2018中考数学圆(大题培优)

合集下载

中考数学圆与相似(大题培优 易错 难题)含答案解析

中考数学圆与相似(大题培优 易错 难题)含答案解析

中考数学圆与相似(大题培优易错难题)含答案解析一、相似1.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.【答案】(1)证明:∵DC2=CE·CA,∴,∵∠DCE=∠ACD,∴△CDE~△CAD,∴∠CDE=∠CAD,又∵∠CBD=∠CAD,∴∠CDE=∠CBD,∴CD=CB.(2)解:连结OC(如图),设⊙O的半径为r,由(1)知CD=CB,∴弧CD=弧CB,∴∠CDB=∠CBD=∠CAB=∠CAD=∠BAD,∠BOC=2∠CAB,∴∠BOC=∠BAD,∴OC∥AD,∴,∵PB=OB,∴PB=OB=OA=r,PO=2r,∴=2,∵CD=2,∴PC=4,PD=PC+CD=6,又∵∠PCB=∠CDB+∠CBD,∠PAD=∠PACB+∠CAD,∴∠PCB=∠PAD,∵∠CPB=∠APD,∴△PCB~△PAD,∴,即,解得:r=4.即⊙O的半径为4.【解析】【分析】(1)根据相似三角形的判定:两边对应成比例及夹角相等可得△CDE~△CAD,再由相似三角形的性质:对应角相等,等量代换可得∠CDE=∠CBD,根据等腰三角形的性质即可得证.(2)连结OC,设⊙O的半径为r,根据圆周角定理可得∠BOC=∠BAD,由平行线的判定得OC∥AD,根据平行线所截线段成比例可得=2,从而求得PC、PD长,再根据相似三角形的判定可得△PCB~△PAD,由相似三角形的性质可得,从而求得半径.3.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)【答案】(1)解:,理由如下:∵四边形是平行四边形,∴∥, .∵四边形是菱形,∴∥, .∴∥, .∴ .又∵,∴≌ .∴(2)解:方法1:过点作∥,交于点,∴ .∵,∴∽ .∴ .由(1)结论知 .∴ .∴ .∵四边形为菱形,∴ .∵四边形是平行四边形,∴∥ .∴ .∵∥,∴ .∴,即 .∴是等边三角形。

【中考专题】2018年九年级数学 中考专题复习--圆 培优练习卷(含答案)

【中考专题】2018年九年级数学 中考专题复习--圆 培优练习卷(含答案)

