五大类激素的比较
常见五种内源激素的生理效应

常见五种内源激素的生理效应一、生长素:代号为IAA。
生长素使最早被发现的植物激素,是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等,习惯上常把吲哚乙酸作为生长素的同义词。
生长素具体的生理效应表现为:第一、促进生长。
生长素在较低的浓度下可促进生长,而高浓度时则抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。
另外,不同器官对生长素的敏感性不同。
第二、促进插条不定根的形成。
用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。
第三、对养分的调运作用。
生长素具有很强的吸引与调运养分的效应,利用这一特性,用生长素处理,可促使子房及其周围组织膨大而获得无子果实。
第四、生长素的其他效应。
例如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。
此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。
二、赤霉素:代号为GA。
赤霉素(gibberellin)一类主要促进节间生长的植物激素,因发现其作用及分离提纯时所用的材料来自赤霉菌而得名。
赤霉素的生理效应为:第一、促进茎的伸长生长。
这主要是能促进细胞的伸长。
用赤霉素处理,能显著促进植株茎的伸长生长,特别是对矮生突变品种的效果特别明显;还能促进节间的伸长。
第二、诱导开花。
某些高等植物花芽的分化是受日照长度和温度影响的。
若对这些未经春化的植物施用赤霉素,则不经低温过程也能诱导开花,且效果很明显。
对花芽已经分化的植物,赤霉素对其花的开放具有显著的促进效应。
第三、打破休眠。
对于需光和需低温才能萌发的种子,赤霉素可代替光照和低温打破休眠。
第四、促进雄花分化。
对于雌雄异花的植物,用赤霉素处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用赤霉素处理,也会开出雄花。
第五、其他生理效应。
五大天然植物激素

任何植物体内都有五大天然植物激素,即生长素、脱落酸、赤霉素、细胞分裂素、乙烯。
不同的激素有不同的作用,科学家们通过合成和筛选选出许多化学结构和生理特性与植物激素功能相似的活性物质,用来诱导植物激素更好的发挥作用。
这类活性物质就是植物生长调节剂。
植物生长调节剂也对应着五大天然植物激素来发挥作用。
有拉长作用的药剂就属于植物生长调节剂,一般是生长素、赤霉素、细胞分裂素三类调节剂。
生长素类调节剂的作用是促进细胞生长,促进愈伤组织形成和发根,延迟离层形成,防止早期落果,促进未受精子房膨大,形成单性结实,提高坐果率,影响花的性别分化等。
二.四D属于生长素类调节剂,是拉长效果最好的调节剂,但因药效强、作用迅速,只能微量使用,控制不好就容易起坏作用。
我估计之所以有“禁药”的传说,是因为农民没有精细作业的习惯,没有相应的量具和较为科学的操作方法,往往凭感觉、凭想象、凭粗糙潦草的干活习惯,很容易过量和超量使用。
二.四D达到一定的量是可以当作除草剂来使用的。
所以我使用的拉长剂,使用二.四D的剂量,一喷雾器(16公斤水)仅仅是0.2克。
赤霉素的主要功能是使细胞伸长,打破或延休眠,诱导形成单性结实。
顺便说一句香蕉是单子叶单性结实的水果。
920属于典型的赤霉素类调节剂,用作拉长剂是没有问题的,香蕉催不熟,被怀疑使用了920是没有道理的,也站不住脚,根本不用理睬。
但单独使用920效果不理想,且价格稍稍偏高。
细胞分裂素的主要功能是促进细胞分裂和组织分化,抑制或延缓叶片衰老,防止叶绿素降解。
