交流绕组的磁动势
第七章 交流绕组的磁动势

第七章交流绕组的磁动势目录第一节概述 (1)第二节单相绕组的磁动势 (1)第三节对称三相电流流过对称三相绕组的基波磁动势 (6)第四节不对称三相电流流过对称三相绕组的基波磁动势 (9)第五节三相绕组磁动势的空间谐波分量和时间谐波分量 (11)小结 (14)思考题 (14)习题 (15)第一节概述在第六章介绍旋转电机基本作用原理的基础时,电机类别不同则电机磁场的建立方式和特性也不同,气隙磁场对电机的机电能量转换和运行特性具有重要影响。
气隙磁场的建立是很复杂的,它可以由电流励磁产生,也可以由永磁体产生。
电流励磁也可以分直流励磁和交流励磁。
图6-1中的三相同步电机转子电流流过直流电建立空载磁场,当同步发电机接上负载后,定子绕组里就有了交流电流,它同样也会产生磁动势,这个磁动势必然会对转子磁动势产生影响。
在介绍异步电机作用原理时,当定子三相绕组通流入交流电,也会产生一个与同步电机气隙磁场类同的旋转磁场,这个磁场与交流电流的参数、绕组的构成之间的关系密切,这些内容将在本章内进行认真的分析。
根据由简入繁的原则,按下列层次逐项讨论:线圈、线圈组、单相绕组的磁动势;三相绕组的基波磁动势;三相电流不对称的基波磁动势以及磁动势空间谐波的分析等。
为了简化分析,本章对交流绕组磁动势分析时,作如下几点假定:(1)绕组的电流随时间按正弦规律变化,不考虑高次谐波电流;(2)槽内电流集中于槽中心处,齿槽的影响忽略不计,定转子间的气隙是均匀的,气隙磁阻是常数;(3)铁心不饱和,略去定转子铁芯的磁压降。
第二节单相绕组的磁动势一、线圈的磁动势图7-1(a)表示任一个整距线圈通以电流后的磁场分布情况,气隙磁场为一对磁极,由于是整距线圈,气隙的磁通密度均相同,按照全电流定律,在磁场中沿任一磁力线的磁位降等于该磁力线所包围的全部电流。
如线圈的匝数为,电流为,则作用在磁路上的磁势为。
由于铁心中磁压降不考虑,所以线圈的磁动势降落在两个均匀的气隙中,则气隙各处的磁压降均等于线圈磁动势的一半,即。
第4章 交流绕组—磁动势讲解

5
基波磁动势表达式
f y1(t, ) Fy1 cos 幅值 Fy1 0.9NcIc sin t
基波磁动势沿气隙圆周有p个完整的正弦波,极对数为p 例如Z=12,p=2的三相单层绕组。q=1,每相有2个整距线圈。
3
将气隙圆周展开,得到磁动势沿圆周的空间分布波形如图所 示。气隙圆周某点的磁动势表示由该定子磁动势所产生的气 隙磁通通过该点气隙的磁压降。
磁动势波形为矩形波。当 线圈电流i随时间按正弦规
律交变时,矩形波的高度 为
Fy
Nci 2
2 2
NcIc
sin
t
矩形波的高度和正负随时 间变化,变化的快慢取决 于电流的频率。
fA3 Fm3 sin t cos 3 fB3 Fm3 sin( t 120 ) cos 3( 120 ) fC3 Fm3 sin( t 240 ) cos 3( 240 )
f3 fA3 fB3 fC3
Fm3[sin t sin( t 120) sin( t 240)]cos3 0
② 合成磁动势基波的转速与三相电流的频率和绕组的极对 数有关;
③ 当某相电流达到最大值时,合成磁动势的波幅刚好转到 该相绕组的轴线上;
④ 电流在时间上经过多少角度,合成磁动势在空间上转过 相同的电角度;
⑤ 旋转磁动势由超前相电流所在的相绕组轴线转向滞后相 电流所在的相绕组轴线。改变电流的相序,则旋转磁动 势改变转向。
13
两个单层分布绕组产生的磁动势如上述分析,均为阶梯波。
电机第十一章交流电机绕组的磁动势和气隙磁场

线圈 2,上层边 2→下层边 2`。 2`与 1 位于相邻槽。
短距线圈的磁动势波形
把上层边 1、2 看成一个单层整距 线圈,产生的磁动
转子 定子
势为 F
2`
F
把下层边 1`、2`
看成一个单层整距线圈,
产生的磁动势为 F
y1 1
1`
fk iN K
2
F
X
X
短距线圈的磁动势最
方波磁动
势分解为
余弦基波 余弦三次谐波
余弦五次谐波
余弦基波→一相分布绕组 q 个线圈磁动 势可用矢量叠加,三相绕组磁动势也可用矢 量叠加。
三相基波
三相磁动势 三相谐波
合成总的磁动势
① 为什么方波磁动势要用傅氏级数展开?
