周期信号的功率证明
傅立叶变换

信号:我们人类得到的从自己感知中得到消息,并通过大脑分析得出我们要的信息。
而其中消息的传递就需要信号,信号可以是图像、声音还有其他感觉,但是所有信号都是以波的形式在介质中传播。
而机械中的消息则是通过电信号的形式而传播。
最基本的波:正弦波,因为只有一个周期;而理论证明所有的波,都可以用正弦波叠加而成。
我们把这种周期性的波的周期倒数称为频率,这样我们就可以不用在时间上分析波的形态而可以在频率上做研究来分析波的性质。
而不同的信号形式把分解成正弦波的方法不同。
模拟频率f :每秒经历多少个周期,单位Hz ,即1/s ;周期:经过2*pi 需多长时间,单位s 。
模拟角频率Ω:每秒经历多少弧度,单位rad/s ; 数字频率w :每个采样点间隔之间的弧度,单位rad ;周期:经过2*pi 需多少个点,单位1。
关系:Ω=2pi*f ;w = Ω*T = 2π/N 。
(T 为采样间隔时间,N 为一个周期的采样点) 各种函数的关系FS (离散非周期函数)通过Ω = 2πf 将时域信号联系到频域中,它是研究连续周期信号在n Ω角频率处的分量的大小(频谱) FT (连续非周期函数)通过Ω = 2πf 将时域信号联系到频域中,它是研究连续非周期信号在各个角频率处的分量的大小(频谱)的密度函数(因为离散信号是连续信号的取样而成,这导致频谱周期性搬移,所以离散信号的频谱是周 期函数,如果信号时周期信号,因为这相当于我们把一个周期内信号进行搬移,也就是我 们在频域中进行采样,所以频谱是离散的)DFS (离散周期函数) 通过w = Ω*T (T 为采样间隔时间),它是研究离散周期信号,在nw 数字角频率处的分量的大小(频谱)(周期:s ω=2π/T)DTFT (连续周期函数)通过w = Ω*T (T 为采样间隔时间),它是研究离散非周期信号,在各个数字角频率处的分量的大小(频谱)的密度函数(周期:s ω=2π/T)(为了方便计算机运算,引入运算DFT )DFT (离散函数) 通过在DFS 中取主值区间,我们会在下面详细介绍DFT 及FFT 因为这是我们实际处理的工具周期信号的傅里叶级数(FS ) 三角形式: 设 是一个周期为 的波,在一定条件下可以把它写成()f t T ()()01cos 2n n n A f t A n t φ∞==+Ω+∑01cos sin 2n n n A a n t b n t∞==+Ω+Ω∑其中 是 阶谐波, 角频率 (Ω为离散时的角频率形式) 我们称上式右端的级数是由 所确定的傅里叶级数 指数形式:系数Fn 称复傅里叶系数(以证明只要周期信号满足狄里赫利(Dirichlet)条件,就可以分解成傅里叶级数)从上面两个公式,我们可以得出其中的信号的频谱和周期信号的功率(Parseval 等式 , 其中我们也可以得出频率的幅度大小决定信号的功率,这就给我们提供研究信号功率的方法,n F 称为频谱图) 非周期信号的傅里叶变换(FT )为了研究非周期信号的频谱特性,我们引入了傅里叶变换()()d j t F j f t e t +∞-Ω-∞Ω=⎰()1()d 2πj tf t F j e +∞Ω-∞ΩΩ=⎰()F j Ω是频谱密度函数 (Ω为连续时的角频率形式) (从上面公式可以得出,信号的能量谱2()()F j ξΩ=Ω)(上面都是讲的是连续的信号,信号离散也是我们用计算机处理的唯一方法,必须对信号进行采样变成离散的,只要满足采样定理2s m f f >,就能从离散的信号恢复出原来的信号,我们对离散信号的分析和处理也会对原来的连续信号有作用。
信号与系统第4章 周期信号的频域分析(3学时)

T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1
~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e
jn0t
1 Cn T0
T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )
4.3 周期信号的频谱及特点

4.3
周期信号的频谱及特点
2)、周期矩形脉冲的频谱
有一幅度为E,脉冲宽度为τ的周期矩 形脉冲,其周期为T,如图所示。求 频谱。 T τ
−
τ
2
τ
2
Fn =
1 T
∫
2
T − 2
f (t ) e
− jnΩt
E e− jnΩt = T − jnΩ
τ
2 −
τ
2
E 2 − jnΩt dt = dt τ e ∫ − T 2 nΩτ sin( ) Eτ sin nΩτ 2E 2 2 = = T nΩτ T nΩ
1)、定义
依据复傅立叶系数Fn随nΩ的变化关系所画的图称为 双边频谱图,简称双边谱; |Fn|~ nΩ为双边幅度谱,见图4.3-1(b);其 以纵轴对称。 θn~ nΩ为双边相位谱。见图4.3-1(d)图。其 以原点对称。
第 第23 23-8 8页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
, n = 0,1,2,..., φ0 = 0.
Fn ~ nΩ
θ n ~ nΩ
周期信号的频谱是指周期信号中各次谐波幅值、相位随 频率的变化关系。
第 第23 23-3 3页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
4.3
A0 f (t ) = + 2
∞
周期信号的频谱及特点
ω1
T τ = = 2π Ω τ T
2π
见课本P131 页图4.3-4。
增多。
(b)、 τ 一定,T增大,谱线间隔 Ω 减小,频谱谱 线密度增大。谐波幅度减小:
傅里叶级数的功率

傅里叶级数的功率
傅里叶级数是一种将周期函数分解为正弦波和余弦波的无穷级数。
每个正弦和余弦波都有自己的频率和振幅。
功率谱是用来描述信号在每个频率下的能量分布的。
对于周期信号,其功率谱就是傅里叶级数中各个正弦和余弦波的振幅的平方,即功率谱是频率的函数。
对于非周期信号,可以将其视为周期无限大的周期信号,但此时谱线由离散变为连续,各个频率下的能量积分或求和就是信号的总能量,这就是信号的功率谱。
因此,傅里叶级数的功率就是指周期函数的傅里叶级数展开后各个正弦和余弦波的振幅的平方,或者是非周期函数的傅里叶变换后各个频率下的能量积分或求和。
§3.2 周期信号的频谱和功率谱

不变,T增大,谱线间隔
1
2 T
减小,谱线逐渐密集,幅度
A T
பைடு நூலகம்
减
小
当 T
1 0
A 0 T
非周期信号连续频谱
非周期信号 n1 连续频率
2.当T不变, 减小时
T不变
1
2 间隔不变
T
A 振幅为0的谐波频率
T
2
,
4
,......
信号与系统
练习:周期信号的频谱描绘
不改变 不改变 不改变
Fn
2 T
2
f (t)dt
T
2 A
2
Adt
2
T
信号与系统
练习:周期信号的频谱描绘
a 2 nT
T
2 T
2
f (t) cos n1tdt
2A sin n n T
2 A
T
sin n
T
n
2A Sa(n )
T
T
T
f (t)
A
T
2 A
T
n 1
Sa( n
T
)
cos(n1t )
A 2A
TT
S a(
立叶展开式并画出其频谱图。
1
解: f(t) 在一个周期内可写为如下形式
Tt
f (t) 2 t T t T
T
22
f(t) 是奇函数,故 an 0
信号与系统
4
bn T
T 2 0
f (t) sin n1tdt
4 T
T 2 0
2t T
sin
n1tdt
(1
2
T
)
An &n 2
周期信号

3-3 周期信号的频谱一、 周期信号的频谱一个周期信号)(t f ,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。
其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。
不同的周期信号,其展开式组成情况也不尽相同。
在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。
描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。
根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。
1 单边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-15),即∑ ∞=+Ω+=10)cos()(n n nt n AA t f ϕ (3-24)则对应的振幅频谱n A 和相位频谱n ϕ称为单边频谱。
例3-3 求图3-4所示周期矩形信号)(t f 的单边频谱图。
解 由)(t f 波形可知, )(t f 为偶函数,其傅里叶系数⎰==2/0021)(4T dt t f Ta⎰=Ω=2/0)4/sin(2cos )(4T n n n tdt n t f Ta ππ=n b故∑∑∞=∞=Ω+=Ω+=110cos )4/sin(241cos 2)(n n n tn n n t n a a t f ππ因此410=A ,ππn n A n )4/sin(2=即45.01=A , 32.02≈A , 15.03≈A , 04=A , 09.05≈A , 106.06≈A ┅单边振幅频谱如图3-5所示。
tf(t)图 3 - 4ττττ4 2/ 0 2/ 4--1图 3 - 50.250.450.320.150.090.106ΩΩΩΩΩΩΩ7 6 5 4 3 2 0A n2 双边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-17),即25)-(3 )(∑∞-∞=Ω=n tjn neFt f则nF 与Ωn 所描述的振幅频谱以及n F 的相位n n F θ=arctan 与Ωn 所描述的相位频谱称为双边频谱。
4-2 信号的频域分析-周期信号频域分析

