB =∠ECD ,BC ACDC EC=,∠BCD =∠ACE ,∴△BCD ∽△ACE ,得∠CBD =∠CAE .∵∠AQF =∠BQC ,∠CBD =∠CAF ,∴∠AFB =∠ACB =18019022BAC α︒-∠=︒-.例 5 ∵2EBE ABC DEB '∠∠∠==,∴EBD E BD '∠∠=.连接DE '.∵BD BD =,EBD E BD '∠∠=,BE BE '=,∴EBD E BD '≌,得ED E D CD CE ''===,∴CDE '为正三角形,DCE '∠=60°,又BC =CD =CE ’,则12E BD DCE ''∠∠==30°.∴260ABC EBE E BD ''∠∠∠︒===.例6 将△ABE 绕B 点逆时针旋转60°,得△FBG ,连接GE ,FC ,则△BEG 为等边三角形,GE =BE ,∴FC ≤FG +GE +EC ,即FC ≤EA +EB +EC ,∵FC 为定长,∴当E 点落在FC 上时,FC =EA +EB +EC 为最小值.∵∠FBC =150°,FB =BC ,∴∠BCF =∠BFC =15°,而∠GEB =60°,∴∠EBC =45°,即E 在正方形ABCD 的对角线BD 上.作FH ⊥BC 交CB 延长线于H ,设BC =x ,则FB =x ,FH =2x ,HB=2x ,在Rt △FHC中,由222)()()2x x x =+,得x =2或x =-2(舍去),即正方形的边长为2.A 级1.1或52.6 150°3.1 4 . 80或120提示:如图,过B'作MN//AD ,分别AB,CD 于M,N,点B ’C ’交CD 于K ,则B ’M=AB ’sin60°’,AM=12,Rt △AKB ≌Rt △AKD,∠KAB ’=∠KAD=15°,∠ADB ’=75°,△ADK ∽△DN B ’,'DK AD NB DN =重叠部分面积=2S △AKD= 121(222⨯⨯⨯=6. 过P 作PM 丄AC 于M,PN 丄DF 于N ,可证明四边形PMGN 为正方形,PM=125,S 重叠=S 正方形PMGN=212144()525=. 7.D 8.A 9.B 提示:将△CPA 绕点A 逆时针旋转60°到△C ’AP ’, 连结PP ’, △APP ’ 为等边三角形.PB+PP ’+P ’C=PA+PB+PC >AB+AC ’=AB+AC.10.(1)AE ’=BF ’.(2) 证法较多,如取OE ’中点G,连结AG. 11.(1)AM=AN,∠MAN=α.(2) 第(1)问的结论仍成立,理由如下:由△ABE ≌△ACF 得BE=CF,∠ABM=∠CAN,进一步可以证明△ABM ≌△CAN.例6题图B 级1.2 提示:MN=BM+CN2.B 提示: △ACM ≌△BCD.∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,又CN=CN,则△MNC ≌△DNC,MN=ND=x ,AM=BD=m ,又∠DBN=45°+45°=90°,故m 2+n 2=x 2. 3.D 4.3 提示:将△ADF'绕点A 顺时针方向旋转90°,到△ABG.的位置, 则△AEF ≌△AEG. ∠AEF=∠AEG=∠FEC=60°1,1),S △AEF =S △ABG =12EG ·AB=3. 5. (1)提示:延长BC 至E,使CE=CD 连结DE,证明△ACD ≌△BED.(2)将△ABD 绕点A 旋转60°到△ACB ’,连结B ’D,B ’P ,则四边形AB ’DP 符合(1)的条件,于是B ’P=PA+PD 连结AC,则△ABD ≌△ACB ’.BD=B ’C,B ’C ≤PB ’+PC=PA+PD+PC,从而BD ≤PA+PD+PC.6. 直接解题有困难, △ABC 绕点A 逆时针旋转120°,240°拼成正△MBC(如图),则正△ADE 变为正△AD 1E 1和正△AD 2E 2易知,六边形DE D 1E 1 D 2E 2是正六边形, △DD 1D 2是正三角形, 其面积是△ADE 面积的3倍. .因此,设法由正△MBC 面积为150求出△DD 1D 2的面积, 问题就解决了.注意到BD:DC=CD 1:D 1M=MD 2:D 2B=2:3, 连结DM, 则S △ADE =13S △ABD =36cm 2,而122MD D DCD SS==36cm 2. 同理,可得12DD D S=150-3×36=42cm 2,故S △ADE =1312DD D S =14cm 2.7.如图,将BP ,BO,BC 绕点B 沿顺时针方向旋转60°,变为BP',BO ’,BC ’ 连结OO ’,PP ’,则 △BOO ’, △BPP ’ 都是正三角形.因此OO ’=OB,PP ’=PB, 显然△BO ’C ’ ≌△BOC, △BP ’C ≌△BPC, 由于∠BO ’C=∠BOC=120°=180°-∠BO ’O,∴A,O,O ’,C ’ 四点共线.故AP+PP ’+P ’C ≥AC ’=AO+OO ’+O ’C, 即PA+PB+PC ≥OA+OB+OC.8.(1)提示:延长DM 交EF 于N,由△ADM ≌△ENM,得DM=MN,MF=12DN,FD=FN,故MD 丄MF.