《结构力学习题集》9-结构动力计算

合集下载

《结构力学习题集》(含答案)

《结构力学习题集》(含答案)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M 17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

结构的动力计算习题

结构的动力计算习题

《结构的动力计算》习题一、判断题1、图示等效体系的关系是:3211111k k k k ++=。

( )2、结构的动力反应只与初始条件及动荷载有关。

( )3、任何动力荷载作用下均可以采用公式:1221-⎪⎪⎭⎫⎝⎛-=ωθβ计算动力系数。

( ) 4、外界感干扰力只影响振幅、不影响体系的自振频率。

( )5、体系的动力自由度数与质点的个数无关、也与结构静定或超静定无关。

( )6、图示体系各杆自重不计、EA =∞,则该体系在初始时刻的干扰力作用下将做竖向振动。

( )二、选择题1、增加单自由度体系的阻尼、但仍保持为低阻尼体系,其结果是( )。

A 、周期变长 B 、周期不变 C 、周期变短 D 、 周期视具体体系而定2、图示两个等效结构,正确的刚度关系是( )。

A 、k=k 1+k 2 B 、21111k k k += C 、21211k k k k k += D 、2112k kk k k +=3、图示体系不计阻尼,平稳阶段最大动位移y max =4Pl 3/7EI ,其最大动力弯矩为( )。

A 、3Pl /7 B 、4Pl /7 C 、12Pl /7 D 、4Pl /21 4、下列哪句话有错误或不够准确()。

第3题图A、在多自由度体系自由振动问题中,主要问题是确定体系的全部自振频率和相应的主振型; B 、多自由度体系的自振频率不止一个,其个数与自由度个数相等;C 、每个自振频率都有自己相应的主振型,主振型就是多自由度体系振动时各质点的位移变化形式;D 、与单自由度体系相同,多自由度体系的自振频率和相应的主振型也是体系本身的固有性质。

5、图示单自由度体系自振周期的关系为( )。

A 、(a)=(c)B 、(a)=(b)C 、(b)=(c)D 、都不相等6、单自由度振动体系中,若质点在杆的中点,各杆EI 、l 相同,其自振周期的大小排列顺序为(A 、(c)>(a)>(b)B 、(c)>(b)>(a) C 、(a)>(b)>(c) D 、(b)>(c)>(a)三、分析计算题1、梁的抗弯刚度为EI2m3、柱的自重不计,求图示刚架的自振频率。

《结构力学习题集》9-结构动力计算

《结构力学习题集》9-结构动力计算

第九章 结构的动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。

2、忽略直杆的轴向变形,图示结构的动力自由度为4个。

3、仅在恢复力作用下的振动称为自由振动。

4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。

5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。

l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。

∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。

AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m XX h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps i n m y EI =-77683θ t /; B .()()m y EIy l Ps i n /+=19273θ t ; C .()()m y EIy l Ps i n /+=38473θ t ; D .()()()y l Ps i n m yEI =-7963θ t / 。

ll0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。

第9章动力计算,结构力学,课件

第9章动力计算,结构力学,课件

振动
振动
第三节 单自由度体系的强迫振动
实际振动过程中,存在阻尼力,按自振频率振动的部分逐渐消失 只剩下按荷载频率振动的部分
振动刚开始时两种振动共存阶段称为“过度阶段” 后来只按荷载频率振动的阶段成为“平稳阶段” 实际问题中“平稳阶段”的振动较为重 要 1
y yst
1 2
2
sin t
y k
P(t)
y ky
m P(t)
2.
当荷载为简谐荷载时: P(t) F sin t 2 y F sin t y m 微分方程的解为:
m y
m受力图
3.
二阶线性常系数非齐次微分方程,全解由两部分组成 对应的齐次方程的通解;非齐次方程本身的一个特解 *
y Y y
第三节 单自由度体系的强迫振动
y(t) C1 cost C2 sin
自由振动的组成: 一部分由初始位移y0引起的; 另一部分由初始速度v0引起的。
方程的解: (t ) y0 cos t y
v0
sin t
C2 y0 v C1 v0 C1 0