常用的细胞分裂素类调节剂是6-苄氨基嘌呤(又名:6-苄基氨基嘌呤、6-BA、苄基腺嘌呤、吉得乐等)。
若没有把握控制好二.四D的量,建议使用920加6-苄氨基嘌呤,两种调节剂混合使用,可以取长补短,互相弥补。
但价钱就比用二.四D高得多,一喷雾器的用量合15元左右。
五大植物内源激素

一、生长素类增加雌花,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根的形成,种子发芽,侧根形成,根瘤形成,种子和果实生长,座果,顶端优势。
但是必须指出,生长素对细胞伸长的促进作用,与生长素浓度、细胞年龄和植物器官种类有关。
一般生长素在低浓度时可以促进生长,浓度较高则会抑制生长,如果浓度更高则会使植物受伤。
细胞年龄不同对生长素的敏感程度不同。
一般来说,幼嫩细胞对生长素反应非常敏感,老细胞则比较迟钝。
不同器官对生长素的反应敏感也不一样,根最敏感,其最适浓度是10-10mol/L左右;茎最不敏感,最适浓度是10-4mol/L左右;芽居中,最适浓度是10-8mol/L左右。
二、赤霉素类(一)促进茎的生长1、促进整株植物的生长尤其是对矮生突变品种的效果特别明显,但GA对离体茎切段的伸长没有明显的促进作用,而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。
GA促进矮生植株伸长的原因是由于矮生种内源GA生物合成受阻,使得体内GA含量比正常品种低的缘故。
2、促进节间的伸长GA主要作用于已有的节间伸长,而不是促进节数的增加。
3、不存在超最适浓度的抑制作用即使GA浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度显著不同。
(二)诱导开花某些高等植物化芽的分化是受日照长度(即光周期)和温度影响的。
例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。
若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。
此外,GA也能代替长日照诱导某些长日植物开花,但GA对短日植物的化芽分化无促进作用。
对于花芽已经分化的植物,GA对其花的开放具有显著的促进效应。
(三)打破休眠GA可以代替光照和低温打破休眠,这是因为GA可诱导α-淀粉酶、蛋白酶和其他水解酶的合成,催化种子内贮藏物质的降解,以供胚的生长发育所需。
五大植物内源激素

一、生长素类增加雌花,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根的形成,种子发芽,侧根形成,根瘤形成,种子与果实生长,座果,顶端优势。
但就是必须指出,生长素对细胞伸长的促进作用,与生长素浓度、细胞年龄与植物器官种类有关。
一般生长素在低浓度时可以促进生长,浓度较高则会抑制生长,如果浓度更高则会使植物受伤。
细胞年龄不同对生长素的敏感程度不同。
一般来说,幼嫩细胞对生长素反应非常敏感,老细胞则比较迟钝。
不同器官对生长素的反应敏感也不一样,根最敏感,其最适浓度就是10-10mol/L左右;茎最不敏感,最适浓度就是10-4mol/L左右;芽居中,最适浓度就是10-8mol/L 左右。
二、赤霉素类(一)促进茎的生长1、促进整株植物的生长尤其就是对矮生突变品种的效果特别明显,但GA对离体茎切段的伸长没有明显的促进作用,而IAA对整株植物的生长影响较小,却对离体茎切段的伸长有明显的促进作用。
GA促进矮生植株伸长的原因就是由于矮生种内源GA生物合成受阻,使得体内GA含量比正常品种低的缘故。
2、促进节间的伸长GA主要作用于已有的节间伸长,而不就是促进节数的增加。
3、不存在超最适浓度的抑制作用即使GA浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度显著不同。