2018年九年级数学中考专题复习--圆培优练习卷1.如图,已知直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.2.如图,已知等腰△ABC底角为30°,以BC为直径⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.3.如图,直线PQ与⊙O相交于点A.B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连结AD,已知BC=10,BE=2,求BD的长.4.如图,已知Rt△ABC,C=900,O在AB上,以O为圆心,OA为半径作⊙O,交AB于D点,与BC 相切于E点,连接AE.(1)求证:AE平分∠CAB;(2)若CE=2,BE=6,求sinB及⊙O的半径.5.如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.(1)求证:AD是半圆O的切线;(2)连结CD,求证:∠A=2∠CDE;(3)若∠CDE=27°,OB=2,求的长.6.如图,已知圆⊙O内接ABC,AD为⊙O直径,AE⊥BC于E点,连接BD.(1)求证:∠BAD=∠CAE;(2)若AB=8,AC=6,⊙O的半径为5,求AE的长.7.如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,sin∠EBC=0.25,求AC的长.8.在⊙O中,AB为直径,点P在AB延长线上,PC与⊙相切于C,点D为上点,且=,连AD.(1)如图1,求证:2∠A﹣∠P=90°;(2)如图2,延长AD、PC交于点E,若∠E=90°.求证:PC=AD;(3)如图3,延长AD、PC交于点E,点F在AO上,连接DF、CF,∠ECF=∠AFD﹣∠CFP,DF=2,AB=6,求线段CF的长.9.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.10.如图1,延长⊙O的直径AB至点C,使得BC=AB,点P是⊙O上半部分的一个动点(点P不与A.B重合),连结OP,CP.(1)∠C的最大度数为;(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.11.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.12.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.13.如图,已知矩形ABCD,AB=4,BC=6,以A为圆心,AB为半径作⊙A,DE切⊙A于F点,与BC 交于E点.(1)求证:DE=AD;(2)求BE的长度.14.如图,在ABC △中,AB 是O 的直径,O 与AC 交于点D,60,75AB B C =∠=︒∠=︒, 求BOD ∠的度数;15.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=12cm ,AD=13cm ,BC=22cm ,AB 是⊙O 的直径,动点P 从点A 出发向点D 以1cm/s 的速度运动,动点Q 从点C 出发向点B 以2cm/s 的速度运动.点P 、Q 同时出发,其中一个点停止时,另一个点也停止运动.设运动时间为t 秒.(1)求当t 为何值时,PQ 与⊙O 相切?(2)直接写出PQ 与⊙O 相交时t 的取值范围.ADC B O参考解析1.(1)略;(2)7.5;.2.(1)证明:连接OD∵等腰三角形ABC的底角为30°∴∠ABC=∠A=30°∵OB=OD∴∠ABC=∠ODB=30°∴∠A=∠ODB=30°∴OD∥AC∴∠ODE=∠DEA=90°∴DE是⊙O的切线(2)解:连接CD∵∠B=30°∴∠OCD=60°∴△ODC是等边三角形∴∠ODC=60°∴∠CDE=30°∵BC=4∴DC=2∵DE⊥AC∴CE=1;DE=∴S△OEC===3.(1)证明:连结OD,如图,∵OD=OB,∴∠OBD=∠ODB,∵BD平分∠CBQ,∴∠OBD=∠DBQ,∵DE⊥PQ,∴∠BED=90°,∴∠EBD+∠BDE=90°,∴∠EDB+∠BDO=90°,即∠ODE=90°,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连结CD,如图,∵BC是⊙O的直径,∴∠BDC=90°,∵∠CBD=∠DBE,∴Rt△CBD∽Rt△DBE,∴BD:BE=BC:BD,即BD:2=10:BD,∴BD=2.4.答案:(1)连OE,证明略;(2)sinB=1/3,圆O的半径为.5.∵AB是⊙O的直径,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圆O的切线;(2)证明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圆O的切线,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直径,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的长==π.6.答案为:(1)证明略;(2)AE=4.8.7. (1)证明:连接AF.∵AB为直径,∴∠AFB=90°.∵AE=AB,∴△ABE为等腰三角形.∴∠BAC=2∠BAF.∵BAC=2EBC,∴∠BAF∠EBC∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90° .∴BC与⊙0相切.(2) 解:过E作EG⊥BC于点G∵∠BAF=∠EBC,∴sin∠BAF=sin∠EBC=0.25..在△AFB中,∠AFB=90°,∵AB=8,∴BF=2∴BE=2BF=4.在△EGB中,∠EGB=90°,∴EG=1∵EG⊥BC,AB⊥BC,∴EG∥AB∴△CEG∽△CAB∴CE:CA=EG:AB.∴CE=8/7.∴AC=AE+CE=64/7.8.连接OC,OD,∵PC是⊙O的切线,∴∠OCP=90°,∴∠POC=90°﹣∠P,∵=,∴∠AOD=∠POC,∴∠AOD=90°﹣∠P,∵OA=OD,∴∠A=∠ADO∴∠AOD+∠A+∠ADO=180°,∴90°﹣∠P+2∠A=180°,∴2∠A﹣∠P=90°,(2)如图2,连接OC,CD,∵PC是⊙O的切线,∴∠PCO=90°,∵∠E=90°,∴∠PCO=∠E,∴OC∥AC,∴∠POC=∠A,在Rt△POC中,∠P+∠POC=90°,∴∠A+∠P=90°,由(1)知,2∠A﹣∠P=90°,∴∠P=30°,∴PC=OC∵=,∴CD∥AB,∵OC∥AE,∴四边形AOCD是平行四边形,∴OC=AD,∴PC=AD;(3)如图3,过点C作CH⊥AB于M,连接CD,FH,DH,延长DF,PH相交于点N,连接CG,HG,∵CH⊥AB,∴∠FCH=∠FHC,∠CFB=∠HFB,∵∠ECF=∠AFD﹣∠CFP,∴∠GFH=∠ECH,∵PC,PH于⊙O相切,∴∠PCH=∠PHC,∴∠PCH+∠FCH=∠PHC+∠FHC,∴∠PCF=∠PHF,∴∠ECF=∠NHF,∵∠GFH=∠ECH,∴∠GFH=∠NHF,∴,∴CD∥AB,∴∠CMA=90°,∴∠DCH=90°,∴DH是⊙O的直径,∴∠DGH=90°∴∠FHG=90°﹣∠GFH=90°﹣∠FHN,∵DH是⊙O直径,∴∠DHN=90°,∴∠FHD=90°﹣∠FHN,∴∠FHG=∠FHD,∴,∵AB=DH=6,FD=2∴,∴HG=3GF,在Rt△DGH中,HG2+DG2=HD2,∴9GF2+(2+GF)2=36,∴GF=,∴FH==GF=.∵CH⊥HB,∴CF=FH=.9.∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.10.解:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP===,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=OC•OP=×6×3=9;(3)证明:连结AP,BP,如图2,在△OAP与△OBD中,,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.11.(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.12.解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.13.解:(1)证明略;(2)BE=.14.15.∵直角梯形ABCD,AD∥BC,∴PE=AB,∵AP=BE=t,CQ=2t,∴BQ=BC﹣CQ=22﹣2t,EQ=BQ﹣BE=22﹣2t﹣t=22﹣3t;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=22﹣t;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD 边运动的时间为==13秒,Q在CB 边运动的时间为==11,∴当t=2或9秒时,PQ与⊙O相切.(2)由(1)可知PQ与⊙O相交时t的取值范围为0≤t<2 或 9<t≤11.第11 页共11 页。

2018年中考数学压轴题之圆题例题

2018年中考数学压轴题之圆题例题

广东中考数学专题训练(二):几何综合题(圆题) 例题训练1.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF ⊥BC 交BD 于点G ,点G 为BE 中点,连接OG .(1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE .2.如图,⊙O 为∆ABC 外接圆,AB 为⊙O 直径,AB =4.⊙O 切线CD 交BA 延长线于点D ,∠ACB 平分线交⊙O 于点E ,并以DC为边向下作∠DCF =∠CAB 交⊙O 于点F ,连接AF .(1)求证:∠DCF =∠D +∠B ;(2)若AF =32,AD =52,求线段AC 的长; (3)若CEAB ⊥CF .3.如图,⊙O为 ABC外接圆,BC为⊙O直径.作»AD=»AC,连接AD、CD和BD,AB与CD交于点E,过点B作⊙O 切线,并作点E作EF⊥DC交切线于点G.(1)求证:∠DAC=∠G+90°;(2)求证:CF=GF;(3)若EFBD=23,求证:AE=DE.4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC 于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AHDE g =23,求证:OG ⊥AB .。