(2)延长DM 交CE 于N,连结DF,FN 先证明△ADM ≌△ENM,再证明△CDF ≌△ENF.第(1)问中的结论仍成立. (3)第(1)问中的结论仍成立,延长DM 至N,使MN=DM,连结DF,FN,证法同上.(9)提示:EG=CG,EG 丄CG,B, E,D 在一条直线上,(2)仍然成立,延长EG 交CD 于H 点△FEG ≌△DHG, △ECH,△ECG 为等腰直角三角形.(3) 仍然成立.10.(1)612(,)55D (2)α=2β (3)如图1, △OAE ≌△DAE, △ABO ≌△ABD,B,D,C,三点共线.设D(a ,b ),则222222(3)3,(4)4,a b a b ⎧-+=⎨+-=⎩解得9672,2525a b ==,∴9672(,)2525D ,可得直线CD 的解析式为7424y x =-+.如图2,同理可得, 7424y x =+.11. 提示:易证∠ACB=90°,如图,将△APC 绕点A 顺时针旋转60°,得到△AQO,点D 为AB 的中点,连结PQ, 得到△APQ 为等边三角形.过点Q 作QE 丄AP ,垂足为E,则∠AQE=30°, QE=32,AE=PE 连结DE,则DE=12BP=52,于是DE 2=(52)2=QE 2+QD 2,从而∠DQE=90°, ∠AQD=∠AQE+∠EQD=120°=∠APC.过点C 作CF 丄AP 交AP 的延长线于点F ,得到∠CPF=60°,∵PC=2,∴于是AC 2=AF 2+CF 2=221)7+=+∴S △ABC =2S △ACD。
八年级数学竞赛例题专题讲解:几何变换

八年级数学竞赛例题专题讲解:几何变换阅读与思考几何变换是指把一个几何图形1F 变换成另一个几何图形2F 的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、对称、旋转是常见的合同变换.l图3图2图1F 1F 21.平移变换如图1,如果把图形1F 上的各点都按一定方向移动一定距离得到图形2F 后,则由1F 到2F 的变换叫平移变换.平移变换前后的对应线段相等且平行,对应角的两边分别平行且方向一致. 2.对称变换如图2,将平面图形1F 变换到与它成轴对称的图形2F ,这样的几何变换就叫做关于直线l (对称轴)的对称变换.对称变换前后的对应线段相等,对应角相等,其对称轴是连结各对应点线段的垂直平分线. 3.旋转变换如图3,将平面图形1F 绕这一平面内一定点M 旋转一个定角α,得到图形2F ,这样的变换叫旋转变换,M 叫旋转中心,α叫旋转角.旋转变换前后的图形是全等的,对应点到旋转中心的距离相等,对应线段的夹角等于旋转角.例题与求解【例l 】如图,∠AOB =045,角内有点P ,PO =10,在角的两边上有两点Q ,R (均不同于O ),则△PQR 的周长的最小值为_______________. (黄冈市竞赛试题)解题思路:作P点关于OA,OB的对称点,确定Q,R的位置,化折线为直线,求△PQR的最小值.O【例2】如图,P是等边△ABC的内部一点,∠APB,∠BPC,∠CP A的大小之比是5:6:7,则以P A,PB,PC为边的三角形的三个角的大小之比(从小到大)是()A. 2:3:4B. 3:4:5C. 4:5:6D.不能确定(全国通讯赛试题)B C解题思路:解本例的关键是如何构造以P A,PB,PC为边的三角形,若把△P AB,△PBC,△PCA60,就可以把P A,PB,PC有效地集中在一起.中的任一个,绕一个顶点旋转0【例3】如图,在△ABC中,AD⊥BC于D,∠B=2∠C,求证:AB+BD=CD.(天津市竞赛试题)解题思路:用截长法或补短法证明,实质都利用AD翻折造全等.C【例4】如图,六边形ABCDEF 中,AB ∥DE ,BC ∥FE ,CD ∥AF ,对边之差BC -FE=ED -AB=AF -CD >0,求证:该六边形的各角都相等.(全俄数学奥林匹克竞赛试题)解题思路:设法能将复杂的条件BC -FE=ED -AB=AF -CD >0,用一个基本图形表示,题设条件有平行条件,考虑实施平移变换.【例5】已知Rt △ABC 中,AC=BC ,∠ACB =090,∠MCN =045 (1) 如图1,当M 、N 在AB 上时,求证:222MN AM BN =+(2) 如图2,将∠MCN 绕C 点旋转,当M 在BA 的延长线时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.(天津市中考试题)解题思路:222MN AM BN =+符合勾股定理的形式,需转化为直角三角形可将△ACM 沿直线图2图1MABBCM 对折,得△DCM . 连DN ,只需证DN=BN ,∠MDN =090;或将△ACM (或△BCM )旋转.【例6】如图,∠DAC=012,∠DBC=024,∠CAB=036,∠ABD=048,求∠DCA 的度数.(日本算术奥林匹克试题)解题思路:已知角的度数都是12的倍数,000362460+=,这使我们想到构作正三角形.A能力训练1.在如图所示的单位正方形网格中,将△ABC 向右平移3个单位后得到△A B C ''',则BA A '∠的度数是_______.