(二)诱导开花某些高等植物化芽的分化就是受日照长度(即光周期)与温度影响的。
例如,对于二年生植物,需要一定日数的低温处理(即春化)才能开花,否则表现出莲座状生长而不能抽薹开花。
若对这些未经春化的植物施用GA,则不经低温过程也能诱导开花,且效果很明显。
此外,GA也能代替长日照诱导某些长日植物开花,但GA对短日植物的化芽分化无促进作用。
对于花芽已经分化的植物,GA对其花的开放具有显著的促进效应。
(三)打破休眠GA可以代替光照与低温打破休眠,这就是因为GA可诱导α-淀粉酶、蛋白酶与其她水解酶的合成,催化种子内贮藏物质的降解,以供胚的生长发育所需。
植物激素知识大全

植物激素知识大全一、五大植物激素比较二、植物生长与植物激素的关系(1)生长素与细胞分裂素:植物的生长表现在细胞体积的增大和细胞数目的增多,生长素能促进细胞伸长,体积增大,使植株生长;而细胞分裂素则是促进细胞分裂,使植株的细胞数目增多,从而促进植物生长。
(2)生长素与乙烯:生长素的浓度接近或等于生长最适浓度时,就开始诱导乙烯的形成,超过这一点时,乙烯的产量就明显增加,而当乙烯对细胞生长的抑制作用超过了生长素促进细胞生长的作用时,就会出现抑制生长的现象。
(3)脱落酸与细胞分裂素:脱落酸强烈地抑制生长,并使衰老的过程加速,但是这些作用又会被细胞分裂素解除。
(4)脱落酸与赤霉素:脱落酸是在短日照下形成的,而赤霉素是在长日照下形成的。
因此,夏季日照长,产生赤霉素使植物继续生长,而冬季来临前日照变短,产生脱落酸,使芽进入休眠状态。
三、植物生长调节剂的应用1、概念:人工合成的对植物的生长素有调节作用的化学物质。
2、特点:(1)容易合成(2)原料广泛(3)效果稳定3、实例(1)剩用乙烯利催熟,如凤梨的有计划上市,香蕉、柿子、番茄等上市前的催熟。
(2)利用赤霉素溶液处理芦苇,增加纤维长度,如在芦苇生长期用一定浓度的赤霉素溶液处理,就可以使芦苇的纤维长度增加50%左右。
(3)用赤霉素处理大麦,可使大麦种子无须发芽就可产生α一淀粉酶。
(4)青鲜素可以抑制发芽,延长马铃薯、大蒜、洋葱的贮藏期。
4、植物生长调节剂应用的两面性(1)农产品在生产过程中使用植物生长调节剂的例子很多,如马铃薯、莴苣使用赤霉素处理可打破休眠,促进萌发;芹菜、苋菜、菠菜等在采收前用一定浓度的赤霉素喷施可促进营养生长,增加产量;黄瓜、南瓜用一定浓度的乙烯利喷施可促进雌花分化。
(2)生产过程中使用植物生长调节剂可能会影响农产品的品质,如青鲜素可用于洋葱、大蒜、马铃薯块茎,延长休眠,抑制发芽,延长贮藏期,但青鲜素是致癌物质,对人体健康不利;另外如果水果远未达到成熟期,营养物质没有足够的积累,此时就盲目地用乙烯利催熟,必然改变水果的营养价值及风味。
高三生物植物激素知识点

高三生物植物激素知识点植物激素是植物生长和发育中起到调节作用的化学物质。
植物激素广泛存在于植物各个部位中,对植物发育、生长、开花、结果等起着重要的调节作用。
在高三生物的学习中,理解和掌握植物激素的知识点是十分重要的。
1. 植物激素的分类植物激素可分为五大类:生长素、赤霉素、乙烯、植酸和脱落酸。
每一类激素在植物体内具有不同的作用和调控机制。
2. 生长素生长素是最重要的一类植物激素,能够促进植物细胞分裂和伸长。
它在植物体内的分布和含量呈极不均匀分布。
生长素还参与了植物的生活节奏调控、光变形成和促进根系生长等。
3. 赤霉素赤霉素是一种复杂的三萜类植物激素,它是调控植物生长和发育非常重要的激素。
赤霉素可以促进细胞伸长和分裂,并影响植物的休眠、芽分化和花期。
4. 乙烯乙烯是一种无色、无臭的气体,广泛存在于植物中,并参与了许多生理过程。
乙烯可以调控植物的发育和生长,影响营养物质的合成和代谢,促进果实成熟和脱落。
5. 植酸植酸在植物中主要存在于种子和果实中,它具有抑制植物生长的作用。