(最新整理)2018中考数学圆(大题培优)

(最新整理)2018中考数学圆(大题培优)

2018中考数学圆(大题培优)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018中考数学圆(大题培优))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018中考数学圆(大题培优)的全部内容。

(2018•福建A卷)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.3(12.00分)(2018•福建B卷)如图,D是△ABC外接圆上的动点,且B,D位于AC 的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE 于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.325.(10.00分)(2018•河北)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA为半径作优弧,使点B 在O 右下方,且tan ∠AOB=,在优弧上任取一点P,且能AB 43AB 过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧上一段的长为13π,求∠AOP 的度数及x 的值;AB AP (2)求x 的最小值,并指出此时直线l 与所在圆的位置关系;AB (3)若线段PQ 的长为12.5,直接写出这时x 的值.23.(10。

专题培优】2018年 九年级数学上册 圆 培优专题(含答案)

专题培优】2018年 九年级数学上册 圆 培优专题(含答案)

专题培优】2018年九年级数学上册圆培优专题(含答案)2018年九年级数学上册圆培优专题1.如图,圆O的直径AB的长度为10,弦AC的长度为5,∠ACB的平分线交圆O于点D。

(1)求BC的长度;(2)求弦BD的长度。

2.如图,在△ABC中,AB=AC,以AB为直径作圆O,交BC于点D,交AC于点F,过点D作DE⊥AC。

(1)证明:DE是圆O的切线;(2)证明:DC=DF;(3)已知CE=1,DE=2,求AE的长度。

3.如图,已知矩形ABCD,AB=4,AD=8,连接BD,以AB为直径作圆O,与BD交于点E,点F在BC上,且BF=EF。

(1)证明:EF为圆O的切线;(2)求BE的长度;(3)求BF的长度。

4.如图,已知矩形ABCD中,AB=10,AD=8,圆O在矩形内,以O为圆心,OA为半径作圆O,切CD于点E,交AB于点F,AF=8,连接CF。

(1)求圆O的半径;(2)求CF的长度;(3)点P在OE所在的直线上,求△PFC周长的最小值。

5.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC 于点E,过点E作BE的垂线交AB于点F,圆O是△BEF的外接圆。

(1)证明:AC是圆O的切线;(2)过点E作EH⊥AB,垂足为H,证明:CD=HF;(3)已知CD=1,EH=3,求AF的长度。

6.如图,AB为圆O的直径,点C在圆O上,延长BC至点D,使DC=BC。

延长DA与圆O的另一个交点为E,连接AC,CE。

(1)证明:∠B=∠D;(2)已知AB=13,BC-AC=7,求CE的长度。

7.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处。

再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG。

(1)证明:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积。

2018—2018学年度初三数学培优班练习卷参考答案(因动点产生的相切问题)

2018—2018学年度初三数学培优班练习卷参考答案(因动点产生的相切问题)

