初一分类讨论典型例题
初中数学专题复习——分类讨论问题1(2021年整理)

初中数学专题复习——分类讨论问题1(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学专题复习——分类讨论问题1(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学专题复习——分类讨论问题1(word版可编辑修改)的全部内容。
初三数学专题复习-分类讨论问题在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论.另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。
把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。
它体现了数学中化整为零与积零为整的思想,是近年来中考重点考查的思想方法。
分类讨论思想方法也是一种重要的解题策略.分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.一、典型例题例1。
已知直角三角形两边、的长满足,则第三边长为。
例2.⊙O的半径为5㎝,弦AB∥CD,AB=6㎝,CD=8㎝,则AB和CD的距离是( )A。
7㎝ B. 8㎝ C。
7㎝或1㎝ D. 1㎝例3.如图,正方形ABCD的边长是2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动。
当DM =时,△ABE与以D、M、N为顶点的三角形相似.例4.如图,在直角梯形ABCD中,AD∥BC,∠C=900,BC=16,DC=12,AD=21,动点P从D 出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,经线段CB上以每秒1个单位长度的速度向点B运动,点P、Q分别从D、C同时出发,当点Q运动到点B时,点P随之停止运动。
初一数学 找规律 分类讨论思想

找规律经典模型及例题汇总一、a n n a 与例题:(10西城二模)一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数)。
∴第6个整数是67326=+,第n 个整数是32+n (n 为正整数). 练习:1、(10怀柔二模)按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .答案:1125,122+n n2、(09东城一模)按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________. 答案:12)1(1+-+n n例题:(10通州一模)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 .解:第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,则比值为3421. 练习:1、(08石景山一模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数从小到大的顺序排列为:1,1,2,3,5,8……,则这列数的第8个数是 . 答案:212、(09房山二模)填在下面三个田字格内的数有相同的规律,根据此规律,请填出图4中的数字.5675320531108975答案:7,9,11,176二、(n )1(-与1)1(+-n )例题:(09通州二模)12. 观察并分析下列数据,寻找规律: 0,3,-6,3,-23,15,-32,……那么第10个数据是 ;第n 个数据是 .∴第10个数据是33 ,第n 个数据是33)1(1--+n n . 练习:1、(10房山一模)一组按规律排列的式子:2581114916,,,,...(0)a a a a a --≠,其中第8个式子是 ,第n 个式子是 (n 为正整数).答案:2364a-,1321)1(-+-n n a n2、(10门头沟二模)一组按一定规律排列的式子:-2a ,52a ,-83a ,114a ,…,(a ≠0),则第n 个式子是 (n 为正整数)答案:na n n13)1(--3、(09崇文一模)一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).答案:8,)1(2)1(11+-++n n例题:(08通州二模)世界上著名的莱布尼茨三角形如图所示:则排在第10行从左边数第3个位置上的数是 . ∴第10行倒数第三个数是3601901721=-. 练习:1、(08大兴一模)自然数按一定规律排成下表,那么第200行的第5个数是 . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15… … … … …. …. ….. ………. 答案:199052、如图的数字方阵中,方框所缺的数,按照适宜的规律填上( ) A 、100 B 、128 C 、129 D 、130 答案:C例题:(11平谷二模)如图,将连续的正整数1,2,3,4……依次标在下列三角形中,那么2011这个数在第 个三角形的 顶点处(第二空填:上,左下,右下).∴2011这个数在第671个三角形的上顶点处. 故答案为:671,上.练习:1、(08崇文一模)观察下列等式:1312-=,2318-=,33126-=,43180-=,531242-=,…….通过观察,用你所发现的规律确定200831-的个位数字是 . 答案:32、右图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_____________;当字母C 第201次出现时,恰好数到的数是____________;当字母C 第12+n 次出现时(n 为正整数),恰好数到的数是_______________(用含n 的代数式表示). 答案:B ,603,6n+3例题:(09平谷一模)已知:,434434,323323,212212+=⨯+=⨯+=⨯……若ba ×10=b a+10(a 、b 都是正整数),则a+b 的最小值是 .∴a+b 的最小值是19 练习:1.(10密云一模)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+ ⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数C .第12个数D .第13个数答案:A例题1:(10昌平一模)观察下列图案:第1个图案第2个图案第3个图案照这样它们是按照一定规律排列的,依照此规律,第5个图案中共有个三角形,第n (1n ,且n 为整数)个图案中三角形的个数为 (用含有n 的式子表示). 解答:解:第5个图案中,有6+4×4=22(个)三角形;第n 个图案中,有6+4(n-1)=4n+2(个)三角形.例题2.(10西城一模)在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是 个;若菱形A n B n C n Dn的四个顶点坐标分别为(-2n ,0),(0, n ),(2n ,0),(0,-n )(n 为正整数),则菱形A nB nC nD n 能覆盖的单位格点正方形的个数为(用含有n 的式子表示). 答案为:4n 2-4n .练习:.1、(10大兴一模)如图4所示,把同样大小的黑色棋子摆放在正多边形的边上,按的规律摆下去,则第n 个图形需要黑色棋子的个数是x第1个第2个第3个…答案:)2(+n n2、(08顺义二模)如图,图①,图②,图③,图④……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .答案:5n+23、(08丰台二模)用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:请问第n 个图案中有白色纸片的张数为A .43n +B .31n +C .nD .22n + 答案:B4、(10丰台一模)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3C 3D 3……每个正方形四条边上的整点的个数.按此规律推算出正方形A 10B 10C 10D 10四条边上的整点共有 个.第1个图形 第2个图形 第3个图形 第4个图形(图4)…图①图②图③图④答案:80个.例题:(10海淀一模)如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△211B D C 的面积为1S ,△322BDC 的面积为2S ,…,△1n n n B D C +的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).S 2=S △B3C2A -S △AC2D2=21×4×3 - 21×4×332 即第n 个图形的面积S n =13+n n. 练习:1、(11丰台二模)已知:如图,在Rt ABC △中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥ 于点E 1,联结1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,联结2BE 交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点45、D D 、…、n D ,分别记112233△、△、△、BD E BD E BD E …、n n BD E △的面积为123、、、S S S …n S .