植酸在种子萌发和根系生长中发挥了重要的调控作用。
6. 脱落酸脱落酸是一种维生素族植物激素,它在植物的生长、发育和适应环境等方面起着重要的作用。
脱落酸能够促进叶片老化和脱落,参与植物的休眠和开花等过程。
7. 植物激素的应用植物激素不仅对植物的生长和发育有调节作用,还被广泛应用于农业生产中。
例如,通过施用生长素可以促进植物的生长和果实发育;通过合理利用赤霉素和乙烯可以调控植物的坐果和保鲜等。
8. 植物激素的互作和平衡在植物体内,各种激素之间存在着复杂的相互作用和平衡关系。
它们之间的调控作用决定了植物体内各个组织和器官的生长和发育。
总结起来,高三生物植物激素知识点涉及了植物激素的分类和作用,以及植物激素在植物生长和发育中的重要作用。
理解和掌握这些知识点,有助于在高中生物考试和学业中取得更好的成绩。
同时,植物激素的应用也是一个重要的研究领域,可以通过合理利用植物激素来提高农作物产量和质量,对农业生产具有重要意义。
五种植物激素的作用及应用

五种植物激素的作用及应用植物激素是植物内部产生的化学物质,对植物的生长和发育起到调控作用。
常见的植物激素包括赤霉素、生长素、细胞分裂素、脱落酸和乙烯。
下面将分别介绍这五种植物激素的作用及应用。
1. 赤霉素赤霉素是一种含有龙脑环结构的萜类化合物。
赤霉素对生长素的合成和运输起到抑制作用,从而抑制植物的细胞分裂和伸长,促进茎的侧芽发育。
赤霉素还可以促进种子的萌发和采后果实的成熟。
应用:赤霉素在农业生产中有广泛应用,可以促进苗木、花卉和水果的生长发育,提高产量和品质。
赤霉素还可用于控制植物茎伸长和抑制果实过早脱落,在果园管理和果实采后保鲜方面具有重要作用。
2. 生长素生长素是由苯丙氨酸合成的一种植物激素,主要存在于植物的茎尖、根尖和新生叶片等处。
生长素可以促进细胞的分裂和伸长,调节植物的生长方向和形态。
应用:生长素广泛应用于农业生产中,可以促进根系发育、提高植物耐逆性和增加抗病性。
生长素还可用于扦插繁殖、果实膨大和调控果实的成熟,提高产量和品质。
3. 细胞分裂素细胞分裂素是由腺苷脱氨酸合成的一类植物激素,主要参与植物细胞的分裂和组织器官的生长发育。
应用:细胞分裂素主要用于组织培养和无性繁殖中,可以诱导细胞分裂和再生植株,实现杂交种驯化和新品种选育。
细胞分裂素还可以提高作物的光合效率、促进叶片扩大和增加叶绿素含量,提高光合产物的合成能力。
4. 脱落酸脱落酸是一种果酸类似物,是植物体内存在最多的植物激素之一。
脱落酸参与植物细胞的伸长和分化,调节植物的生长节律和开花等生理过程。
应用:脱落酸主要用于果树产业中的脱果和破休处理。
在控制果实坚实度和调控树势方面,脱落酸具有重要作用。
此外,脱落酸还可以用于调节蔬菜的发芽期,推迟生长和提高产量。
5. 乙烯乙烯是一种气体植物激素,在植物的果实成熟、开花和脱落等生理过程中发挥重要作用。
乙烯能够促进植物的细胞伸长和分化,调节植物的生长和发育过程。
应用:乙烯广泛应用于农业和园艺生产中,可以调控果实的成熟和变色,抑制果实过早脱落。
五种植物激素的比较

五种植物激素的比较 名称产生部位 生理作用 对应的生长调节剂应用生长素幼根、幼芽及发育的种子促进生长,促进果实发育萘乙酸、2,4-D①促进扦插枝条的生根;②促进果实发育,防止落花落果;③农业除草剂赤霉素幼芽、幼根、未成熟的种子等幼嫩的组织和器官①促进细胞伸长,引起植株长高;②促进种子萌发和果实发育①促进植物茎秆伸长;②解除种子和其他部位休眠,提早用来播种 细胞分裂素 正在进行细胞分裂的器官(如幼嫩根尖) ①促进细胞分裂和组织分化;②延缓衰老 青鲜素蔬菜贮藏中,常用它来保持蔬菜鲜绿,延长贮存时间 乙烯 植物各部位,成熟的果实中更多 促进果实成熟 乙烯利处理瓜类幼苗,能增加雌花形成率,增产 脱落酸 根冠、萎蔫的叶片等抑制细胞分裂,促进叶和果实衰老与脱落落叶与棉铃在未成熟前的大量脱落多种激素的共同调节:在植物生长发育的过程中,任何一种生理活动都不是受单一激素控制的,而是多种激素相互作用的结果。