方程的解也可以写成: y(t) a sin(t )
根据初始条件可解得: a y02 v
2 0 2
tg
1
y0 0 v
9.2.1 单自由度体系的自由振动
三、结构的自振周期
y 从微分方程的解: (t) a sin(t )
知位移是周期函数;
自振周期T:振动一周需要的时间;单位:“s(秒)” T 2 2 m 2 m k 自振频率f:单位时间的振动次数;单位:“Hz(赫兹)” f 1 T 2 圆频率或角频率:2 时间内的振动次数,单位:“弧度/s” ; 2 2 2f k 1 T m m 自振周期的性质:

结构动力计算课后习题答案

结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算课后习题答案在学习结构动力学这门课程时,我们经常会遇到各种各样的习题。

这些习题旨在帮助我们巩固所学的知识,并提供实践的机会。

在这篇文章中,我将为大家提供一些结构动力计算课后习题的答案,希望能对大家的学习有所帮助。

1. 计算一个简支梁的固有频率。

答案:简支梁的固有频率可以通过以下公式计算:f = (1/2π) * √(k/m)其中,f为固有频率,k为刚度,m为质量。

在简支梁的情况下,刚度k等于弹性模量E乘以截面面积A除以长度L。

质量m等于密度ρ乘以截面面积A除以长度L。

2. 计算一个悬臂梁的固有频率。

答案:悬臂梁的固有频率可以通过以下公式计算:f = (1/2π) * √(3k/m)在悬臂梁的情况下,刚度k等于弹性模量E乘以截面面积A的三次方除以长度L的四次方。

质量m等于密度ρ乘以截面面积A除以长度L。

3. 计算一个简支梁的振动模态。

答案:简支梁的振动模态可以通过以下公式计算:f_n = (n^2 * v) / (2L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。

n为振动模态的序号,从1开始。

4. 计算一个悬臂梁的振动模态。

答案:悬臂梁的振动模态可以通过以下公式计算:f_n = (2n-1) * (v/4L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。

n为振动模态的序号,从1开始。

5. 计算一个简支梁的最大挠度。

答案:简支梁的最大挠度可以通过以下公式计算:δ_max = (5qL^4) / (384EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。

6. 计算一个悬臂梁的最大挠度。

答案:悬臂梁的最大挠度可以通过以下公式计算:δ_max = (qL^4) / (8EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。

以上是一些常见的结构动力计算课后习题的答案。

通过解答这些习题,我们可以更好地理解结构动力学的概念和原理,提高我们的计算能力和问题解决能力。

结构动力计算课后习题答案

结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算是土木工程和机械工程领域中的一个重要分支,它涉及到结构在动力作用下的响应分析。

这门课程的课后习题通常要求学生运用所学的理论,解决实际工程问题。

以下是一些可能的习题答案示例,请注意,这些答案是基于假设的习题内容,实际的习题答案应根据具体的题目来确定。

习题1:单自由度系统的动力响应假设有一个单自由度系统,其质量为m,阻尼系数为c,刚度系数为k。

系统受到一个简谐激励F(t) = F0 * sin(ωt),其中F0是激励力的幅值,ω是激励频率。

求系统的稳态响应。

答案:对于单自由度系统,其运动方程可以表示为:\[ m\ddot{x}(t) + c\dot{x}(t) + kx(t) = F_0 \sin(\omega t) \]稳态响应可以通过求解上述方程的特解来获得。

特解的形式为:\[ x(t) = X \sin(\omega t + \phi) \]其中,振幅X和相位角φ可以通过以下公式计算:\[ X = \frac{F_0}{\sqrt{(\omega^2 m - \omega^2)^2 +(c\omega)^2}} \]\[ \phi = \arctan\left(\frac{c\omega}{\omega^2 m -\omega^2}\right) \]习题2:多自由度系统的模态分析考虑一个两自由度系统,其质量矩阵、刚度矩阵和阻尼矩阵分别为:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & k_c \\ k_c & k_2\end{bmatrix}, \quad C = \begin{bmatrix} c_1 & 0 \\ 0 & c_2\end{bmatrix} \]求系统的自然频率和模态形状。