2018—2018学年度初三数学培优班练习卷参考答案<因动点产生的相切问题)班级座号姓名一、选择题.1、B2、C3、B4、B5、C6、B7、D8、B9、C 10、D11、B 12、D 13、C 14、C 15、D 16、A 17、C 18、A 19、B 9WNXRrQ7MD20、C 21、C 22、C 23、C 24、D 25、C 26、D二、填空题.27、【答案】①②④ 28、【答案】或29、【答案】OG=BD=. 30、【答案】.31、【答案】4 32、【答案】BN=33、【答案】PC= 错误! 34、【答案】sin∠ACE=. 9WNXRrQ7MD35、【答案】,<1<x<2);36、【答案】9WNXRrQ7MD三、计算题37、解答:<1)证明:连接OA,∵PA与圆O相切,∴PA⊥OA,即∠OAP=90°,∵OP⊥AB,∴D为AB中点,即OP垂直平分AB,∴PA=PB,∵在△OAP和△OBP中,,∴△OAP≌△OBP<SSS),∴∠OAP=∠OBP=90°,∴BP⊥OB,则直线PB为圆O的切线;<2)答:EF2=4DO•PO.证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,即OA2=OD•OP,∵EF为圆的直径,即EF=2OA,∴EF2=OD•OP,即EF2=4OD•OP;<3)解:连接BE,则∠FBE=90°.∵tan∠F=,∴=,∴可设BE=x,BF=2x,则由勾股定理,得EF==x,∵BE•BF=EF•BD,∴BD=x.又∵AB⊥EF,∴AB=2BD=x,∴Rt△ABC中,BC=x,AC2+AB2=BC2,∴122+<x)2=<x)2,解得:x=4,∴BC=4×=20,∴cos∠ACB===.38、解答:<1)PN与⊙O相切.证明:连接ON则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°.即PN与⊙O相切.<2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∴∠OMA+∠OAM=90°,∴∠PNM+∠ONA=90°.∴∠PNO=180°﹣90°=90°.即PN与⊙O相切.<3)解:连接ON,由<2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∵∠PON=60°,∠AON=30°.作NE⊥OD,垂足为点E,则NE=ON•sin60°=1×=.S阴影=S△AOC+S扇形AON﹣S△CON=OC•OA+CO•NE=×1×1+π﹣×1×=+π﹣.39、解答:<1)如图4,过点O作OH⊥AP,那么AP=2AH.在Rt△OAH中,OA=3,,设OH=m,AH=2m,那么m2+(2m>2=32.解得.所以.<2)如图5,联结OQ、OP,那么△QPO、△OAP是等腰三角形.又因为底角∠P公用,所以△QPO∽△OAP.因此,即.由此得到.定义域是0<x≤6.图4 图5 <3)如图6,联结OP,作OP的垂直平分线交AP于Q,垂足为D,那么QP、QO是⊙Q的半径.在Rt△QPD中,,,因此.如图7,设⊙M的半径为r.由⊙M与⊙O内切,,可得圆心距OM=3-r.由⊙M与⊙Q外切,,可得圆心距.在Rt△QOM中,,OM=3-r,,由勾股定理,得.解得.图6 图7 图840、解答:<1)∵点A<6,0),点B<0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y 轴右侧时,∠BOC=180°﹣∠OBA=135°;9WNXRrQ7MD<2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×<3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.<3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠ADO=∠COD=90°,∴∠DOA+∠DAO=90°而∠DOA+∠COF=90°,∴∠COF=∠DAO,∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为<﹣,);②直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,OF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD<SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线.41、解答:<1)证明:连接OEFE、FA是⊙O的两条切线∴∠FAO=∠FEO=90°在Rt△OAF和Rt△OEF中,∴Rt△FAO≌Rt△FEO<HL),∴∠AOF=∠EOF=∠AOE,∴∠AOF=∠ABE,∴OF∥BE,<2)解:过F作FQ⊥BC于Q∴PQ=BP﹣BQ=x﹣yPF=EF+EP=FA+BP=x+y∵在Rt△PFQ中∴FQ2+QP2=PF2∴22+<x﹣y)2=<x+y)2化简得:,<1<x<2);<3)存在这样的P点,理由:∵∠EOF=∠AOF,∴∠EHG=∠EOA=2∠EOF,当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,此时Rt△AFO中,y=AF=OA•tan30°=,∴∴当时,△EFO∽△EHG.42、解答:解:<1)∵∠AOB=90°,∴AB为⊙M的直径,∵A<8,0),B<0,6),∴OA=8,OB=6,∴AB==10,∴⊙M的半径为5;圆心M的坐标为<<4,3);<2)点B作⊙M的切线l交x轴于C,如图,∵BC与⊙M相切,AB为直径,∴AB⊥BC,∴∠ABC=90°,∴∠CBO+∠ABO=90°,而∠BAO=∠ABO=90°,∴∠BAO=∠CBO,∴Rt△ABO∽Rt△BCO,∴=,即=,解得OC=,∴C点坐标为<﹣,0),设直线BC的解读式为y=kx+b,把B<0,6)、C点<﹣,0)分别代入,解得,∴直线l的解读式为y=x+6;<3)作ND⊥x轴,连结AE,如图,∵∠BOA的平分线交AB于点N,∴△NOD为等腰直角三角形,∴ND=OD,∴ND∥OB,∴△ADN∽△AOB,∴ND:OB=AD:AO,∴ND:6=<8﹣ND):8,解得ND=,∴OD=,ON=ND=,∴N点坐标为<,);∵△ADN∽△AOB,∴ND:OB=AN:AB,即:6=AN:10,解得AN=,∴BN=10﹣=,∵∠OBA=OEA,∠BOE=∠BAE,∴△BON∽△EAN,∴BN:NE=ON:AN,即:NE=:,解得NE=,∴OE=ON+NE=+=7.43、解答:30°<1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD 在水平直线l的同侧,当点A在⊙O上时,过点B作的一条切线BE,E为切点,9WNXRrQ7MD∴OB=4,EO=2,∠OEB=90°,∴∠EBA的度数是:30°;②如图2,∵直线l与⊙O相切于点F,∴∠OFD=90°,∵正方形ADCB中,∠ADC=90°,∴OF∥AD,∵OF=AD=2,∴四边形OFDA为平行四边形,∵∠OFD=90°,∴平行四边形OFDA为矩形,∴DA⊥AO,∵正方形ABCD中,DA⊥AB,∴O,A,B三点在同一条直线上;∴EA⊥OB,∵∠OEB=∠AOE,∴△EOA∽△BOE,∴=,∴OE2=OA•OB,∴OA<2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法二:在Rt△OAE中,cos∠EOA==,在Rt△EOB中,cos∠EOB==,∴=,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法三:∵OE⊥EB,EA⊥OB,∴由射影定理,得OE2=OA•OB,∴OA<2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;<2)如图3,设∠MON=n°,S扇形MON=×22=n<cm2),S随n的增大而增大,∠MON取最大值时,S扇形MON最大,当∠MON取最小值时,S扇形MON最小,过O点作OK⊥MN于K,∴∠MON=2∠NOK,MN=2NK,在Rt△ONK中,sin∠NOK==,∴∠NOK随NK的增大而增大,∴∠MON随MN的增大而增大,∴当MN最大时∠MON最大,当MN最小时∠MON最小,①当N,M,A分别与D,B,O重合时,MN最大,MN=BD,∠MON=∠BOD=90°,S扇形MON最大=π<cm2),②当MN=DC=2时,MN最小,∴ON=MN=OM,∴∠NOM=60°,S扇形MON最小=π<cm2),∴π≤S扇形MON≤π.故答案为:30°.44、解答:<1)证明:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°,又∵∠PAC=∠PBA,∠ADC=∠PBA,∴∠PAC=∠ADC,∴∠CAD+∠PAC=90°,∴PA⊥OA,而AD是⊙O的直径,∴PA是⊙O的切线;<2)解:由<1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA,∴∠GCA=∠PAC,又∵∠PAC=∠PBA,∴∠GCA=∠PBA,而∠CAG=∠BAC,∴△CAG∽△BAC,∴=,即AC2=AG•AB,∵AG•AB=12,∴AC2=12,∴AC=2;<3)解:设AF=x,∵AF:FD=1:2,∴FD=2x,∴AD=AF+FD=3x,在Rt△ACD中,∵CF⊥AD,∴AC2=AF•AD,即3x2=12,解得;x=2,∴AF=2,AD=6,∴⊙O半径为3,在Rt△AFG中,∵AF=2,GF=1,根据勾股定理得:AG===,由<2)知,AG•AB=12,∴AB==,连接BD,∵AD是⊙O的直径,∴∠ABD=90°,在Rt△ABD中,∵sin∠ADB=,AD=6,∴sin∠ADB=,∵∠ACE=∠ACB=∠ADB,∴sin∠ACE=.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018中考数学圆(大题培优)