(泰安市中考试题)B(第1题) (第2题)(第3题)2.如图,P是等边△ABC内一点,P A=6,PB=8,PC=10,则∠APB=_________.3.如图,直线143y x=与双曲线2(0)ky kx=>交于点A,将直线143y x=向右平移92个单位后,与双曲线2kyx=交于点B,与x轴交于点C. 若2AOBC=,则k=______________. (武汉市中考试题)4.如图,△ABC中,∠BAC=045,AD⊥BC,DB=3,DC=2,则△ABC的面积是___________.5.如图,P为正方形内一点,若::1:2:3PA PB PC=,则∠APB的度数是().A. 0120 B. 0135 C. 0145 D. 0150(第6题)(第5题)(第4题)AC BABD ABDA'6.如图,边长为2的正方形ABCD的对角线交于点O,把边BA、CD分别绕点B、C同时逆时针旋转060,得四边形A BCD'',下列结论:①四边形A BCD''为菱形;②12ABCDA BCDS S''=正方形四边形;③线段OD'1. 其中正确的结论有().A. 0个B. 1个C. 2个D. 3个7. 如图,A,B两个电话机离电话线l的距离分别是3米,5米,CD=6米,若由L上一点分别向A ,B 连电话线,最短为( ).A. 11米B. 10米C. 9米D. 8米8. 如图,在△ABC 中,∠BAC =0120,P 是△ABC 内一点,若记x PA PB PC =++,y AB AC =+,则( ).A. x y <B. x y =C. x y >D. x 与y 的大小关系不确定l第8题图第7题图CB9. 如图,已知D 是△ABC 中BC 边的中点,过D 作DE ⊥DF ,分别交AB 于E ,交AC 于F ,求证:BE CF EF +>.(天津市竞赛试题)B10.如图,△ABC ,△A B C '''其各边交成六边形DEFGHK ,且EF ∥KH ,GH ∥DE ,FG ∥KD ,0KH EF FG KD DE GH -=-=->. 求证:△ABC ,△A B C '''均为为正三角形.(“缙云杯”邀请赛试题)AB C A'11.如图,已知△ABC 中,AB=AC ,P ,Q 分别为AC ,AB 上的点,且AP=PQ=QB=BC ,求∠PCQ .(北京市竞赛试题)B12.如图,已知在平面直角坐标系中,A ,B 两点的坐标分别为(2,3)A -,(4,1)B -. (1) 若(,0)P x 是x 轴上的一个动点,当△P AB 的周长最短时,求x 的值;(2)若(,0),(3,0)C a D a +是x 轴上的两个动点,当四边形ABCD 的周长最短时,求a 的值; (3)设M ,N 分别为x 轴,y 轴上的动点,问:是否存在这样的点(,0)M m 和(0,)N n ,使四边形ABMN 的周长最短?若存在,求出,m n 的值;若不存在,请说明理由.(浙江省湖州市中考试题)13.如图,梯形ABCD 中,AD ∥BC ,分别以两腰AB ,CD 为边向两边作正方形ABGE 和正方形DCHF ,设线段AD 的垂直平分线l 交线段EF 于点M ,EP ⊥l 于P ,FQ ⊥l 于Q ,求证:EP=FQ.(全国初中数学联赛试题)14.如图所示,已知Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,求证:BM=DM ,且BM ⊥DM ;(2)如图2中的△ADE 绕点A 逆时针旋转小于045的角,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.(广州市中考试题)图2图1ACBBCA45,AD⊥BC于D,若BD=3,CD=2,求△ABC的面积. 15.如图,在△ABC中,∠BAC=0(山东省竞赛试题)B。
最新初中数学竞赛辅导----几何变换(旋转)

第2讲几何变换——旋转典型例题【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE,△是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以及线段BM,DK的中点是某正方形的顶点.L【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD △也是等边三角形.【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点,M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证:RM QS =.ECHDBAQ⋅S MPCBAR【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB =,PD =求正方形ABCD的面积.【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长.D【例7】 设O 是等边ABC △内一点,已知115AOB ︒∠=,125BOC ︒∠=,求以线段OA 、OB 、OC 为边所构成的三角形的各内角大小.