结构动力学习题+讲解

结构动力学习题+讲解

&&(t ) + (ω2 – n2 )S (t) = 0 --------------------------------------------(5) S
1.当 n >ω时(强阻尼) 方程(5)的解为: S (t) = A1sh n − ω t +A2ch n − ω t
2 2 2 2
从而,方程(4)的解为:
若时间 t 不是从 0 开始,而是从τ开始的,则(9)式写为:
y (t ) =
p∆t sinω(t-τ) mω
---------------------------------------(10)
写作: ,记ω2 =
K m
,2n =
C ,又可写作: m
& &(t ) + 2n y & (t ) +ω2 y (t ) = 0 y
利用常数变易法,令 y (t ) = e
− nt
---------------------------------------------(4)
S (t ) 代入方程(4)中 得:
K/2 VBA
48i/7L
2
A
取横梁为研究对象,Σ X=0,得:K= 4)振动方程
24 EI L3
即,
&(t ) - K y(t ) + Psinθt = 0 y - 2 m& &(t ) + y 2 m&
24 EI y(t ) = Psinθt L3
一、 无阻尼的自由振动
振动方程
&(t ) +K y (t ) = 0 , m& y & &(t ) + y K y (t ) = 0 m

建筑结构力学讲义第九章 结构的动力计算

建筑结构力学讲义第九章 结构的动力计算

建筑力学
三、惯性力
当物体受外界因素的作用发生运动状态的 改变,即获得加速度时,物体由于惯性产生 对外界抵抗的作用力称为惯性力。正是由于 惯性力的作用使结构的动力计算具有不同于 静力计算的特点。
谢 谢
FP (t )
FP
-FP
简谐荷载
t
பைடு நூலகம்
建筑力学
2. 冲击荷载
这类荷载在很短的时间内,荷载值急剧 增大或急剧减小。
FP (t )
FP (t )
FP
FP
tr
a)
t
td
b)
t
核爆炸冲击波荷载曲线
化爆冲击波荷载曲线
建筑力学
3. 随机荷载 荷载在将来某一时刻的大小和方向无法事先 确定,称为非确定性荷载,或称为随机荷载, 例如地震荷载及风荷载就是随机荷载。
一般而言, TH / TJ ≥5,该荷载就可作为静荷 载处理。
建筑力学
3. 动力反应 在动荷载作用下,结构产生振动,结构的分 布质量和集中质量的位移、速度、加速度以及 作用在质量上的惯性力等都是时间 t 的函数, 结构任一截面的内力也是时间 t 的函数。上述 内力、位移、速度、加速度以及惯性力等统称 为结构的动力反应。 学习动力学就是要掌握动力反应的计算原理 和方法,并确定其随时间的变化规律。 另外,结构的自振频率、自振周期和阻尼特 性,以及多自由度体系的主振型等则是结构固 有的动力特性,这些参数对结构的动力分析有 着重要的影响。
建筑力学
2. 荷载周期与结构自振周期
一种荷载是否作为动荷载来处理,我们通 常用荷载周期TH与结构自振周期TJ的比值来 衡量。 如一种荷载的周期TH =1秒,而TJ =0.1秒, 有TH / TJ =10,则荷载对结构而言可当作静荷 载处理。若结构自振周期TJ =10秒,有TH / TJ =0.1,则该荷载就应作为动荷载来处理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 结构的动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。

2、忽略直杆的轴向变形,图示结构的动力自由度为4个。

3、仅在恢复力作用下的振动称为自由振动。

4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。

5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。

l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。

∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。

AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m XX h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps i n m y EI =-77683θ t /; B .()()m y EIy l Ps i n /+=19273θ t ; C .()()m y EIy l Ps i n /+=38473θ t ; D .()()()y l Ps i n m yEI =-7963θ t / 。

ll0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。

lt )3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 :A .初 位 移 ;B .初 速 度 ;C .初 位 移 、初 速 度 与 质 量 ;D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。