设△ABC 的面积是1, 则S 1= ,n S = (用含n 的代数式表示). 答案:S 1=41,S n = 2)1(1+n S △ABC .A2、(10平谷一模)如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.则第一个黑色梯形的面积=1S ;观察图中的规律,第n(n 为正整数)个黑色梯形的面积=n S .答案:4, 8n-43、(10延庆二模)如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --= ()2n ≥答案:1)41(2,32---n ππ4、(10门头沟一模)如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________(n 为正整数).1P2P3P......B 1B 2A 1A OB答案:2n-25.(11延庆二模)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(. 延长CB 交x 轴于点1A ,作正方形C C B A 111; 延长11B C 交x 轴于点2A ,作正方形1222C C B A … 按这样的规律进行下去,第3个正方形的面积为________; 第n 个正方形的面积为_____________(用含n 的代数式表示).答案:5×(23)4,5×(23)2n-2.例题:(10丰台二模)如图,边长为1的菱形ABCD 中,60DAB ∠=°.联结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;联结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°,…….按此规律所作的第n 个菱形的边长为___________.第1个菱形 第2个菱形 第3个菱形 …… 第n 个菱形边长 1 3 33()13-n练习:1、09西城二模)如图,在平面直角坐标系中,B 1(0,1),B 2(0,3),B 3(0,6),B 4(0,10),…,以B 1B 2为对角线作第一个正方形A1B 1C 1B 2,以B 2B 3为对角线作第一个正方(形A 2B 2C 2B 3,以B 3B 4为对角线作第一个正方形A 3B 3C 3B 4,…,如果所作正方形的对角线B n B n +1都在y 轴上,且B n B n +1的长度依次增加1个单位,顶点A n 都在第一象限内(n ≥1,且n 为整数),那么A 1的纵坐标为,用n 表示C 1D 1C 2DC ABD C 2A n 的纵坐标答案:2,()212+n .2、(09延庆二模)如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是答案:123-⎪⎪⎭⎫ ⎝⎛n3、(08昌平一模)如图,在Rt ABC △中,90C =∠,12BC AC ==,,把边 长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中:第一个正方形CM 1P 1N 1的顶点分别放在Rt ABC △的各边上;第二个正方形M 1M 2P 2N 2的顶点分别放在11Rt APM △的各边上,……, 其他正方形依次放入。
初一数学分类讨论题

初一数学分类讨论题(原创版)目录1.初一数学分类讨论题的概述2.分类讨论题的解题技巧3.举分类讨论题的实例进行解析4.如何提高初一数学分类讨论题的解题能力正文一、初一数学分类讨论题的概述初一数学分类讨论题是一种要求学生根据题目所给条件进行分类讨论的题型,它能够有效检验学生对知识点的掌握程度以及逻辑思维能力。
分类讨论题在初一数学中占有较大比重,掌握这类题目的解题方法对于提高初一数学成绩具有重要意义。
二、分类讨论题的解题技巧1.仔细审题,明确题目要求在解答分类讨论题时,首先要仔细阅读题目,明确题目所求,将题目中的已知条件进行梳理,为分类讨论做好准备。
2.合理分类,避免重复和遗漏分类讨论的关键在于将题目中的条件进行合理分类。
分类时,要遵循不重复、不遗漏的原则,确保每种情况都得到了讨论。
3.逐步推导,注意逻辑严谨在分类讨论过程中,需要根据已知条件逐步推导出结论。
在推导过程中,要注意保持逻辑严谨,确保每一步都符合数学原理。
三、举分类讨论题的实例进行解析例题:一个正方形的对角线长是 10√2 厘米,求这个正方形的面积。
解:首先,根据正方形的性质,知道正方形的对角线长度等于边长的√2 倍。
因此,这个正方形的边长为 10 厘米。
然后,根据正方形的面积公式,计算出正方形的面积为 100 平方厘米。