分析问题使用的数学工具为傅里叶级数 最重要概念:频谱函数 要点
1. 频谱的定义、物理意义 2. 频谱的特点 (离散,衰减) 3. 频谱的性质,应用性质分析复杂信号的频谱 4. 功率谱的概念及在工程中的应用
17
离散Fourier级数(DFS)
DFS的定义 常用离散周期序列的频谱分析 周期单位脉冲序列d N[k] 正弦型序列 周期矩形波序列 DFS的性质
0 2π / T
n 0
3
例2 已知连续周期信号的频谱如图,试写出 信号的Fourier级数表示式。
Cn
4 3 2 1 3 2 1 1 3 2
0
1
2
3
n
解: 由图可知 C 0 4
f (t ) C n e jn 0 t
n
C 1 3
C 2 1
三、周期信号的频谱及其特点
1. 频谱的概念
周期信号f(t)可以分解为不同频率虚指数信号之和
f (t ) C n e j n 0 t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。 Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
10
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /)内
谐波分量所具有的平均功率占整个信号平均功率 的百分比。其中A=1,T=1/4,=1/20。
f (t )
A
T
2
2
T
t
解: 周期矩形脉冲的傅里叶系数为
Cn A T Sa ( n 0 2 )
将A=1,T=1/4, = 1/20,0= 2/T = 8 代入上式
连续信号的频域分析

T 2
T
2T
t
图 3.3-3 周期矩形脉冲信号
连续信号的频域分析
为得到该信号的频谱,先求其傅里叶级数的复振幅。
连续信号的频域分析
取样函数定义为
sin x Sa ( x ) x
这是一个偶函数,且x→0时,Sa(x)=1;当x=kπ时,Sa(kπ)=0。
据此,可将周期矩形脉冲信号的复振幅写成取样函数的形式,即
连续信号的频域分析
一、 周期信号的频谱分析
1 三角形式的傅里叶级数
三角函数集{cosnwt, sinnwt|n=0,1,2,… }是一个正交函数
集,正交区间为(t0, t0+T)。这里T=2π/w是各个函数cosnwt,
sinnwt的周期。三角函数集正交性的证明可利用如下公式:
连续信号的频域分析
小量dω,而离散频率nΩ变成连续频率ω。在这种极限情况下,
2Fn Fn趋于无穷小量,但 Fn T 可望趋于有限值,且为一
个连续函数,通常记为F(jω),即
连续信号的频域分析
Fn jnt 1 f (t ) lim e T 2 n
非周期信号的傅里叶变换可简记为
E n Fn Sa T 2
连续信号的频域分析
Sa(x) 1
-3 -2
-
o
2
3
x
图 2.3-4 Sa(x)函数的波形
连续信号的频域分析
Fn E T 2 o 3
4
图 2.3-5 周期矩形脉冲信号的频谱
连续信号的频域分析
由图 2.3-5 可以看出,此周期信号频谱具有以下几个特点: 第一为离散性,此频谱由不连续的谱线组成,每一条谱线 代表一个正弦分量,所以此频谱称为不连续谱或离散谱。 第二为谐波性,此频谱的每一条谱线只能出现在基波频率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T / 2
f ( t )e jnt dt
Fn Fn
2
n
Fn
2
1 P T
T /2
T / 2
f ( t )dt
n
F
2
n
jh 上式称为帕斯瓦尔恒等式。 jh
X
第
设f(t)为实函数 证明2:
归一化的平均功率:
2 页
1 P T
T /2
T / 2
f 2 ( t )dt
第
证明1:
1 P T
T /2
T / 2
f ( t )dt
2
1 页
将f(t)的指数形式的傅里叶级数展开式代入上式, 得: 1 T /2 P [ f ( t ) Fn e jnt ]dt T T / 2 n
1 Fn T n
n
T /2
第 3 页
1 P T
T /2
T / 2
A0 2 1 2 f 2 ( t )dt ( ) An 2 n 1 2
总平均功率=各次谐波的平均功率之和 上式表明:
1 由于 | Fn | 是n的偶函数,且| Fn | An , 上式可改写为: 2
1 P T
T /2
T / 2
f ( t )dt F0 2 Fn
将f(t)的三角形式的傅里叶级数展开式代入上式, 得: 1 T A0 P 2T [ An cos(nt n )]2 dt T 2 2 n 1
将上式被积函数展开, 在展开式中具有 cos(nt n )形式 的余弦项,其在一个周 期内的积分等于零;具 有 An cos(nt n ) Am cos(nt m ),当m n时,其积分值为 T 2 零,对于m n的项,其积分值 An ,因此,上式可化为: jh 2 jh X
2 2 2 n 1
nh jh
X