4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 :A .大 ;B .小 ;C .相 同 ;D .不 定 ,取 决 于 阻 尼 性 质 。

5、已 知 一 单 自 由 度 体 系 的 阻 尼 比ξ=12.,则 该 体 系自 由 振 动 时 的位移 时 程 曲 线 的 形 状 可能为 :D.C.B.A.6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频率 ()ω=76873EI ml /;今 在 集 中 质量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 :A .()76873EI ml k m //+;B .()76873EI ml k m //-;C .()76873EI ml k m //-;D .()76873EI ml k m //+ 。

l l /2/2l l /2/2(a)(b)7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A .23k m ; B .km 3; C .25k m ; D .km5 。

tsin θl /2l /2l /28、图 示 两 自 由 度 体 系 中 ,弹 簧 刚 度为 C ,梁 的 EI = 常 数 ,其 刚 度 系 数 为 :A .k EI l k C k k 113221221480====/,, ; B .k EI l C k C k k C 11322122148=+===-/,, ; C .k EI l C k C k k C 11322122148=+===/,, ;D .k EI l k C k k C 11322122148====/,, 。

l /2l /29、图 为 两 个 自 由 度 振 动 体 系 ,其 自振 频 率 是 指 质 点 按 下 列 方 式 振 动 时 的 频率 :A .任 意 振 动 ;B .沿 x 轴 方 向 振 动 ;C .沿 y 轴 方 向 振 动 ;D .按 主 振 型 形 式 振 动 。

10、图 示 三 个 主 振 型 形 状 及 其 相 应 的 圆 频 率 ω,三 个 频 率 的 关 系 应 为 :A.ωωωa b c <<; B .ωωωb c a <<; C .ωωωc a b <<; D .ωωωa b c >> 。

(a)(b)(c)ωaωb ωc三、填充题1、不 计 杆 件 分 布 质量 和 轴 向 变 形 ,刚 架 的 动力 自 由 度 为 :(a) ,(b) ,(c),(d) ,(e) ,(f) 。

(d)2、图示组合结构,不计杆件的质量,其动力自由度为 个。

3、图 示 简 支 梁 的 EI = 常 数 ,其 无 阻 尼 受 迫 振 动 的 位 移 方 程 为 。

/3l /3l /3l4、图 示 体 系 的 自 振 频 率ω= 。

ll5、图 示 体 系 中 ,已 知 横 梁 B 端侧 移 刚 度 为 k 1 ,弹 簧 刚 度 为 k 2 ,则 竖 向 振 动 频 率 为 。

26、在 图 示 体 系 中 ,横 梁 的 质 量 为 m ,其 EI 1=∞;柱 高 为l ,两 柱 EI = 常 数 ,柱 重 不 计 。

不 考 虑 阻 尼 时 ,动 力 荷 载 的 频 率 θ= 时将 发 生 共 振 。

P sin tθ 7、单 自 由 度 无 阻 尼 体 系 受 简 谐 荷 载 作 用 ,若 稳 态 受 迫 振 动 可 表 为 y y t =⋅⋅μθst sin ,则 式 中 μ 计 算 公 式 为 , y st 是 。