所以,这个正方形的面积是 100 平方厘米。
四、如何提高初一数学分类讨论题的解题能力1.加强基础知识的学习,提高解题速度和准确率分类讨论题的解答离不开对基础知识的掌握,只有熟练掌握基础知识,才能在解题过程中迅速找到解题思路。
2.多做练习,总结解题经验通过不断地做题,可以积累丰富的解题经验,提高分类讨论题的解题能力。
在解题过程中,要注重总结经验,形成自己的解题方法。
3.学会灵活运用解题技巧在解答分类讨论题时,要善于运用解题技巧,如合理分类、逻辑推导等,以提高解题效率。
分类讨论购物应用例题初一

分类讨论购物应用例题初一1、王平要从甲村走到乙村,如果他每小时走4千米,那么走到预定时间,离乙村还有0.5千米;如果他每小时走5千米,那么比预定时间少用半小时就可到达乙村。
求预定时间是多少小时,甲村到乙村的路是多少千米?2、(古代问题)某人工作一年的报酬是给他一件衣服和10枚银币,但他干满7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币,这件衣服值多少枚银币?3、已知5台a型机器一天的产品装满8箱后还剩4个,7台b型机器一天的产品装满11箱后还剩1个,每台a型机器比b型机器一天多生产1个产品,求每箱有多少个产品.4、一辆大气车原来行驶的速度是30千米/时,现在开始均匀加速,每小时提速20千米/时;一辆小汽车原来的行驶速度是90千米/时,现在开始均匀加速,每小时减速10千米/时.经过多长时间两辆车的速度相等?这是车速是多少?5、甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,那么此月人均定额是多少件?(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,那么此月人均定额是多少件?答案:1.设时间是x 3小时;12.5km 5(x-0.5)=4x+0.5 2.设这件衣服值x 9.2(x+10)/12*7=x+2 3.设每箱产品数为x(8x+4)/5=(11x+1)/7 4.设经过x小时两车速度相等30+20x=90-10x,这时的速度是30+2*20=70 5.设人均定额是x 1)(4x+20)/4=(6x-20)/5 2)(4x+20)/4-(6x-20)/5=2 3)6x-20)/5-(4x+20)/4=2一艘轮船往返于甲、乙码头之间,顺水航行3小时,逆水航行3.5小时,若轮船在静水中的速度为每小时26千米,(1)求水流速度;(2)求两码头的距离。
例说七类需要分类讨论的题型

例说七类需要分类讨论的题型当我们解决一个问题时,如果无法一次性解决,那么就需要用一个标准,将问题划分成几个能分别解决的小问题,将这些小问题加以解决,从而最终使问题得到解决,这就是分类讨论思想。
当数学问题中的条件,结论不明确,或题中含参数或图形不确定时,就需要分类讨论.本文举例说明如下:一、边(角)的指代不明有些图形中的边(或角)的大小虽是己知的但具体是哪条边(或哪个角)不明确.对此先需分类讨论,再依据定义或定理求解.例1 (2013年广安市中考题)等腰三角形的一条边长为6,另一边长为13,则它的周 长为( )(A) 25 (B) 25或32 (C) 32 (D) 19分析 长度为6和13的两边,没有明确出谁是底边谁是腰,所以先需分类再求周长. 解 当6为底边时,其它两边都为6, 13,而边长为6,13,13可以构成三角形,周长为32; 当6为腰时,其它两边为6, 13, ∵ 6+6<13 ,∴边长为6, 6, 13不能构成三角形,应舍去,故选C.例2 一个直角三角形的两边长分别为6和8, 则该三角形中较小锐角的正弦值为_____.分析 长为8的边虽是最长边,但没有明确出是直角边还是斜边,对此需分类.解 当8为直角边时, 三边长为6, 8, 10; 当8为斜边时,三边长为所以该三角形中较小锐角的正弦值为35或4. 例3 (2013年荆门市中考题) 若等腰三角形的一个角为50°,则它的顶角为______. 分析 50°的角,没有明确出是顶角还是底角,对此先要分类。