【例8】 如图,在ABC △中,90ACB ︒∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =,2PC =,求BPC ∠.【例9】 如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:APCB2222BD DC AD +=.【例10】 如图,在等腰直角ABC △中,90ACB ︒∠=,CA CB =,P 、Q 在斜边AB 上,且45PCQ ︒∠=,求证:222PQ AP BQ =+.【例11】 在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,满足EF BE DF =+,ADCBAQBCPAE 、AF 分别与对角线BD 交于M 、N .求证:(1)45EAF ︒∠=; (2)222MN BM DN =+.【例12】 如图,在梯形ABCD 中,AD BC ∥,AD CD ⊥,2BC CD AD ==,E 是CD 上一点,且45ABE ︒∠=,AD α=.求CE 的长.E DCBA DF【例13】 已知:ABC △中,120A ︒∠≥,P 是不与A 重合的定点,求证:PA PB PC AB AC +++>.【例14】 已知:如图,ABD △是等边三角形,ABC △中,BC a =,CA b =.问:当ACB ∠为何值时,C 、D 两点的距离最大?最大值是多少?P CBA【例15】 已知ABC △,以其各边为底边,向ABC △的外部作等腰三角形ABD 、BCE 、CAF ,使顶角都等于120︒,求证:DEF △是正三角形.【例16】 已知:ABC △是锐角三角形,三边长分别是a 、b 、c ,O 是ABC △内的一点,120AOB BOC COA ︒∠=∠=∠=,OA u =,OB v =,OC w =,DEF △是等边三角形,P 是DEF △内一点,PD a =,PE b =,PF c =. 求证:DEF △的边长等于u v w ++. EBDAFC【例17】 已知:三条平行直线l 、m 、n ,求证:存在一个等边三角形ABC ,使顶点A 、B 、C 分别在l 、m 、n 上.作业1. 已知:ABCD 是正方形,O 是其中心,OEFG 也是正方形,两个正方形的边长都是a ,OG 、OE 分别交CD 、BC 于H 、K .求证:214OKCH S a =.2. 已知:如图,ABCD 是正方形,12∠=∠.求证:BE DF AE +=.3. ABC △是等边三角形,P 是其内的一点,3PA =,4PB =,5PC =,求ABC △的面积.1FDEAC2B4.P 是等边ABC △内部一点,APB ∠、BPC ∠、CPA ∠的大小之比是5:6:7,求以PA 、PB 、PC 为边的三角形的三个角的大小之比.5. 等边ABC △的边长a =,点P 是ABC △内一点,且222PA PB PC +=,若5PC =,求PA 、PB 的长.6. 在梯形ABCD 中,AD BC ∥(BC AD >),90D ︒∠=,12BC CD ==,E 在CD 上,45ABE ︒∠=,若10AE =,求CE 的长.7. 如图,P 、Q 是边长为1的正方形ABCD 内两点,使得45PAQ PCQ ︒∠=∠=.求P A B P C Q Q A DS S S ∆∆∆++的值.CED。
初中竞赛数学旋转在初中数学竞赛中的应用

旋转在初中数学竞赛中的应用旋转是几何图形运动变化的基本形式之一。
所谓旋转,就是把一个图形绕着一个定点按一定方向旋转某个角度而得到另一个图形,这种变换叫做旋转变化,简称旋转。
旋转变化的基本性质性质1 经过旋转变化后,对应直线的交角等于旋转角。
性质2 经过旋转变化后,所得图形与原图形是全等形。
在初中数学各级各类竞赛中,我们常碰到的是旋转角等于60°、90°或180°。
一、60°的旋转例1 如图1,在凸四边形中,∠ABC=30°,∠ADC=60°,AD=DC 。
求证:BD 2=AB 2+BC 2 。
(2002年江苏省数学奥林匹克培训题)【分析】要证的结论中三条线段应该是一个直角三角形的三边长,因此,如何把BD ,AB ,BC 放在同一个直角三角形中内,是解答本题的关键,连结AC 之后,实际上ΔADC 是一个等边三角形,将ΔDCB 绕着点C 顺时针旋转60°,得到ΔACP ,由旋转性质2,得到ΔDCB ≌ΔACP ,∴ BC=CP ,DB=AP ,由旋转性质1,得出∠BCP=60°,即ΔBCP 是等边三角形, ∴BC=BP ,∠CBP=60°, ∵∠ABC=30°, ∴∠ABP=90°,由勾股定理得AP 2=AB 2+BP 2, 即BD 2=AB 2+BC 2。
【评注】 条件和结论的联系不明显,但是从结论上已经给我们暗示一条思路,而题中有一个等边三角形,我们习惯于绕着等边三角形某一个角的顶点旋转60°,使分散的条件其中起来,从而使辅助线的添加显得自然流畅,同时也使解题过程变得简捷而有趣。
【演变1】 如图2,已知ΔABC 是等边三角形,E 是AC 延长线上任意一点,选择一点D ,使得ΔCDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点。