用傅氏级数把方波磁动势分解为基波和各次谐波。
y1
f km
·
f k1m
4
60
2f p 2n1
60
速度为:
60 f n1 p
通常称为同步转速
6、当某相电流达到最大值时,三相合成基波 旋转磁动势的正幅值正好位于该相绕组的轴 线处。
t 0
A
fC fB f A fA
f B
B fC
C
t 120
A
fC fB f A
f B
B
•
0
磁动势由定子 → 气隙→转 子为正值。 磁动势由转子 →气隙→ 定子为负值。
•
f ()
0
2
转子
定子
1 2 NKi
1、单层整距线圈的磁动势波形为方波
~
22
f ( )
fk
25电机学-交流绕组的磁动势4

交流绕组的磁动势§9-2 一相绕组的磁动势(1)一相绕组的磁动势为一空间位置固定、幅值随时间变化的脉振磁动势,脉振的频率等于电流的频率,脉振磁动势的幅值位于相绕组的轴线上。
(2)一相绕组的基波(或谐波)脉振磁动势可以分解成两个幅值相等。
转速相同,转向相反的旋转磁动势。
旋转电角速度w 恰恰等于角频率每分钟转数同步速n1(3)一相绕组的 v 次谐波磁动势表达式为:f ϕν =Fϕν=Fϕmνcosναcosωt cosνα=0.9νIwkp wνcosωt cosνα交流绕组的磁动势§9-3 三相绕组的磁动势研究对象为研究方便,把三相绕组的每一相用一个等效的单层整距集中绕组来代替,该等效绕组的匝数等于实际一相串联匝数w 乘以绕组因数kw1, kw1w 称为一相的有效匝数,三相绕组在空间互差120度电角度。
这是一对极电机的三相等效绕组示意图。
电流正方向+B +AYC A XZ α=0 B+C三相绕组的基波磁动势结论:三相基波合成磁动势具有以下性质1)三相对称绕组通入三相对称电流产生的基波合成磁动势为一幅值不变的旋转磁动势。
由于基波磁动势矢量的端点轨迹是一个圆形,故又称为圆形旋转磁动势。
2)三相基波合成磁动势的幅值为一相基波脉振磁动势最大幅值的3/2 倍,即F 1 =32Fϕm1= 1.35Iwkp w1(安/ 极)3)三相基波合成磁动势的转向取决于电流的相序和三相绕组在空间上的排列次序。
基波合成磁动势总是从电流超前的相绕组向电流滞后的相绕组方向转动,例如电流相序为A-B-C,则基波合成磁动势按A轴-B轴-C轴方向旋转,改变三相绕组中电流相序可以改变旋转磁动势的转向。
4)三相基波合成磁动势的转速与电流频率保持严格不变的关系,即该转速即为同步速。
5)当某相电流达到最大值时,基波合成磁动势的波幅刚好转到该相绕组的轴线上,磁动势的方向与绕组中电流的方向符合右手螺旋定则。
分析方法如果三相等效绕组里通过三相对称电流,则每相均产生一脉振磁动势;把三个相绕组的磁动势进行合成,即得三相绕组的合成磁动势。
23.交流绕组的磁动势-脉振磁动势的分解03

五、脉振磁动势的分解()()11111111cos cos cos cos 22m m m f F t F t f f F t φφφφφφωαωαωα==−++''+'=即:一个脉振磁动势可以分解为两个幅值为的磁动势。
121m F ϕ1)第一项:()αωϕϕ−='t F f m cos 2111即:旋转磁动势(行波)的角速度等于电流角频率,朝+α方向旋转。
在空间上向前运动的波形在物理学上叫行波。
因此该磁动势不再是一个脉振的磁动势,而是变为一个空间分布不变,但向前运动的旋转磁动势。
因其幅值不变,旋转矢量末端的轨迹是一个圆,所以也称为圆形旋转磁动势。