解 50°为顶角时,则底角为65°, 65°;50°为底角时,则其他两角分别为50°, 80°.综上,顶角为50°或80°.二、图形的相对位置关系不确定若几何图形之间的相对位置关系在已知条件中不明朗,则需分情况讨论,列举出所有可能的情况,以免疏漏现象的发生.例4 已知△ABC 的外心为点O ,若∠BOC = 100°,则∠A 的度数为_______.分析 △ABC 与其外心O 的位置关系有三种情况: 当△ABC 为锐角三角形时,其外心O 在形内;当△ABC 为钝角三角形时,其外心O 在形外;当△ABC 为直角三角形时,其外心O 在斜边上.这三种情况都有可能存在,如图1,2.解 根据圆心角定理,得∠A 的度数为50°或130°.三、对应关系的不明确三角形的全等或相似中的判定和性质司体现了对应的思想.所以在已知图形全等或相似的前提下,解边(或角)的问题时,需要突出边(或角)的对应关系.例5 另一个三角形的两边长分别为1, 则它的第三边长为________.分析设第三边长为x,因为它和另一个三角形中三边中的哪一条是对应的并不明确,所以x的取值需分三种情况: x<1 (从小到大顺序为: x, x (从小到大顺序为:1, x,x (从小到大顺序为x).解21,所以x <1的情况应舍去.同理,舍去1<x.当x1x2x,所以x四、动态问题对动点问题中的数量关系及其对应的图象进行“分段破译”,挖掘每段图象所蕴藏的信息和段与段间“折点”的信息,做到形数的结合与转换.例6 (2013四川南充中考题) 如图3, 点E为矩形ABCD边AD上一点,点P、点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s设P, Q出发秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论;①AD=BE=5cm;②当0<t≤5时,y=25t2;③直线NH的解析式为y=﹣25t + 27;④若△ABE与△QBP相似,则t=294秒。
分类讨论初一例题

分类讨论初一例题摘要:1.引言:初一数学中的分类讨论2.分类讨论的概念和方法3.初一数学例题及分类讨论的运用4.结论:分类讨论的重要性和注意事项正文:【引言】初一数学中的分类讨论在初一数学学习中,我们经常会遇到一些问题需要进行分类讨论。
分类讨论是一种重要的数学思维方法,它能帮助我们更好地理解问题,找到问题的解决之道。
那么,什么是分类讨论?我们如何运用分类讨论来解决数学问题呢?接下来,我们将通过一些初一数学例题来详细介绍分类讨论的方法和运用。
【分类讨论的概念和方法】分类讨论,顾名思义,就是将问题按照某种特定的标准进行分类,然后对每一类问题进行分别讨论。
分类讨论的方法主要包括以下几种:1.按照问题中的已知条件进行分类。
2.按照问题中的变量性质进行分类。
3.按照问题中的几何图形进行分类。
【初一数学例题及分类讨论的运用】下面,我们通过一个初一数学例题来说明如何运用分类讨论来解决问题。
例题:一个长方体的长、宽、高分别是a、b、c,求这个长方体的表面积。
分析:根据长方体的性质,我们知道它有六个面,每个面的面积都可以通过长、宽、高来计算。
因此,我们需要对长、宽、高进行分类讨论,分别计算每个面的面积,然后将它们相加得到表面积。
解答:1.当长、宽、高都不相等时,长方体的表面积为:2ab + 2ac + 2bc。
2.当长、宽、高中有两个相等时,长方体的表面积为:2ab + 4ac 或2ab + 4bc。
3.当长、宽、高都相等时,长方体的表面积为:4ab。
通过以上分类讨论,我们得到了长方体表面积的通用公式。
【结论】分类讨论的重要性和注意事项从上面的例题中,我们可以看到分类讨论在解决数学问题中的重要性。
它能帮助我们更加细致地分析问题,找到问题的解决之道。
然而,在使用分类讨论时,我们也需要注意以下几点:1.分类讨论要全面,不要遗漏任何一种情况。
2.在进行分类讨论时,要确保每一类问题都得到了正确的解答。
3.分类讨论后,要对各种情况的结果进行综合,得出最终的解答。
(数学思想篇)数学-分类讨论思想典型题型汇总

数学思想篇:五、分类讨论思想【思想指导】、我们在解数学题时,如果遇到的对象不确定,就要根据已知条件和题意的要求,分不同的情况作出符合题意的解答,这就是分类讨论。
比如:①对字母的取值情况进行筛选,根据题意作出取舍;②在不同的数的范围内,对代数式表达为不同的形式;③对符合题意的图形,作出不同的形状、不同的位置关系等。
【范例讲析】:一、图形位置不确定时要分类讨论【例1】平面上一点P与⊙O上的点的距离的最小值是2,最大值是8,则⊙O的直径是()A.5B. 6C. 3或5D.6或10【例2】如图,已知点(1,0)A-和点(1,2)B,在坐标轴上确定点P使得△ABP为直角三角形,则满足这样条件的点P共有个.【例3】如图,(,)P x y是以坐标原点为圆心,5为半径的四周上的点,x y都是整数,则满足条件的点P共有个.二、根据绝对值的性质进行分类讨论【例4】若m n m n-=-且4,3m n==,则2()m n+= .三、由数学运算要求引起的分类讨论【例5】2(2)a--的平方根为__________.四、有动态背景的几何题要分类讨论【例6】如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点D、C、E、F在同一直线上,现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动,设两个三角形重合的部分的面积为y,运动的距离为x,下面表示y 与x的函数关系的图像大致是()A. B. C. D.