2018中考数学圆(大题培优)

2018中考数学圆(大题培优)第一篇:2018中考数学圆(大题培优)(2018•福建A卷)已知四边形ABCD是⊙O的内接四边形,AC 是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.(12.00分)(2018•福建B卷)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.25.(10.00分)(2018•河北)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为13π,求∠AOP的度数及x的值;所在圆的位置关系;(2)求x的最小值,并指出此时直线l与(3)若线段PQ的长为12.5,直接写出这时x的值.23.(10.00分)(2018•恩施州)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF 与FD的数量关系,并加以证明.23.(2018•荆门)如图,AB为O的直径,C为O上一点,经过点C的切线交AB的延长线于点E,AD EC交EC的延长线于点D,AD交O于F,FM⊥AB于H,分别交O、AC于M、N,连接MB,BC.(1)求证:AC平方∠DAE;(2)若cosM=4,BE=1,①求O的半径;②求FN的长.525.(10.00分)(2018•株洲)如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE.(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC;②求OH+HC的最大值.25.(10.00分)(2018•湘潭)如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.25.(10.00分)(2018•扬州)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.第二篇:重庆中考数学大题训练24.如图,∆ABC是等边三角形,过点C作CD点D,连结(1)求证:BD⊥CB交∠CBA的外角平分线于AD,过点C作∠BCE=∠BAD,交AB 的延长线于点E.=BE;(2)若CD=4,BE=5,求AD的长.25..2011年5月9日,我市成立了首支食品药品犯罪侦缉支队,专门打击危害食品药品安全的违法犯罪行为,食品安全已越来越受到人们的关注.我市某食品加工企业严把质量关,积极生产“绿色健康”食品,由于受食品原料供应等因素的影响,生产“绿色健康”食品的产量随月份增加呈下降趋势.今年前5个月生产的“绿色健康”食品y(吨)与月份(x)之间的关系如下表:月份x(月)… “绿色健康”食品产量y(吨)…1)请你从学过的一次函数、二次函数、反比例函数确定哪种函数关系能表示出y与x的变化规律,并求出y与x的函数关系式.(2)随着“绿色健康”食品生产量的减少,每生产一吨“绿色健康”食品,企业相应获得的利润有所提高,且每生产一吨获得的利润P(百元)与月份x(月)成一次函数关系.已知1月份每生产一吨“绿色健康”食品,企业相应获利80百元,4月份每生产一吨“绿色健康”食品企业相应获利95百元.那么今年哪月份该企业获得的利润最大?最大利润是多少百元?(3)受国家法律保护的激励,该企业决定今年5月份起,更新食品安全检测设备的同时,扩建食品原料基地以提高生产“绿色健康”食品的产量.更新设备检测费用和扩建原料基地费用共用去4000百元,预计从6月份起,每月生产一吨“绿色健康”食品的产量在上一个月基础上增加a%,与此同时,每生产一吨“绿色健康”食品,企业相应获得的利润在上一个月的基础上增加20%,要使今年6、7月份利润的总和在扣除设备检测费用和扩建基地费用后,仍是今年5月份月利润的2倍,求a的整数值.(参考数据:≈3.317,1112≈3.464,13≈3.606,14≈3.742)26、如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB 边的点D处,如图①.求出此时△APQ的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E 使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ 于点D,交折线QB﹣BO﹣OP于点F.当DF经过原点O时,请直接写出t的值.第三篇:人教版中考数学专题复习圆2021年人教版中考数学专题复习圆(满分120分;时间:90分钟)一、选择题(本题共计小题,每题分,共计21分,)1.下列命题中,正确的是()A.平面上三个点确定一个圆B.在同圆或等圆中,等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线2.如图,点B,C,D在⊙O上,若∠BCD=130∘,则∠BOD的度数是()A.50∘B.60∘C.80∘D.100∘3.如图为一条圆柱形排水管的横截面,已知圆心O到水面的距离OC是3dm,水面宽AB是8dm,排水管的截面的直径是()A.16dmB.10dmC.8dmD.6dm4.图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πmB.18πmC.20πmD.24πm5.下列语句中不正确的有()①相等的圆心角的所对的弧相等;②垂直于弦的直径平分弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.A.1个B.2个C.3个D.4个6.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O 交斜边BC于D,则阴影部分面积为(结果保留π)()A.24-4πB.32-4πC.32-8πD.167.