8、图 示 体 系 不 计 阻 尼 ,θωω=2(为 自 振 频 率 ),其 动 力 系 数 =μ 。

9、图 示 体 系 竖 向 自 振 的 方 程 为 :y I I y I I 11111222211222=+=+δδδδ,, 其 中 δ22等 于 。

m 12m10、多 自 由 度 体 系 自 由 振 动 时 的 任 何 位 移 曲 线 ,均 可 看 成 的 线 性 组 合 。

四、计算题1、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。

l /2l /2k2、求图示体系的自振频率ω。

l l0.5l 0.53、求图示体系的自振频率ω。

EI = 常数。

ll 0.54、求图示结构的自振频率ω。

l l5、求图示体系的自振频率ω。

EI =常数,杆长均为l 。

6、求图示体系的自振频率ω。

杆长均为l 。

7、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。

B2m2m8、求图示单自由度体系的自振频率。

已知其阻尼比ξ=0.05。

m9、图示刚架横梁∞=EI 且重量W 集中于横梁上。

求自振周期T 。

EIEIWEI 210、求图示体系的自振频率ω。

各杆EI = 常数。

aaa11、图示两种支承情况的梁,不计梁的自重。

求图a 与图b 的自振频率之比。

l /2l/2(a)l /2l /2(b)12、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。

求水平自振周期T 。

3m3m13、忽略质点m 的水平位移,求图示桁架竖向振动时的自振频率ω。

各杆EA = 常数。

m 4m4mllm0.50.515、图示体系kN,5 s 20 kN/cm 102-124==⨯=P ,,EI θ 2cm kN, 480020==I W 。

求质点处最大动位移和最大动弯矩。

W4mm2sin θP t16、图示体系,已知质量m = 300kg ,EI l =⨯⋅=910462N m m , ;支座B 的弹簧刚度系数k EI l 0348=/,干扰力幅值P =20kN ,频率θ=80s -1。

试计算该体系无阻尼时的动力放大系数μD1和当系统阻尼比ξ=005.时的有阻尼动力放大系数μD 2 。

l /2l /217、求图示体系在初位移等于l/1000,初速度等于零时的解答。

θωω=020.( 为自振频率),不计阻尼。

18、图示体系受动力荷载作用,不考虑阻尼,杆重不计,求发生共振时干扰力的频率θ。

/3P tsin( )19、已知:m P ==38t, kN ,干扰力转速为150r/min ,不计杆件的质量,EI =⨯⋅6103kN m 2。

求质点的最大动力位移。

2m2m20、图示体系中,电机重kN 10=W 置于刚性横梁上,电机转速n r =500/min ,水平方向干扰力为) sin(kN 2)(t t P θ⋅=,已知柱顶侧移刚度kN/m 1002.14⨯=k ,自振频率ω=-100s 1。

求稳态振动的振幅及最大动力弯矩图。

( )t m21、图示体系中,kN 10=W ,质点所在点竖向柔度41.91710m/kN δ-=⨯,马达动荷载P t t ()sin()=4kN θ,马达转速n r =600/min 。

求质点振幅与最大位移。

22、图示单自由度体系,欲使支座A 负弯矩与跨中点D 的正弯矩绝对值相等,求干扰力频率θ。

EI =常数。

ll /2l23、求图示体系支座弯矩M A 的最大值。

荷载P t P t (),.==004sin θθω 。

/2/224、求图示体系稳态阶段动力弯矩幅值图。

θωω=05.( 为自振频率),EI = 常数,不计阻尼。

lll振 幅 方 程 。

226、图示对称刚架质量集中于刚性横粱上,已知:m 1=m ,m 2=2m 。

各横梁的层间侧移刚度均为k 。

求自振频率及主振型。

m 1m 22127、求图示体系的自振频率并画出主振型图。

m28、求图示体系的自振频率和主振型。

EI = 常数。

l l29、求 图 示 体 系 的 自 振 频 率及 绘 主 振 型 图 。

已 知 EI 24960010=⨯⋅kN cm2, m l ==24kg m , 。

.ll30、图示体系,设质量分别集中于各层横梁上,数值均为m 。

求第一与第二自振频率之比ωω12:。

ll231、求图示体系的自振频率和主振型。

m m m m 122==,。

32、求图示体系的频率方程。

l33、图示体系分布质量不计,EI = 常数。

求自振频率及 绘 主 振 型 图。

aa34、图示简支梁EI = 常数,梁重不计,m m m m 122==,,已求出柔度系数()δ123718=a EI /。

求自振频率及主振型。

相关文档
最新文档