()1602d dft f n dt dtpαωωπ====取磁动势幅值为这一点进行研究121m F ϕ§9-2 一相绕组的磁动势(续)()αωϕϕ−='t F f m cos 2111对应的波形图选取波形幅值所在位置的点进行分析,令ωt-α=0,则α=ωt上图中从左到右的三个波形分别对应,α=0、α=π/2、α=π三个时刻的波形。
对应上述三个时刻的波形,可以看到幅值对应的点在向右移动,在电机表面就是在逆时针旋转。
旋转角速度d α/dt=ω(rad/s )换算为电机转速为同步速2)第二项:即:旋转磁动势转速与的相同,但转向相反。
可见第二项和第一项都是圆形旋转磁动势,幅值、转速都相同,只是转向相反。
同样我们也可以用波形来分析第二项。
可以得到和第一项类似的结果。
()αωϕϕ+=''t F f m cos 21111602d f f n dt pαωπ=−=−=−1ϕf '对应的波形图选取波形幅值所在位置的点进行分析,令ωt+α=0,则α=-ωt上图中从左到右的三个波形分别对应,α=0、α=-π/2、α=-π三个时刻的波形。
对应上述三个时刻的波形,可以看到幅值对应的点在向左移动,在电机表面就是在顺时针旋转。
第七章 交流绕组的磁动势

F m 2 F q k p 0 .9 2 qc N k p k d I c 0 .9 2 qc N k N I c
单相脉振磁势的幅值表达式
• 为了统一表示相绕组的磁势,引入每相电 流I1,每相串联匝数N1等概念。
Iy
I1 a
Fp10.9(2qNy)Iykqky
对双层绕组:
2.振幅 合成磁势的振幅为每相脉动磁势振幅的3/2倍。
3.转速 角速度ω=2πf(电弧度/s)
n1=f/p(r/s)=60f/p (r/min)同步转速,基波转速。 4.幅值位置合成磁势的振幅的位置随时间而变化,出现在
ωt-x=0处。当某相电流达到最大值时,旋转磁势的波 幅刚好转到该线绕组的轴线上
5.旋转方向 由超前电流的相转向பைடு நூலகம்后电流的相
之间相差电角度
也相当于分布
sin q
kd1
q sin
2
2
•相当于单层绕组的分布情况
kp1 cos 2
分析:
• 双层绕组磁势的基波振幅:
F m 1 2 F q 1 k p 1 0 . 9 2 q c k p 1 k N d 1 I c 0 . 9 2 q c k N 1 N I c
脉动磁势分解成两个旋转磁势
脉动磁势波的节点和幅值的位置是固定不变的。
基波分量
F m 1 s t s i x n 1 2 i F m 1 c n t o x 1 2 F m 1 c s t o x s
• 在空间按正弦规律分布随时间按正弦规律变化的 脉动磁势可以分解为两个旋转磁势分量
改变旋转磁场转向的方法:调换任意两相电源线(改变 相序)
问题:
1、若额定负载的星形旋转电机突然断了一相,电机会发生什么变化?
8交流电机电枢绕组的电动势和磁动势
电机与拖动
2、线圈中的感应电势 :
(1)整距线匝中 的感应电势(线匝 首尾两端相距一个 整极矩) 两导体感应电动势 分别为Ea1和Ea2
线匝基波电动势向量ET
E T E a1 E a 2
整矩线匝基波电 E 2 E 2 2 . 22 f 4 . 44 f A 动势(有效值) T
E AB 3 E A 3 E B 3 0 三相采用△接法:
三次谐波感应电动势会在绕组回路中产生三次 谐波环流,整个闭合绕组三次谐波感应电动势恰好 与环流在三次谐波阻抗上产生压降相等,因此线电 压中也没有三次谐波分量。
同理:适合于3k次谐波
思考题:三相交流发电机定子绕组一般接成什 么形式?