这些激素之间,有的是相互促进的;有的是相互拮抗的。
举例分析如下:(1)相互促进方面的有①促进果实成熟:乙烯、脱落酸。
②促进种子发芽:细胞分裂素、赤霉素。
③促进植物生长:细胞分裂素、生长素。
④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。
⑤延缓叶片衰老:生长素、细胞分裂素。
⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。
(2)相互拮抗方面的有①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。
②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。
③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。
④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。
例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称纵切至约34处后,浸没在不同浓度的生长素溶液中。
一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。
请回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.在信号传导中起作用
3.调运养分的效应
4.其它效应
1.促进茎的伸长生长
2.诱导开花
3.打破休眠
4.促进雄花分化
5.其他效应
1.促进细胞分裂
2.促进芽分化
3.促进细胞扩大
4.消除顶端优势
5.延缓衰老
6.打破休眠
1.促进休眠
2.促进气孔关闭
3.抑制生长
4.促进脱落
5.增加抗逆性
1.改变生长习性(三重反应)
2.促进果实成熟3.促进脱落
4.促菠萝开花和雌蕊分化
5.其它效应
作用机理
1.酸生长理论
2.基因活化学说
3.生长素受体
1. GA与酶合成
2. GA调节IAA水平
3.赤霉素结合蛋白
1.细胞分裂素结合蛋白
2.细胞分裂素对转录和翻译的控制
3.细胞分裂素与钙信使的关系
1.脱落酸结合蛋白
2. ABA与Ca2+、CaM系统的关系
3. ABA对基因表达的调控
五大类激素的比较
激素名称
生长素(IAA)
赤素(GA)
细胞分裂素(CTK)
脱落酸(ABA)
乙烯
(ETH或Eth)
基本结构
吲哚乙酸
赤霉环烷
腺嘌呤衍生物
15个碳的倍半萜
CH2=CH2
常见类型
IAA,IBA,IPA,
赤霉酸(GA3)
玉米素、
二氢玉米素
脱落酸,菜豆酸,二氢菜豆酸
乙烯
含量
10-100ng/g FW
移动特点
极性传导
没有极性(双向运输)
无极性,根部向上运输较多
无极性
在合成部位发生作用,并四处扩散
合成前体
色氨酸
甲瓦龙酸(长日条件下)
甲瓦龙酸
甲瓦龙酸(短日条件下)
蛋氨酸
合成部位
茎尖,幼叶,子房
幼叶,茎尖,根尖,
根尖
种子,根冠,萎蔫的叶片
所有细胞都可合成
主要生理效应
1.促进生长(有浓度效应)
2.促进插条不定根的形成
1-1000ng/g FW
1-1000ng/g FW
10-4000ng/gFW
0.01-10nL/gFW.h
体内分布
集中分布于生长旺盛的部位
植物组织中普遍存在,生长旺盛部位含量最高
植物体内普遍存在,主要在分裂的器官。
主要存在于即将脱落或进入休眠的器官和组织中
全株均有,而以正在成熟的果实、伤病和衰老组织中较多