求证:ΔCMN 是等边三角形。
初中数学重点梳理:旋转

旋转知识定位旋转在初中几何或者竞赛中占据非常大的地位,是解决平面几何中最重要的工具之一,它的有关知识是今后我们学习综合题目重要基础。
本节需要掌握旋转图形变换的特征;学会运用旋转的特征进行图形的求解换。
本节我们通过一些实例的求解,旨在介绍数学竞赛中旋转相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、旋转的定义在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点。
注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2、旋转的基本特点(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3、旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形。
常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.4、中心对称(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
(2)中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(3)中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。
初中九年级数学竞赛培优讲义全套专题13 旋转变换

专题13 旋转变换阅读与思考在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换称为旋转,这个定点叫旋转中心,转动的角度叫旋转角.旋转变换不改变图形的形状和大小.通过旋转,图形上的每一点都绕旋转中心沿相同的方向转动同样大小的角度.旋转变换前后的图形有下列性质: (1)对应点到旋转中心的距离相等;(2)对应点与旋转中心的连线所成的角等于旋转角;(3)对应线段相等,对应线段的夹角等于旋转角,对应线段的垂直平分线都经过旋转中心.例题与求解【例1】如图,边长为1的正△A 1B 1C 1的中心为O ,将正△A 1B 1C 1绕中心O 旋转到△A 2B 2C 2,使得A 2B 2丄B 1C 1,则两个三角形的公共部分(即六边形ABCDEF )的面积为__.(“新知杯”上海市竞赛试题)解题思路:S 六边形ABCDEF =22223A B C B CD S S ∆∆-,解题的关键是寻找CB 1,CB 2,CD ,C 1D 之间的关系.【例2】如图,已知△AOB ,△COD 都是等腰直角三角形,∠AOB =∠CQD =90°,N ,M ,Q ,P 分别为AB ,CB ,CD ,AD 的中点. 求证:四边形NMQP 为正方形.解题思路:连结BD ,AC ,并延长AC 交于点E ,则△OAC 可以看作是由△OBD 绕点O 逆时针旋转90°得到的,且∠AED =90°,这是证明本例的关键.【例3】如图,巳知在△ABC 中,AB =AC ,P 为形内一点,且∠APB <∠APC . 求证:PB >PC . (北京市竞赛试题)解题思路:以A 为中心,将△APB 旋转一个∠BAC ,使AB 边与AC 边重合,这时△APB 到了△AP 'CQAB CDEM NOP1B 22的位置.【例4】点B ,C ,E 在同一直线上,点A ,D 在直线CE 的同侧,AB =AC ,EC =ED ,∠BAC =∠CED ,直线AE ,BD 交于点F .(1)如图1,若∠BAC =60°,则∠AFB =____;如图2,若∠BAC =90°,则∠AFB =____; (2)如图3,若∠BAC =α,则∠AFB =____(用含α的式子表示);(3)将图3中的△ABC 绕点C 旋转(点F 不与点A ,B 重合),得图4或图5.在图4中,∠AFB 与∠α的数量关系是___;在图5中,∠AFB 与∠α的数量关系是___.请你任选其中一个结论证明. (武汉市中考试题)解题思路:从特殊到一般,在动态的旋转过程中,有两组不变的关系:△ABC ∽△EDC ,△BCD ∽△ACE ,这是解本例的关键.【例5】如图,已知凸五边形ABCDE 中,AB =BC =CD =DE =EA ,∠ABC =2∠DBE .求证:∠ABC =60°. (北京市竞赛试题) 解题思路:将△ABE 以B 为旋转中心顺时针旋转∠ABC ,使得AB 与BC 重合,落在△CBE '位置,AB CDEF图1A BCDEF图2AB CDEF图3ABCDEF 图4ABCDEF图5Q AB C PP '则△ABE ≌△CBE ′,AE =CE ′,BE =BE ′,∠CBE ′=∠ABE .【例6】如图,已知正方形ABCD 内一动点E 到A ,B ,C方形的边长. (广东省竞赛试题)解题思路:本例是费马点相关的问题的变形,解题的关键是确定最小值时E 点的位置,通过旋转变换,把EA ,EB ,EC 连结起来.