E 4 . 44 fqW y k q p 4 . 44 f pqW a 4 . 44 fWk q
W pqW a
y
1 a
y
kq
是一相绕组串连的总匝数
(3) 三 相 双 层 叠 绕 组
电机与拖动
一交流机:Z=24,2P=4,m=3,y1=5,画出 双层叠绕组展开图。
1、画出结构图,标出槽号 B2 21 1817 22 2、标出AZBXCY的位置 Y2 16 Z 23 2 15 24 Z 24 S1 q 2 14 2 pm 223 1 n N N2 A1 1 13A2 2 Z 24 S2 12 6 3 2p 4 Z1 4 11 Y1 56 10 y1=5 B1 7 8 9 C 1 X1 上下 C2
三相交流电机中线电压的三次谐波 三相交流电机三相绕组在空间上互隔120 度空间电角度,他们的基波感应电动势时间 相位互隔120度。三次谐波感应电动势相位互 隔360度;并且三次谐波感应电动势幅值大小 相等。
交流绕组的磁动势
定、转子旋转磁场:
A Z
旋转方向相同
X
转速相等
定、转子旋转磁场在空间保 持相对静止——同步
B
• 3、在产生一定大小的电动势和磁动势,且 保证绝缘性能和机械强度可靠的条件下,尽 量减少用铜量。
• 4、制造工艺简单、检修方便。
C X
B
转子绕组又称励磁绕组,
Y
C
A
X
起励电源
图1.18 自并励系统原理电路图
Z
B
励磁绕组中流过直流电流,产生的磁场称励磁磁场或主极磁场,
相对于转子静止,随转子一起转动,相对于定子转速为转子转速n,
在随转子一起转动的过程中,定子三相绕组感应对称的电动势, 电动势的相序由转子的转向决定, 频率由转速决定, f pn
60
• 1、导体电动势
• 2 、整距线匝电动势 y1= τ
Ec1 2.22 f 1 Et1 4.44 f 1
3、短距线匝电动势有效值y1< τ Et1( y1 ) 4.44k y1 f 1
对于三相绕组,当流过对称的三相电流,将产生一个旋转磁动势
Y A
Z
C X
B
定、转子磁动势之间的关系
转子磁场旋转,
定子三相绕组感应对称的电动势, 电动势的相序由转子的转向决定,
定子三相合成旋转磁场
Y
C
频率由转速决定,
f
pn 60
转向由三相电流的相序和绕组的空
间排列决定,
转速由频率决定,
n
60 f p
对于单相绕组,将产生一个脉振磁动势,
因为采用了短距和分布绕组,其各高 次谐波已被极大的削弱,
该脉振磁动势为,在时间上随电
流同频率脉振,在空间上每一时
交流绕组及其电动势和磁动势
•4.2三相双层绕组
•一、基本概念
•1.线圈(绕组元件):是构成绕组的基本单元。绕组就是线圈 按一定规律的排列和联结。线圈可以区分为多匝线圈和单匝线 圈。与线圈相关的概念包括:有效边;端部;线圈节距等(看 图)
•4.2三相双层绕组 •一、基本概念
•2.极距τ :沿定子铁心内圆每个磁极所占的范围
•3.线圈节距y:一个线圈两个有效边之间所跨过的槽数称为线 圈的节距。用y表示。(看图) •y<τ时,线圈称为短距线圈;y=τ时,线圈称为整距线圈; •y>τ时,线圈称为长距线圈。
4.谐波的弊害
⑴使电动势波形变坏,发电机本身能耗增加 ,η↑,从而影响用电设备的运行性能
• ⑵干扰临近的通讯线路
二、消除谐波电动势的方法
因为EΦv=4.44fυNRwvΦv所以通过减小KWr 或Φr可降低EΦr
1.采用短距绕组 2.采用分布绕组,降低。 3.改善主磁场分布 4.斜曹或斜极
4.5通有正弦交流电时单相绕组的磁动势
• 二、交流绕组的分类 • 按相数分为:单相、三相、多相
• 按槽内层数分为:单层(同心式、链式、交叉 式)、双层(叠绕组、波绕组)、单双层
• 每极每相槽数q:整数槽、分数槽
•4.2三相双层绕组 •双层绕组的主要优点(P113)
•一、基本概念
:
•1.线圈(绕组元件):是构成绕组的基本单元。绕组就是线圈
⑶谐波磁场的槽距角:dγ =γd
⑷谐波磁场的转速:nr = ns主磁极的转速( 同步转速)