如图,AB是⊙O的直径,点C,D在圆上,∠BAC=20∘,则∠ADC等于()A.40∘B.60∘C.65∘D.70∘二、填空题(本题共计小题,每题分,共计30分,)8.底面直径和高都是1的圆柱侧面积为________.9.如图,AB是⊙O为直径,∠ACD=15∘,则∠BAD=________度.10.在半径为1的圆中,长度是2的弦所对的圆周角为________度.11.已知点A到圆心O的距离是2,圆的半径是5,则点A与⊙O 的位置关系是________.12.如图所示,A、B、C、D是⊙O上顺次四点,若∠AOC=160∘,则∠D=________,∠B=________.13.边长为6的正三角形的外接圆和内切圆的周长分别为________.14.已知圆的直径为13cm,如果直线和圆心的距离为4.5cm,那么直线和圆有________个公共点.15.如图,△ABC内接于⊙O,BC=a,CA=b,∠A-∠B=90∘,则⊙O的半径为________.16.如图,直径AB垂直于弦CD,垂足为E,∠AOC=130∘,则AD的度数为________∘,CBD的度数为________∘,∠CAD的度数为________∘,∠ACD的度数为________∘.17.如图,是⊙的一条弦,点是⊙上一动点,且,点、分别是、的中点,直线与⊙交于、两点,若⊙的半径为,则的最大值为________三、解答题(本题共计小题,共计69分,)18.已知:如图,△ABC的外接圆⊙O的直径为4,∠A=30∘,求BC的长.19.如图,已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上,点D在⊙O上,连接CD,且CD=OA,OC=22.求证:CD是⊙O的切线.20.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,0A与⊙0相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C (1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=25,求线段PB的长.21.如图①,在△ABC中,OA=OB,C是边AB的中点,以点O为圆心的圆经过点C.(1)求证:AB与⊙O相切;(2)在图①中,若OA与⊙O相交于点D,OB与⊙O相交于点E,连接DE,∠AOB=120∘,OD=6,如图②,则DE=________.22.如图,以点O为圆心的两个同心圆中,大圆的弦AB切小圆于点P.(1)PA与PB相等吗?请说明理由;(2)若AB=8,求圆环的面积.23.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求半圆O的半径.24.已知两个以点O为圆心的圆,OA,OB是大圆的半径.(1)如图①,OA,OB交小圆于点C和D,直线CD交大圆于点E和F,求证:AE=BF;(2)如图②,延长AO,BO交小圆于点C和D,直线CD交大圆于点E和F,AE和BF是否相等?说明你的理由.第四篇:中考数学辅助圆思想辅助圆思想题型一:共顶点等线段【例1】在中,是的中点,是线段上的动点,将线段绕点顺时针旋转得到线段.⑴若且点与点重合(如图1),线段的延长线交射线于点,请补全图形,并写出的度数;⑵在图2中,点不与点重合,线段的延长线与射线交于点,猜想的大小(用含的代数式表示),并加以证明;(2012年北京中考节选)⑴图略,.⑵如图,连接,根据对称性可知,以为圆心、长为半径作,则,∴.【例2】已知:中,中,.连接、,点、、分别为、、的中点.⑴如图1,若、、三点在同一直线上,且,则的形状是___________,此时________;⑵如图2,若、、三点在同一直线上,且,证明,并计算的值(用含的式子表示);(海淀一模)【解析】⑴等边三角形,1;⑵证明:连接、.由题意,得,.∵、、三点在同一直线上,∴、、三点在同一直线上.∴.∵为中点,∴在中,.在中,.∴.∴、、、四点都在以为圆心,为半径的圆上.∴.又∵,∴.∴.∴.由题意,又.在Rt中,.题型二:共斜边的直角三角形∵,∴.∴.【例3】已知,是的平分线.将一个直角的直角顶点在射线上移动,点不与点重合.如图,当直角的两边分别与射线、交于点、时,请判断与的数量关系,并证明你的结论;【解析】与的数量关系是相等.常规证法:过点作,垂足分别为点.∵,易得,∴,而,∴.∵是的平分线,∴,又∵,∴.∴.辅助圆证法:∵,∴四点共圆,∵平分,∴,∴.【例4】如图,四边形是正方形,是上一点,交的外角平分线于,求证:.【解析】连接∵四边形是正方形,∴,∵是外角平分线,∴,∴,∵,∴四点共圆,∴,∴,∴.【例5】在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.⑴如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;⑵将三角板从⑴中的位置开始,绕点P顺时针旋转,当点E与点A 重合时停止,在这个过程中,请你观察、探究并解答:①∠PEF的大小是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点所经过的路线长.备用图(朝阳一模)【解析】⑴在矩形ABCD中,AP=1,CD=AB=2,∴PB=,.∵,∴.∴.∴△ABP∽△DPC.∴,即.∴PC=2.⑵①∠PEF的大小不变.理由:过点F作FG⊥AD于点G.∴四边形ABFG是矩形.∴.∴GF=AB=2,.∵,∴.∴.∴△APE∽△GFP.∴.∴在Rt△EPF中,tan∠PEF=.即tan∠PEF的值不变.∴∠PEF的大小不变.②.辅助圆证法:连接,∵,∴四点共圆,∴,∴不会发生变化.题型三:四点共圆的简单应用【例6】如图,在四边形中,是的平分线,若,求证:.【解析】∵,∴是圆内接四边形,∵平分,∴,∴.【例7】已知:如图,正方形中,为对角线,将绕顶点逆时针旋转(),旋转后角的两边分别交于点、点,交于点、点,联结.在的旋转过程中,的大小是否改变?若不变写出它的度数,若改变,写出它的变化范围.【解析】∵是对角线,∴,∵,∴四点共圆,∴,∴的大小不发生改变.【例8】(海淀区2010-2011学第一学期初三期末25)如图一,在△ABC 中,分别以AB,AC为直径在△ABC外作半圆和半圆,其中和分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.⑴连结,证明:;⑵如图二,过点A分别作半圆和半圆的切线,交BD的延长线和CE 的延长线于点P和点Q,连结PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;⑶如图三,过点A作半圆的切线,交CE的延长线于点Q,过点Q 作直线FA的垂线,交BD的延长线于点P,连结PA.证明:PA是半圆的切线.【解析】⑴如图一,∵,F分别是AB,AC,BC边的中点,∴F∥AC且F=A,F∥AB且F=A,∴∠BF=∠BAC,∠CF=∠BAC,∴∠BF=∠CF∵点D和点E分别为两个半圆圆弧的中点,∴F=A=E,F=A=D,∠BD=90°,∠CE=90°,∴∠BD=∠CE.∴∠DF=∠FE.∴.⑵如图二,延长CA至G,使AG=AQ,连接BG、AE.∵点E是半圆圆弧的中点,∴AE=CE=3∵AC为直径,∴∠AEC=90°,∴∠ACE=∠EAC=45°,AC==,∵AQ是半圆的切线,∴CA⊥AQ,∴∠CAQ=90°,∴∠ACE=∠AQE=45°,∠GAQ=90°∴AQ=AC=AG=同理:∠BAP=90°,AB=AP=∴CG=,∠GAB=∠QAP∴,∴PQ=BG∵∠ACB=90°,∴BC==∴BG==,∴PQ=.⑶证法一:如图三,设直线FA与PQ的垂足为M,过C作CS⊥MF 于S,过B作BR⊥MF于R,连接DR、AD、DM.∵F是BC边的中点,∴.∴BR=CS,由⑵已证∠CAQ=90°,AC=AQ,∴∠2+∠3=90°∵FM⊥PQ,∴∠2+∠1=90°,∴∠1=∠3,同理:∠2=∠4,∴,∴AM=CS,∴AM=BR,同⑵可证AD=BD,∠ADB=∠ADP=90°,∴∠ADB=∠ARB=90°,∠ADP=∠AMP=90°∴A、D、B、R四点在以AB为直径的圆上,A、D、P、M四点在以AP为直径的圆上,且∠DBR+∠DAR=180°,∴∠5=∠8,∠6=∠7,∵∠DAM+∠DAR=180°,∴∠DBR=∠DAM∴,∴∠5=∠9,∴∠RDM=90°,∴∠5+∠7=90°,∴∠6+∠8=90°,∴∠PAB=90°,∴PA⊥AB,又AB是半圆直径,∴PA是半圆的切线.训练1.如图,分别切于两点,满足,且,求的度数.【解析】∵都是的切线,∴∵,∴∴,∴三点都在以为圆心,为半径的圆上.设,则,∴∵,∴在中,即∴,∴,即.训练2.如图,分别是正方形的边的中点,相交于,求证:.【解析】连接∵是的中点,∴,∴,∴,即,∴四点共圆,∴,很明显,∴,∴.训练3.如图,已知在五边形中,,且.求证:.【解析】连接,∵,∴,∴,∴,∴四点共圆.同理四点共圆,∴五点共圆,∵,∴.题型一共顶点等线段【练习1】如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,点的坐标为,连结.⑴求证:是等边三角形;⑵点在线段的延长线上,连结,作的垂直平分线,垂足为点,并与轴交于点,分别连结、.①若,直接写出的度数;②若点在线段的延长线上运动(不与点重合),的度数是否变化?若变化,请说明理由;若不变,求出的度数;【解析】⑴证明:如图,∵一次函数的图象与x轴交于点A(-3,0),B (0,).∵C(3,0).∴OA=OC.又y轴⊥AC,∴AB=BC.xOABCPEy在Rt△AOB中,.∴∠BAC=60°.∴△ABC是等边三角形.⑵①答:∠AEP=120°.②解:如图,作EH⊥CP于点H,∵y轴垂直平分AC,△ABC是等边三角形,∴EA=EC,∠BEA=∠BEC=,∠DEP=30°.∴∠BEH=60°.∵ED垂直平分AP,∴EA=EP.∴EA=EC=EP,∴EH垂直平分CP,在△CEP中,∠CEH=∠PEH=,∵∠BEH=∠BEC+∠CEH=+=60°.∴∠AEP=∠AEC+∠PEC=120°.辅助圆的证法:∵点在轴上,∴,∵,∴以为圆心、长为半径作圆,在该圆上,∴.题型二共斜边的直角三角形【练习2】如图,正方形的中心为,面积为,为正方形内一点,且,求的长.【解析】连接,∵是正方形,∴,∵,∴四点共圆,∴.在中,∴,设,则,解得,∴,∴.题型三四点共圆的简单应用【练习3】设是等腰底边的中点,过两点(但不过点)任作一圆交直线于点,连接交此圆于点.求证:.【解析】连接,由题意可知四点共圆,⑴若在线段上,则,∵,∴四点共圆,∴,∴.⑵若在的延长线上,则,∵,∴四点共圆,∴,∴.⑶若在的延长线上,则,∵,∴四点共圆,∴,∴,∴.综上所述,命题成立.第五篇:2018年宜昌中考复习数学综合大题集锦2018年宜昌中考复习数学综合大题集锦(2)难点突破:分类和范围22.如图,矩形ABCD中,AB=2,AD=4,动点E在边BC上,与点B、C不重合,过点A作DE的垂线,交直线CD于点F.设DF=x,EC=y.(1)求y关于x的函数关系式,并写出x的取值范围.(★)(2)当CF=1时,求EC的长.(★★)(3)若直线AF与线段BC延长线交于点G,当△DBE与△DFG相似时,求DF长.(★★★)22.【背景资料】机器人代替人工生产是国家“中国制造2025”规划的重要发展方向。