能力训练A 级1.如图,巳知正方形ABCD 中,点E 在边DC 上,DE =2,EC =1,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F ,C 两点的距离为____. (上海市中考试题)2.如图,P 是正△ABC 内的一点,且P A =6,PB =8,PC =10.若将△P AC 绕点A 逆时针旋转后,得到△P 'AB ,则点P 与点P '之间的距离为____,∠APB =____.(青岛市中考试题)3.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,∠BCD =45°.将CD 以点D 为中心逆时针旋转90°至ED ,连结AE ,则△ADE 的面积是____.4.如图,在Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =____.(上海市中考试题)A BCD第1题ABCP P '第2题ABCDE第3题ABCDEE 'A B C DE5.如图,将边长为1的正方形ABCD 绕点A 按逆时针方向旋转60°至AB 'C 'D ′的位置,则这两个正方形重叠部分的面积是____.(全国初中数学联赛试题)6.如图,在Rt △ABC 中,∠A =90°,AB =6cm ,AC =8cm .以斜边BC 上距离点B 6cm 的点P 为中心,把这个三角形按逆时针方向旋转90°至△DEF ,则旋转前后两个三角形重叠部分的面积为___.(黄冈市竞赛试题)7.如图,将△ABC 绕点C (0,-1)旋转180°得到△A 'B 'C ,设点A '的坐标为(a ,b ),则点A 的坐标为( )A .(a -,b -)B .(a -,1b --)C .(a -,1b -+)D .(a -,2b --)(河南省中考试题)8.如图,已知P 是等边△ABC 内部一点,∠APB ︰∠BPC ︰∠CP A =5︰6︰7.则以P A ,PB ,PC 为边的三角形的三个角的大小之比(从小到大)是( )A .2︰3︰4B .3︰4︰5C .4︰5︰6D .不能确定(全国初中数学通讯赛试题)9.如图,在△ABC 中,∠BAC =120°,P 是△ABC 内一点,则( ) A .P A +PB +PC <AB +AC B .P A +PB +PC >AB +AC C .P A +PB +PC =AB +ACD .P A +R B +PC 与AB +AC 的大小关系不确定(武汉市竞赛试题)10.已知:如图1,O 为正方形ABCD 的中心,分别延长OA 到点F ,OD 到点E ,使OF =2OA ,OE =2OD .连结EF ,将△FOE 绕点O 逆时针旋转α角得到△F ′OE ′(如图2).BCD第4题A BCDB 'C 'D '第5题A BCDEF G H K P第6题第7题ABCP第8题ABCP第9题(1)探究A 'E 与BF ′的数量关系,并给予证明; (2)当α=30°时,求证:△AOE '为直角三角形.(南通市中考试题)11.在△ABC 和△DEF 中,AB =AC ,DE =DF ,∠BAC =∠EDF =α,点M ,N 分别是BE ,CF 的中点.(1)若点A 与点D 重合,点E ,F 分别在AB ,AC 上(如图1),则AM 与AN 的数量关系是____,∠MAN 与α的数量关系是____;(2)将图1中的△DEF 绕点A (D )旋转(如图2),第(1)问的两个结论是否仍成立?若成立,请证明;若不成立,请说明理由.B 级1.如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,∠MDN =ABCDE FO图1ABCDE 'F 'Oα图2A BC ()D EFMN 图1A BC()D EFMN图260°,则△AMN 的周长=____.(重庆市竞赛试题)2.如图,在等腰Rt △ABC 的斜边AB 上取两点M ,N ,使∠MCN =45°,记AM =m ,MN =x ,BN =n ,则以线段x ,m ,n 为边长的三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .随x ,m ,n 的变化而变化(安徽省竞赛试题)3.如图,直线y =443x -+与x 轴,y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO 'B ',则点B ′的坐标是( )A .(3,4)B .(4,5)C .(7,4)D .(7,3)(丽水市中考试题)4.如图,正方形ABCD 中,已知ABBC ,CD 上,且∠BAE =30°,∠DAF =15°,求△AEF 的面积.(“希望杯”邀请赛试题)5.(1)如图1,在四边形ABCD 中,AB =AD ,∠BAD =60°,∠BCD =120°. 求证:BC +DC =AC ;(2)如图2,在四边形ABCD 中,AB =BC ,∠ABC =60°,P 为四边形ABCD 内一点,且∠APD =120°,求证:P A +PD +PC ≥BD .(江苏省竞赛试题)6.