⑸谐波感应电动势的频率:fv= pv* nv/60 = vp ns/60=vf1
⑹谐波感应电动势的节距因数kpv ⑺谐波感应电动势的分布因数kdv ⑻谐波感应电动势的绕组因数kwv= kpv kdv ⑼谐波电动势(相值)
电机中磁动势与电动势的图文分析
1.交流绕组的磁动势图1图2 图3从图中可以看出三相电流产生的总的磁场是随着转子的旋转而旋转的,设转子开始的位置就是A 相的轴线位置,也就是0α︒=时,此时a F 在轴线+A 轴上,当转子逆时针转动1α角时,a F 也转动1α角,这样最大的磁动势线就对应在1α,1α也就是t ω。
值得注意的是,上面的图是三相电流合成之后的磁动势,而对于每一相电流,他们产生的基波磁动势的表达式是11cos cos cos cos k k k f N I t F t ωαωα==,这个式子可以傅里叶变换为:'''1111111cos()cos()22k k k k k f F t F t f f αωαω=-++=+,可以发现,一个脉振磁动势可以分解为两个极对数和波长与脉振波完全一样,类比上面的合成磁动势,这里的cos()t αω-可以看成是振幅为112k F 的磁动势沿着逆时针转动,也就是转子的转动方向旋转,并且旋转的角速度为d d tdt dtαωω==,也就是说,这个行波是电角速度为ω,大小与转子转动的电角速度相等,也就是线圈中电流的电角速度相等。
另外,cos()t αω+部分可以看成振幅为112k F 的磁动势沿着顺时针转动,这个行波是电角速度为-ω,大小与转子转动的电角速度相等,也就是线圈中电流的电角速度相等。
这些都是电枢绕组上的电枢电流所产生的磁动势特征,分别通过对总的电枢磁动势a F 的旋转方向来过渡到单相电流产生的磁动势,由于转子是逆时针方向转动,所以电动势是逆时针转动,导致电枢电流逆时针转动,然后就有了a F 逆时针转动,可以形象的通过上面的图3看出随着α而转动。
1cos()f F αα=-2.图示说明分布、短距绕组的物理意义两槽单线圈磁场空间分布为矩形波,所以含有大量的谐波在里面,那么产生的电动势也就有大量的谐波。
图4 两槽单线圈磁力线分布6槽三相电机磁场空间分布为阶梯波,所以也含有大量的谐波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q sin
4-6正弦电流下单相绕组的磁动势
2、双层短距线圈的线圈组磁势
等效的整距线圈绕组
y 180 y 180
y 180 Fq1 2 Fq1 cos 2 Fq1 cos
2 2
k y1 cos
2
cos(1
y
)90 sin
1、整距线圈的线圈组磁势合成方法
完全仿照线圈组电动势的求和方法,但须特别注意磁动势为 空间矢量,而电动势为时间相量。
f qv Fqv cos v qFcv kqv cos v 1 [q(0.9 N c I c cos t )kqv ]cos v v
k q
sin
q1 1
F1 '
wt 90
F1
wt 180
3)波形表达式:
由于一转等于Pх2л电弧度,所以用转速表示时
转速为:
p 2
60
2 f 60 f 60 n p 2 p
转速为:
2 f 60 f 60 60 n p 2 p 2 p
结论:
y
90
y y 2 Fq1 cos(90 90 ) 2 Fq1 sin 90 2 Fq1( 上) k y1
单层线圈组磁动势:
1 f qv q(0.9 N c I c kqv cos t ) cos v v
双层线圈组磁动势:
1 f qv 2q (0.9 N c I c kqv k yv cos t ) cos v v 1 2q (0.9 N c I c k wv cos t ) cos v v
1 f c ( ) Fcv cos v [0.9 I c Nc sin( ) cos t ]cos v v 2 v 1,3,5... v 1,3,5...
f c1 f c3 f c5 ....