【例7】如图,在平面直角坐标系中,点P是经过三点的圆上动点(点P不与O、B重合),∠OPB的度数是()A.45°B.90°C.135°D.45°或135°【例8】如图,∠NOM=90°,P为射线OM上的一点以点P为圆心,12OP为半径作⊙P,当射线ON绕点O按顺时针方向旋转到与⊙P相切时,旋转的度数是°.【例9】若等腰三角形的两边长分别为3和4,则它的周长为()A.7B.10C.11D.10或11【例10】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作P⊥QBC于Q,过点Q作QR∥BA交AC.于R当点Q与点C 重合时,点P停止运动 .设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量取值范围)(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求x的值;若不存在,请说明理由.五、根据参数的不同取值范围分类讨论【例11】已知关于x的方程22(1)10kx k x k-++-=,当k为何值时,方程有实数根?第 1 页共 2 页第 2 页 共 2 页【例12】如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么由图示位置需要向右平移( )A.2个单位长度B.4个单位长度C.4或6个单位长度D.2、4或6个单位长度 【优化训练】1. 当0a =时,方程0ax b +=(其中x 为未知数,b 是已知数)( ) A .有且只有一个解 B .无解 C .有无数个解 D .无解或有无数个解2.已知3,4a b ==,若a b c 、、能组成直角三角形,则c =( ) A .5 B .7 C.5或7 D .5或63.平面上A B 、两点到直线l 的距离分别为53-与53+,则线段的中点C 到直线l 的距离为A.5 B.3 C. 5或3 D.以上答案都不对4.同坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A. B. C. D.5. 横断面直径为1米,水面宽0.6AB =米的圆形下水管道的最大深度 .6.已知实数m n 、满足2720m m -+=,2720m m -+=则m nn m+= .7.如图,若等腰三角形中,一腰上的中线把它的周长分为15cm 和6cm 两部分,求该三角形各边长.8. m 为什么实数时,方程有实数根。
七上数学方程应用分类讨论

七上数学方程应用分类讨论
七年级上册的数学方程应用问题经常需要进行分类讨论,这是因为实际问题中存在多种可能的情况,需要根据不同的情况建立不同的方程或不等式。
以下是几个常见的分类讨论的例子:
1. 追及问题:这类问题中通常有两个物体在同一时刻开始运动,一个在另一个的前面。
我们需要根据两物体的速度和起始距离来分类讨论何时何地追上。
2. 相遇问题:这类问题中两个物体从不同的地点出发,朝着对方运动。
我们需要根据两物体的速度和起始距离来分类讨论何时何地相遇。
3. 行程问题:这类问题通常涉及一个或多个物体在一条直线上运动,我们需要根据物体的速度和运动时间来计算物体的位移。
4. 利润问题:这类问题通常涉及商品的价格、成本和利润之间的关系,我们需要根据商品的售价和成本来计算利润。
5. 溶液问题:这类问题通常涉及溶液的浓度、质量和体积之间的关系,我们需要根据溶液的浓度和质量来计算体积。
对于每个具体的问题,我们都需要仔细分析其背景和条件,根据不同的情况进行分类讨论,并建立合适的方程或不等式来解决问题。
同时,还需要注意方程或不等式的解的合理性和实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一分类讨论典型例题
以下是初一分类讨论典型例题:
1.分类讨论正方形的对角线问题:设正方形的边长为a,b,c,求对角线长度d。
解题过程中需要用到勾股定理、直角三角形的边长关系等知识点。
2.分类讨论三角形的分类问题:设三角形的三边为a,b,c,求三角形的分类。
解题过程中需要用到三角形的分类定理、直角三角形的边长关系等知识点。
3.分类讨论平行四边形的对角线问题:设平行四边形的两对邻边分别为a,b,c,d,求对角线长度。
解题过程中需要用到勾股定理、平行四边形的对角线定理等知识点。
4.分类讨论圆的分类问题:设圆的半径为r,直径为d,求圆的分类。
解题过程中需要用到圆的直径、半径、面积等知识点。
5.分类讨论函数的分类问题:设函数的定义域为[a,b],值域为[0,1],求函数的分类。
解题过程中需要用到函数的定义、值域等知识点。