95年建模A题PPT

合集下载

1999年全国大学生数学建模竞赛赛题

1999年全国大学生数学建模竞赛赛题

'99创维杯全国大学生数学建模竞赛题目A题自动化车床管理一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%, 其它故障仅占5%。

工序出现故障是完全随机的, 假定在生产任一零件时出现故障的机会均相同。

工作人员通过检查零件来确定工序是否出现故障。

现积累有100次刀具故障记录,故障出现时该刀具完成的零件数如附表。

现计划在刀具加工一定件数后定期更换新刀具。

已知生产工序的费用参数如下:故障时产出的零件损失费用 f=200元/件;进行检查的费用 t=10元/次;发现故障进行调节使恢复正常的平均费用 d=3000元/次(包括刀具费);未发现故障时更换一把新刀具的费用 k=1000元/次。

1)假定工序故障时产出的零件均为不合格品,正常时产出的零件均为合格品, 试对该工序设计效益最好的检查间隔(生产多少零件检查一次)和刀具更换策略。

2)如果该工序正常时产出的零件不全是合格品,有2%为不合格品;而工序故障时产出的零件有40%为合格品,60%为不合格品。

工序正常而误认有故障仃机产生的损失费用为1500元/次。

对该工序设计效益最好的检查间隔和刀具更换策略。

3)在2)的情况, 可否改进检查方式获得更高的效益。

附:100次刀具故障记录(完成的零件数)459 362 624 542 509 584 433 748 815 505 612 452 434 982 640 742 565 706 593 680 926 653 164 487 734 608 428 1153 593 844 527 552 513 781 474 388 824 538 862 659 775 859 755 649 697 515 628 954 771 609 402 960 885 610 292 837 473 677 358 638699 634 555 570 84 416 606 1062 484 120 447 654 564 339 280 246 687 539 790 581 621 724 531 512 577 496 468 499 544 645 764 558 378 765 666 763 217 715 310 851B题钻井布局勘探部门在某地区找矿。

数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型数学建模常用的十大算法==转(2011-07-24 16:13:14)转载▼1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

数学建模A题解析PPT课件

数学建模A题解析PPT课件
为什么设第一部分?实验数据多余?还是误导?
第12页/共39页
二、问题的立意与背景
实际中产生误差的原因主要有三个方面: (1)在进/出油的过程中会造成少量的挥发耗散; (2)加油机本身的计量精度误差; (3)环境温度变化造成的误差。
根据经验,在常温下汽油的挥发率大约0.1%; 国家有关规定(国标JJG443-2006)加油机的最大 允许误差为±0.3%,重复性误差最大不超过0.15%。 问题:实际中那么大的误差究竟是怎么造成的?
r2
arccos
h
h
r, r]
3
r
z
2 r (R2 z2) arccos
R 1
dz,
hr
R2 z2
h r.
y
o
h
x
其中 r 1.5, L 8, R r2 1 1.625(单位 m), 2
第21页/共39页
四、实际油罐的变位识别与标定方法
表 1:正常情况下油罐的罐容表 油位高度 h(m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 油量值 V(L) 590.71 1682.06 3101.87 4783.00 6682.45 8767.91 11012.93 13394.65 15892.57 18487.88 油位高度 h(m) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 油量值 V(L) 21162.92 23900.88 26685.57 29501.18 32332.19 35163.15 37978.76 40763.45 43501.41 46176.46 油位高度 h(m) 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 油量值 V(L) 48771.78 51269.71 53651.43 55896.45 57981.93 59881.39 61562.53 62982.36 64073.72 64664.45

数学建模竞赛论文写作方法

数学建模竞赛论文写作方法
数学建模竞赛论文 写作方法
1
数学建模竞赛论文的一般结构 数学建模竞赛论文的评判
2
一、数学建模论文的一般结构
摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点
3
☻摘要 主要理解 主要方法 主要结果 主要特点 ☻问题重述与分析 —向导
1. 先要对问题进行全面分析,简明建模的依据。 2. 尽量采用成熟的数学方法和已有的模型。 3. 有时针对问题的具体情况,可以先建立简单的、 基本的模型,再作改进或修正。 4. 当然,也要注意应用新方法。”
—— 数模竞赛中建好数学模型之研究
7
☻模型检验
稳定性检验 敏感性检验 误差分析
仿真检验
算法复杂度分析
4. 参加各种类型的数学建模竞赛或模拟赛 (校内赛,地区赛,全国赛,美国赛,…)
25
11
CMCM—96A(最优捕鱼策略) 有的队假设产卵的过程服从正态分布,这样的假 设是可以的,但大大增加了问题的难度。在不失生 物学的真实的前提下,使模型的分析尽量简单的假 设应该是假设鱼群的个体在后四个月的第一天集中 一次产卵。
12
结果的正确性 模型的正确性。
计算的正确性(方法、结果)。 例一:99年“自动化车床”,在计算刀具 发 生故障后的损失时未考虑条件概率,导致计算 错误。 例二:98年“投资组合策略”,使用均方风险 函数,违背题义要求。
好方法的结果一般比较好;但不一定是最好的
清晰性:摘要应理解为详细摘要,提纲挈领 表达严谨、简捷,思路清新 格式符合规范,严禁暴露身份
21
CUMCM评阅标准: 一些常见问题
数学模型最好明确、合理、简洁: 有些论文不给出明确的模型,只是根据赛题的情况, 实际上是用“凑”的方法给出结果,虽然结果大致是 对 的,没有一般性,不是数学建模的正确思路。 有的论文过于简单,该交代的内容省略了,难以看懂

【习题】数学建模题目

【习题】数学建模题目

数学建模题目题目:A-K为个人单独完成题(一个人完成)1-4题为三人共同完成题目B题食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。

表1糖果有关数据原料A原料B原料C价格(元/kg)高级奶糖≥50%≥25%≤10%24水果糖≤40%≤40%≥15%15各种原料的可供量和成本见表2。

表2各种原料数据原料可供量(公斤)成本(员/公斤)A50020B75012该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。

C 题:某商业公司计划开办5家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司i A (5,4,3,2,1=i)对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。

商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?表3各建筑公司的建筑费用数据1B 2B 3B 4B 5B 1A 48715122A 791714103A 6912874A 67146105A 6912106D 题上海医科大学病理生理教研室曾做过小鼠肉瘤的增长实验,并得到了如表4所示的数据。

表4小鼠肉瘤的实验数据时间069111315171921232527体积0.0040.0310.0610.0740.1030.1520.2100.3390.5200.8131.269 1.558(1)若t 时刻肿瘤的体积)(t v 满足指数模型⎪⎩⎪⎨⎧==0)0(v v rv dt dv 请拟合参数r 。

(2)若t 时刻肿瘤的体积)(t v 满足Logistic 模型⎪⎩⎪⎨⎧=−=02)0(v v v v dt dv βα请拟合参数βα,。

E 题已知数据见表5。

试求y 对321,,x x x 的线性回归方程并检验回归效果,能否剔除一个变量?表5回归分析数据序号1x 2x 3x y序号1x 2x 3x y10.453158641012.6581125120.423163601110.937111763 3.11937711223.1461149640.634157611323.150134775 4.72459541421.64473936 1.765123771523.1561689579.444468116 1.93614354810.131117931726.858202168911.629173931829.95112499F 题:炼钢厂出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀作用,随着使用次数的增加,容积不断增大,实测得到15组数据如表6。

建模案例飞行管理问题

建模案例飞行管理问题

立即 判断
实时
实时 调 整
幅度尽量小 方 向 角
相对
距离
条件
算法 优化问题










问题的初步理解和想法
飞行管理问题是优化问题,在调整方向角的幅度尽量小的同时,还必须注意调 整方案及算法的实时性.
2. 问题探究
(1)优化问题的目标函数为何?
方向角调整的尽量小 方向角如何表示
方向角的概念是什么

幅度
尽ii量0 小i0
,题目中就是要求 , 因i (此i 有1, 化2, 的,目6) 的

(1)
6
| i |2.
i 1
为了建立这个问题的优化模型,只需要明确约束条件 就可以了。一个简单的约束是飞机飞行方向角调整的 幅度不应超过30°,即

(2)
| | 30.
题目中要求进入该区域的飞机在到达该区域边缘 时,与区域内的飞机的距离应在60km以上。这个 条件是个初始条件,很容易验证目前所给的数据 是满足的,因此本模型中可以不予考虑。剩下的 关键是 要满足题目中描述的任意两架位于该区域 内的飞机的距离应该大于8km。但这个问题的难点 在于飞机是动态的,这个约束不好直接描述,为 此我们首先需要描述每架飞机的飞行轨迹。
1. 问题的前期分析 * 对问题仔细阅读, 首先抓住题目中的关键词“管理”进行联想.
• 抓住诸如“碰撞”、“调整”、“避免碰撞”、“立即”、“判断”等等词语. * 联系解决问题的方案,不加约束继续联想,再将关键词搭配起来.
飞行位置示意图
160km
V
III
I
II IV
VI

2005-2015高教社杯全国大学生数学建模竞赛A、B题评阅要点


水质排序最差的地区不一定是污染源最严重的地区。 用长江干流上的 7 个观测站点将长江分 为 6 个江段,逐段计算各江段的排污量,找出主要污染源所在的区域。 首先研究每个江段中污染物浓度 C (mg/L) 的变化规律。由于题目中给出了污染物的降 解系数,附件 3 给出了每个月的污染物浓度、流量、流速等数据,若忽略污染物的局部扩散 (研究的是总体污染) ,在考虑固定时段(月)的污染物浓度时,可利用一般一维水质模型 的近似解 C = C 0 e
2008 A 题评阅要点 ............................................................................................................. 28 2008B 题 高等教育学费标准探讨 .................................................................................... 29
2009 B 题评阅要点 ............................................................................................................. 40
CUMCM-2009, A 题:第 1 页 / 共 42 页
2005A 题: 长江水质的评价和预测
水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源 的保护和治理应是重中之重。专家们呼吁: “以人为本,建设文明和谐社会,改善人与自然 的环境,减少污染。 ” 长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府 部门和专家们的高度重视。2004 年 10 月,由全国政协与中国发展研究院联合组成“保护长 江万里行”考察团,从长江上游宜宾到下游上海,对沿线 21 个重点城市做了实地考察,揭 示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯 救,长江生态 10 年内将濒临崩溃” (附件1) ,并发出了“拿什么拯救癌变长江”的呼唤(附 件 2) 。 附件 3 给出了长江沿线 17 个观测站(地区)近两年多主要水质指标的检测数据,以及 干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速) 。通常认为一个观测 站(地区)的水质污染主要来自于本地区的排污和上游的污水。一般说来,江河自身对污染 物都有一定的自然净化能力, 即污染物在水环境中通过物理降解、 化学降解和生物降解等使 水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的 自然净化能力可以认为是近似均匀的, 根据检测可知, 主要污染物高锰酸盐指数和氨氮的降 解系数通常介于 0.1~0.5 之间,比如可以考虑取 0.2 (单位:1/天)。附件 4 是“1995~2004 年 长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002) 给出的《地表 水环境质量标准》中 4 个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。 请你们研究下列问题: (1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染 状况。 (2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪 些地区? (3)假如不采取更有效的治理措施,依照过去 10 年的主要统计数据,对长江未来水 质污染的发展趋势做出预测分析,比如研究未来 10 年的情况。 (4)根据你的预测分析,如果未来 10 年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比 例控制在 20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水? (5)你对解决长江水质污染问题有什么切实可行的建议和意见。

数学建模知识

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,记得数模评卷的负责教师曾经说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力
一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。
1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外)
2)用字母表示要求的未知量
3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有2只脚,兔有4只脚)
4)求出数学式子的解答
5)验证所得结果的正确性
这就是数学建模的一般步骤
三、数模竞赛出题的指导思想
传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。
四、竞赛中的常见题型
赛题题型结构形式有三个基本组成部分:
1.实际问题背景
涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个比较确切的现实问题。
2.若干假设条件
有如下几种情况:

全国大学生数学建模竞赛赛题综合评析

B题:高等教育学费标准探讨
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11

优化模型举例

2020/7/1
一单位实物 行走时间(分钟) 捕获时间(分钟) 热量(焦耳)
X
2
2
25
Y
3
1
30
假设捕食者每天能得到 x 单位的食物 X 和
y 单位的食物 Y ,则每天获得的热量值为
max u 25x 30 y 2x 3y 120
s.t 2x y 80 x 0, y 0.
2020/7/1
2020/7/1
收点
发点
B1
B2
…. Bn
A1X11 X12….. X1na1
A2
X21 X22
…. X2n
a2
….. …..
Am
Xm1
Xm2 ….. Xmn
am
b1 b2
….
bn
2020/7/1
A1的总费用
A1 ~ B j
n
C11x11 C12 x12 ... C1n x1n C1 j x1 j j 1
2020/7/1
03年B题:“露天矿生产的车辆安排”,非线性 规划模型。 04年B题:“电力市场的输电阻塞管理”,双目
标线性规划模型。 05年B题:“DVD在现租赁”,0-1规划模型。 06年A题:“出版社的资源优化配置”,线性规 划模型。
2020/7/1
(一)优化模型的数学描述
将一个优化问题用数学式子来描述,即求函数
2.根据设计变量的性质 静态问题和动态问题。
3.根据目标函数和约束条件表达式的性质 线性规划,非线性规划,二次规划,多目标规划等。
2020/7/1
(1)非线性规划
目标函数和约束条件中,至少有一个非线性函数。
min u f (x) x
s. t. hi ( x) 0,i 1,2,..., m. gi ( x) 0(gi ( x) 0), i 1,2,..., p.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档