将上述的矩形分布的脉振磁动势用富氏级数进行分解,得
f1 , t
t1
t2
t3
t3
t2
t1
不同瞬间时单相绕组的基波脉振磁动势
定义在幅值位置上
空间矢量代表的不是一点的磁动势,而是一个磁动势的波形
4-6正弦电流下单相绕组的磁动势
二、线圈组的磁势
则整距线圈组产生的磁动势由右图。 1、整距线圈的线圈组磁势
如q 3
4-6正弦电流下单相绕组的磁动势
整距线圈产生的磁场
整距线圈产生的磁动势
N c ic f c ( ) 2 f ( ) N c ic c 2
-
2
2 3 2 2
即:形状为方波 幅值为 f ( )
c
结论: 通入电流的线圈,它所产生的气隙磁动势沿圆 周分布是一个矩形波,在通电流的线圈处,气隙磁 动势发生突跳。
4-7 正弦电流下对称三相绕组的磁动势
一、对称三相绕组的基波合成磁动势
1、解析法
3 f1 F1m cos(t ) F1 cos(t ) 2
显然,基波 合成磁动势 为幅值恒定 的旋转磁动 势,简称圆 形磁动势
转速:
转向:沿着 正方向移动, 即在电机中沿逆时针方向 旋转
1 f cv ( ) Fcv cos v [0.9 I c N c cos t ]cos v v
结论:1) 单个线圈当通入交流电流时所产生的磁动势波是一个在空间
按正弦分布、波的位置在空间不动、但波幅的大小和正负 随时间在变化的磁动势波,称该种磁动势为脉振磁势。 (若通入直流电呢?) 2) 线圈磁势除包含基波磁势外,还包含有 3、5、7 等谐波磁势 分量。 3)基波与谐波磁动势的幅值均以电流的频率在空间脉振。 (幅值 位置不变,大小改变)(注意同一时刻不同位置与同一位 置不同时刻) 4)谐波磁动势是指在空间上的谐波分布。
一、对称三相绕组的基波合成磁动势
(2)空间、时间坐标的选取
①空间:A相绕组轴线及定子内圆表面, 逆时针为正 ②时间:A相电流正最大为 时间起点
iA 2 I cos t iB 2 I cos(t 1200 ) iC 2 I cos(t 2400 )
4-7 正弦电流下对称三相绕组的磁动势
而在交流绕组中通入的是交变电流即 i 2I cost c c
Fc 4
c ( ) cos( )d ( ic N c ) sin( ) 2 v 2
2 1 1 ( ) I c cos tN c sin( ) 0.9 I c N c sin( ) cos t 2 v 2 v 2
第四章:交流电机的共同问题
第1节:交流绕组的基本概念 第2节:三相双层绕组
第3节:三相单层绕组
第4节:正弦磁场下交流绕组的感应电动势 第5节:感应电动势中的高次谐波及其削弱方法 第6节:正弦电流下单相绕组的磁动势 第7节:正弦电流下对称三相绕组的旋转磁动势
第八节:非正弦电流下交流绕组的磁动势
4-6正弦电流下单相绕组的磁动势
fc ( ) Fc1 cos Fc3 cos3 Fc5 cos5
4 2 FC1 NC IC cos t 2
1 14 2 FC FC1 NC IC cos t 2
4 2 fc1 ( , t ) NC IC cos t cos 2
一、对称三相绕组的基波合成磁动势
(3)各相基波脉振磁动势表达式 1、解析法
f A1 F1m cos t cos f B1 F1m cos(t 1200 ) cos( 1200 ) fC1 F1m cos(t 2400 ) cos( 2400 )
F1m
2
1)解析表达式:f1 F1 cos t cos f1 ' f1 ''
A
2)矢量表达式:
1 1 F1m cos(t ) F1m cos(t ) 2 2 A
A
F1