中考数学圆与相似(大题培优 易错 难题)含详细答案

中考数学圆与相似(大题培优 易错 难题)含详细答案

中考数学圆与相似(大题培优易错难题)含详细答案一、相似1.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2018?畐建A卷)已知四边形ABCD是O O的内接四边形,AC是。

O的直径,DE丄AB,垂足为E.
(1)延长DE交。

O于点F,延长DC, FB交于点P,如图1.求证:PC=PB
(2)过点B作BC丄AD,垂足为G, BG交DE于点H,且点O和点A都在DE的
左侧,如图2.若AB=;, DH=1,Z OHD=8°,求/ BDE的大小.
(12.00分)(2018?畐建B卷)如图,D是厶ABC外接圆上的动点,且B, D位于AC的两侧,DE丄AB,垂足为E, DE的延长线交此圆于点F. BG丄AD,垂足为G, BG交DE于点H, DC, FB的延长线交于点P,且PC=PB
(1)求证:BG// CD;
(2)设厶ABC外接圆的圆心为O,若AB^'DH,/ OHD=8°,求/ BDE的大小.
备用圉
25. (10.00分)(2018?河北)如图,点A在数轴上对应的数为26,以原点O为
4
圆心,OA为半径作优弧■■-,使点B在O右下方,且tan/AOB=,在优弧加上任取一点P,且能过P作直线I// OB交数轴于点Q,设Q在数轴上对应的数为x, 连接OP
(1)若优弧恥上一段4P的长为13 n求/ AOP的度数及x的值;
(2)求x的最小值,并指出此时直线I与•期所在圆的位置关系;
(3)若线段PQ 的长为12.5,直接写出这时x 的值.
23. (10.00分)(2018?恩施州)如图,AB 为。

O 直径,P 点为半径 OA 上异于O 点和A 点的一个点,过P 点作与直径AB 垂直的弦CD,连接AD,作BE ± AB, OE// AD 交 BE 于 E 点,连接 AE 、DE 、AE 交 CD 于 F 点.
AD _ EC 交EC 的延长线于点D ,AD 交L O 于F ,FM _AB 于H ,分别交L O 、AC 于 M 、N ,连接 MB ,BC .
(1)求证:AC 平方.DAE ;
4
(2)若 cosM ,BE =1,①求 5
25. (10.00分)(2018?株洲)如图,已知 AB 为。

O 的直径,AB=8,点C 和点D 是。

O 上关于直线AB 对称的两个点,连接 OC AC,且/ BOC X 90°直线BC 和 直线AD 相交于点E,过点C 作直线CG 与线段AB 的延长线相交于点F ,与直线
O 的半径;②求FN 的长.
(1)求证:DE 为。

O 切线;
DC E 第23融圈
AD相交于点G,且/ GAF= GCE
(1)求证:直线CG为。

O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH
①厶CBH^A OBC
②求OH+HC的最大值.
25. (10.00 分)(2018?湘潭)如图,AB 是
O为圆心的半圆的直径,半径CO丄AO,点
是掘■■上的动点,且不与点A、C、B重
合,线AM交直线OC于点D,连结OM与
CM.
(1 )若半圆的半径为10.
①当/ AOM=6°时,求DM的长;
②当AM=12时,求DM的长.
(2)探究:在点M运动的过程中,/ DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.
25. (10.00 分)(2018?扬州)如图,在△ ABC 中,AB=AC AO丄BC 于点O, OE 丄AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.
(1)求证:AC是。

O的切线;
(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
A
BP 0C。

相关文档
最新文档