如图,在△ABC 中,AB =AC ,∠BAC =120°,△ADE 是正三角形,点D 在边BC 上,已知BD ︰DC =2︰3,当△ABC 的面积是50cm 2时,求△ADE 的面积.A BCDM N 第1题AB CMN 第2题第3题ABCD EF第4题ABCD图①A BCDP图②第5题(日本数学奥林匹克试题)7.如图,已知O 是锐角三角形ABC 内一点,∠AQB =∠BOC =∠COA =120°,P 是△ABC 内任一点.求证:P A +PB +PC ≥OA +OB +OC .(杭州市竞赛试题)8.(1)如图1,已知正方形ABCD 和正方形CGEF (CG >BC ),B ,C ,G 在同一条直线上,M 为线段AE 的中点.探究:线段MD ,MF 的关系;(2)如图2,若将正方形CGEF 绕点C 顺时针旋转45°,使得正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上,M 为AE 的中点.试问:(1)中探究的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)如图3,若将正方形CGEF 绕点C 顺时针旋转 ,M 为AE 的中点.试问:第(1)问中探究的结论是否成立?(大连市竞赛试题)9.已知正方形ABCD 和等腰Rt △BEF ,BE =EF ,∠BEF =90°.按图1的位置,使点F 在BC 上,取DF 的中点G ,连结EG ,CG .ABCDE第6题ABCOP第7题A BCDEF GM 图1A BCDEFGM 图2A BCDEFGM图3(1)探索EG ,CG 的数量关系和位置关系并证明;(2)将图中△BEF 绕点B 顺时针旋转45°,再连结DF ,取DF 中点G (如图2),第(1)问中的结论是否仍然成立?请你证明;(3)将图1中△BEF 绕点B 转动任意角度(在0°~90°之间),再连结DF ,取DF 的中点G (如图3),第(1)问中的结论是否仍成立?不必证明.10.在平面直角坐标系中,已知O 为坐标原点,点A (3,0),B (0,4).以点A 为旋转中心,把△ABO 顺时针旋转,得△ACD .记旋转角为α,∠ABO 为β.(1)如图1,当旋转后点D 恰好落在AB 边上时,求点D 的坐标; (2)如图2,当旋转后满足BC ∥x 轴时,求α与β之间的数量关系; (3)当旋转后满足∠AOD =β时,求直线CD 的解析式.(天津市中考试题)11.如图,在△ABC 中,∠BAC =60°,AB =2AD ,点P 在△ABC 内,且P APB =5,PC =2,求△ABC 的面积.(“《数学周报》杯”全国初中数学竞赛试题)ABCD E FG图3ABCDEFG图2图1ABCDE FG图1图2第10题ABCP第11题。
初中数学知识归纳空间几何体的几何变换

初中数学知识归纳空间几何体的几何变换初中数学知识归纳:空间几何体的几何变换在初中数学中,空间几何体是我们学习的一个重要内容。
它们在现实生活中随处可见,通过对空间几何体的几何变换的学习,我们可以更好地理解它们的性质和特点。
本文将对空间几何体的几何变换进行归纳总结,并分别介绍各个几何变换的定义和特点。
一、平移平移是指将一个物体沿着一定方向移动一定距离的操作。
在平面几何中,我们常常使用箭头表示平移的方向和距离。
而在空间几何中,我们需要指定一个平面作为平移面,并给出一个箭头表示平移的方向和距离。
通过平移,一个空间几何体在平移面上保持形状不变,只是位置发生了改变。
二、旋转旋转是指将一个物体绕某个点或某条轴线进行转动的操作。
我们可以通过指定旋转的中心和旋转的角度来描述一个旋转变换。
旋转可以使得一个空间几何体在旋转中心周围发生旋转,并保持其形状不变。
在旋转中,我们可以根据旋转的方向和角度来判断旋转是顺时针还是逆时针进行。
三、对称对称是指将一个物体关于某个点、线或面进行镜像的操作。
通过对称,一个空间几何体被映射到它的镜像位置,同时保持它的形状不变。
我们可以通过指定对称的中心和对称的轴线来描述一个对称变换。
在对称中,我们可以将对称视为特殊的旋转,旋转角度为180度。
四、放缩放缩是指将一个物体按照一定比例进行拉伸或压缩的操作。
放缩可以通过指定一个比例因子来描述,比例因子大于1时表示拉伸,比例因子小于1时表示压缩。
通过放缩,一个空间几何体的各个维度会按照相同的比例进行变化,保持其形状不变。
五、切变切变是指将一个物体沿某个方向进行倾斜的操作。
切变可以通过指定一个切变系数来描述,切变系数表示一个方向上的长度与另一个方向上的长度之间的比值。
通过切变,一个空间几何体在某个方向上会发生倾斜,但保持其形状不变。
在学习空间几何体的几何变换的过程中,我们需要掌握每种变换的定义和特点,了解它们的实际运用和意义。
同时,我们还需要通过大量的练习来提升对几何变换的理解和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 几何变换——旋转
典型例题
【例1】 C 是线段AE 上的点,以AC 、CE 为边在线段AE 的同侧作等边三角形ABC 、CDE ,设AD
的中点是M ,BE 的中点是N ,连结MN 、MC 、NC ,求证:CMN △是等边三角形.
【例2】 如图,两个正方形ABCD 和AKLM 有一个公共点A .求证:这两个正方形的中心以及线段BM ,
DK 的中点是某正方形的顶点.
【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线,AD DK .
求证:HBD △也是等边三角形.
K
E
C
H
D
B
A
L
【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点,M 为RC
上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证:RM QS =.
【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB =
,PD =ABCD 的面积.
【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长.
Q ⋅
S
M
P
C
B
A
R D
【例7】 设O 是等边ABC △内一点,已知115AOB ︒∠=,125BOC ︒∠=,求以线段OA 、OB 、OC 为
边所构成的三角形的各内角大小.
【例8】 如图,在ABC △中,90ACB ︒∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =,2PC =,
求BPC ∠.
【例9】 如图,已知ABC △中,90A = ,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=.
A
P
C
B
A
D
C
B
【例10】 如图,在等腰直角ABC △中,90ACB ︒∠=,CA CB =,P 、Q 在斜边AB 上,且45PCQ ︒∠=,
求证:222PQ AP BQ =+.
【例11】 在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,满足EF BE DF =+,AE 、AF
分别与对角线BD 交于M 、N .求证: (1)45EAF ︒∠=; (2)222MN BM DN =+.
【例12】 如图,在梯形ABCD 中,AD BC ∥,AD CD ⊥,2BC CD AD ==,E 是CD 上一点,且
45ABE ︒∠=,AD α=.求CE 的长.
A
Q
B
C
P
E D
C
B
A
D
F
【例13】 已知:ABC △中,120A ︒∠≥,P 是不与A 重合的定点,求证:PA PB PC AB AC +++>.
【例14】 已知:如图,ABD △是等边三角形,ABC △中,BC a =,CA b =.问:当ACB ∠为何值时,
C 、
D 两点的距离最大?最大值是多少?
【例15】 已知ABC △,以其各边为底边,向ABC △的外部作等腰三角形ABD 、BCE 、CAF ,使顶角
都等于120︒,求证:DEF △是正三角形.
P
C
B
A
E
B
D
A
F
C
【例16】 已知:ABC △是锐角三角形,三边长分别是a 、b 、c ,O 是ABC △内的一点,
120AOB BOC COA ︒∠=∠=∠=,OA u =,OB v =,OC w =,DEF △是等边三角形,P 是DEF
△内一点,PD a =,PE b =,PF c =. 求证:DEF △的边长等于u v w ++.
【例17】 已知:三条平行直线l 、m 、n ,求证:存在一个等边三角形ABC ,使顶点A 、B 、C 分别
在l 、m 、n 上.
作业
1. 已知:ABCD 是正方形,O 是其中心,OEFG 也是正方形,两个正方形的边长都是a ,OG 、OE
分别交CD 、BC 于H 、K .求证:21
4OKCH S a =.
2. 已知:如图,ABCD 是正方形,12∠=∠.求证:BE DF AE +=.
3. ABC △是等边三角形,P 是其内的一点,3PA =,4PB =,5PC =,求ABC △的面积.
4.
P 是等边ABC △内部一点,APB ∠、BPC ∠、CPA ∠的大小之比是5:6:7,求以PA 、PB 、PC 为
边的三角形的三个角的大小之比.
1
F
D
E
A
C
2
B
5. 等边ABC △
的边长a =点P 是ABC △内一点,且222PA PB PC +=,若5PC =,求PA 、
PB 的长.
6. 在梯形ABCD 中,AD BC ∥(BC AD >),90D ︒∠=,12BC CD ==,E 在CD 上,45ABE ︒∠=,
若10AE =,求CE 的长.
7. 如图,P 、Q 是边长为1的正方形ABCD 内两点,使得45PAQ PCQ ︒∠=∠=.求PAB PCQ QAD
S S S ∆∆∆++的值.
E D
C
B
A。