F1
F1 '' F1 '
wt 0
F1 ''
F1 '
F1 ''
但其中的Nc和Ic是表示线圈匝数和线圈电流有效 值,工程应用不便。 注意到:每相绕组每条支路串联匝数 N 2 pqN c 或 N pqN c a a I aIc 每相电流有效值 I N Nc Ic 2 pqN c 2 pq I N aI c 2 pqN c I c a I N pqN c Nc Ic I N aI c pqN c I c pq a 1 f qv q (0.9 N c I c kqv cos t ) cos v 单层线圈组磁动势: v N 1 0.9 I kqv cos t cos v p v
基波磁动势可以用空间矢量表示,为此引入等效绕组和相绕组轴线 的概念
Nkw1 f1 0.9 I cos t cos p
fc1 ( , t ) 0.9NC IC cos t cos
基波脉振磁动势的分解: cos cos 1 cos( ) cos( )
4-6正弦电流下单相绕组的磁动势
综合以上分析对单相绕组磁势的性质归纳如下: 1、单相绕组的磁势是一种空间位置固定,幅值随时间变 化的脉振磁势,其脉振频率取决于电流的频率。 注:磁势即是空间位置的函数,也是时间的函数。空间分 布用以电角度计的空间位置角 来表达,随时间变化规律 用时间t来表达。 NKW 1 I 2、基波磁势的幅值为 F m 0.9 P 1 NK W I ν 次谐波磁势的幅值为 F m 0.9 P 3、定子绕组多采用短距和分布绕组,因而合成磁势中谐 波含量大大消弱。一般情况下只考虑基波磁势的作用。
组的磁动势是指每对极下一相绕组的磁动势。
F1m
Nkw1 2N I kw1 0.9 I 2p p 4
单相绕组基波磁势的幅值
Nkw1 单相绕组基波磁动势的瞬时值为 f1 0.9 p I cos t cos
qNC P 每相串联总匝数为: N (单层) a
2qNC P N (双层) a
一、对称三相绕组的基波合成磁动势 结论:三相对称绕组通入对称电流,所得基波合成磁动
势为幅值恒定的正弦分布的圆形旋转磁动势。旋 转幅值的轨迹是圆,所以称为圆形旋转磁场。 其幅值由每相电流的有效值及每相绕 组的有效匝数决定,且为每相脉振磁 动势最大幅值的(3/2)倍。 其转速由电流的频率和电机的极对数 决定,为同步转速。 其转向由电流的相序及三相绕组空间排列顺序决定,是由电 流超前相的绕组轴线转到电流滞后相得绕组轴线。(当某相 电流最大,合成磁动势幅值转到该相的轴线上)要改变磁场 转向,只须改变三相电流的相序。
4-6正弦电流下单相绕组的磁动势
4-6正弦电流下单相绕组的磁动势
本节主要讨论当给单相绕组通以正弦电流 时的磁动势的变化规律。 为分析方便,设: Fe 1)定、转子铁芯的磁导率 2)定、转子之间的气隙均匀 3)槽内的电流集中在槽中心处
i 2Ic cos t
4-6正弦电流下单相绕组的磁动势
一相脉振磁势可以分解成两个幅值大小相等, 转向相反、转速相同的圆形旋转磁动势。
4-7 正弦电流下对称三相绕组的磁动势
一、对称三相绕组的基波合成磁动势 (1)、三个基本概念 ①等效绕组及有效匝数 ②三相绕组轴线 ③合成磁动势分析方法 解析求和法 波形叠加法 矢量作图法
4-7 正弦电流下对称三相绕组的磁动势
在定子内圆表面建立空间坐标,以A相绕组轴 线与定子内表面的交点作为空间坐标的原点,用 空间电角度α表示。把气隙圆周展成直线,让横坐 标表示沿气隙圆周方向的空间距离。
不计铁心磁压降,每个空气隙所消耗的磁动势 等于整个磁路磁动势的一半,为 Nci /2 ,即: