蔡司场发射电子显微镜西IGMA
蔡司SEM(SIGMA)操作规范

蔡司SEM(SIGMA)操作规范蔡司——SEM(SIGMA)操作规范⼀、仪器结构光学系统:电⼦枪、电磁透镜、扫描线圈、光阑组件机械系统:⽀撑部分、样品室真空系统样品所产⽣的信号收集、处理、显⽰系统⼆、三种主要信号背散射电⼦(BSD):⼊射电⼦在样品中经散射后再从上表⾯射出来的电⼦。
反映样品表⾯不同取向、不同平均原⼦量的区域差别。
⼆次电⼦(SE2):由样品中原⼦外壳层释放出来,在扫描电⼦显微术中反映样品上表⾯的形貌特征。
X射线(EDS):⼊射电⼦在样品原⼦激发内层电⼦后外层电⼦跃迁⾄内层时发出的光⼦。
三、⼯作原理:扫描电镜的⼯作原理可以简单地归纳为“光栅扫描,逐点成像”。
从电⼦枪阴极发出的直径20um~30um的电⼦束,受到阴阳极之间加速电压的作⽤,射向镜筒,经过聚光镜及物镜的会聚作⽤,缩⼩成直径约⼏毫微⽶的电⼦探针。
在物镜上部的扫描线圈的作⽤下,电⼦探针在样品表⾯作光栅状扫描并且激发出多种电⼦信号。
这些电⼦信号被相应的检测器检测,经过放⼤、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。
显像管中的电⼦束在荧光屏上也作光栅状扫描,并且这种扫描运动与样品表⾯的电⼦束的扫描运动严格同步,这样即获得衬度与所接收信号强度相对应的扫描电⼦像,这种图像反映了样品表⾯的形貌特征。
四、操作步骤(⼀)启动系统1、开机将仪器主机上绿⾊按钮“On”打开,双击软件图标,输⼊⽤户名及密码。
2、加⾼压左击图标,单击,待⾼压上升到设定值,状态栏中显⽰为,系统状态就绪。
(⼆)更换样品1、放真空左击→→→,放真空。
2、换样品排⽓完成后,缓慢地将样品室拉开,轻轻将原样品取下,装⼊新样品,旋紧固定,缓慢关闭样品室。
3、抽真空单击→抽真空,待显⽰为时,抽真空完毕,可进⾏正常测试。
注:样品室不开打开太久,制样及更换样品时需戴⼿套,以免污染样品及样品室。
(三)测试样品1、选择观察区点击,将视野切换到TV模式下,前后移动Z⽅向杆将样品台调整到合适的⾼度,点击,将视野切换到Normal模式下,点击,状态栏中显⽰为⿏标左键调整图像亮度,右键调整对⽐度,使图像视野清晰;点击,状态栏显⽰为将⿏标功能切换为调整倍数、聚焦,⿏标左键将放⼤倍数调到最⼩,右键聚焦,选择较快的扫描速度(=1-3),使⽤操纵杆移动样品台位置,找到要观察的样品,并将观察区移动到视野中⼼。
场发射扫描电镜工作原理

场发射扫描电镜工作原理
场发射扫描电镜(FE-SEM,Field Emission Scanning Electron Microscope)工作原理如下:
1. 电子发射:FE-SEM使用一个称为电子枪的器件产生高能电
子束。
电子枪包含一个钨丝或碳纳米管的尖端,通过加热尖端,电子从尖端发射出来。
2. 调制和聚焦:电子束经过一系列的电场调制和聚焦透镜,以使电子束具有足够的能量和焦点来进行扫描。
3. 扫描和信号采集:电子束被聚焦到一个非常小的尖端,称为扫描线圈。
扫描线圈通过控制电子束的位置和速度,将电子束在样品表面上进行快速的扫描。
当电子束与样品表面相互作用时,会有多种信号产生,如二次电子、反射电子、特征X射
线等。
4. 信号检测:上述信号被检测器捕获,并由电子光学系统将其转换成图像或谱图。
典型的信号检测器包括二次电子探测器、透射电子探测器、X射线能谱仪等。
5. 数据显示和处理:捕获的信号通过计算机进行处理和显示,生成高分辨率的扫描电子显微图像。
计算机还可以对图像进行后期处理,如增强、标记、量化等。
总的来说,FE-SEM利用电子束的显微特性来对样品进行高分
辨率的表面观察,并可获取丰富的样品性质信息。
场发射扫描电子显微镜

(2)检查像散情况。像散是电子光学系统中所形成的磁场或静电场不能满足轴对称要求时产生的。图像聚焦 和消像散是图片质量的重要保证。若反复聚焦后图像仍不清晰,在欠焦和过焦时垂直方向上出现模糊并拉长的现 象,则说明有像散存在,需要调节像散。正常情况下也会出现像散,可通过观察状态栏中的像散值查看是否处于 正常状态。若X或Y轴的像散值小于30%,则说明像散处于正常状态;若像散值大于30%,则说明像散处于非正常状 态。产生像散的原因是多方面的,如透镜材料不均匀、极靴孔之间对中不好以及加工精度影响等,而电镜在使用 过程中电子通道周围部分被污染而带电是产生像散的主要原因。以ULTRA PLUS扫描电子显微镜为例,其电子通 道的污染会形成一个局部的静电场,干扰电子束的正常聚焦。虽然电镜中设置八极电磁式消像散器,可产生一个 弱的校正磁场,但其作用是有限的。若电子通道污染,则需清洗光阑和其他电子束通道部位来消除像散。
总结
场发射扫描电子显微镜的日常维护中,操作人员应定期检查仪器设备的环境条件、光学系统、真空系统及附 件设施,确保仪器在最佳工作状态下使用。试样的前处理好坏对场发射扫描电子显微镜的维护保养也有一定的影 响,要保持试样清洁、干燥和具有良好的导电性、导热性,从加速电压、焦距、探测器模式等多方面正确处理特 性各异的试样。操作时,应注意观察电镜状态,洞察非常态现象,将故障防患于未然;出现故障时要冷静分析, 从报错、操作状态着手,首先排除软件故障,再分析硬件故障,必要时及时与厂商专业维修人员沟通。总之,细 心的日常维护和及时的故障排除能有效降低电镜使用成本,延长使用寿命 。
蔡司场发射扫描电镜操作培训课件

工作原理简介
电子枪发射电子,经 过加速和聚焦形成电 子束。
信号被探测器接收并 转换为电信号,经过 处理后形成图像。
电子束在磁场作用下 扫描样品表面,与样 品相互作用产生各种 信号。
设备的主要组件和功能
聚光镜
将电子束聚焦并调 整光束大小。
探测器
接收样品产生的信 号,并将其转换为 电信号。
电子枪
发射电子,是电镜 的照明源。
蔡司场发射扫描电镜操作培训课件
目录
• 设备介绍 • 操作流程 • 高级操作与优化 • 应用与案例展示 • 安全注意事项
01 设备介绍
设备概述
01
蔡司场发射扫描电镜是一种高分 辨率、高放大倍率的电子显微镜 ,用于观察和分析材料表面的微 观结构和形貌。
02
它采用电子作为照明源,通过电 子束扫描样品表面,将产生的信 号收集并处理成图像。
紧急情况处理
如遇电镜异常或故障,应立即切断电 源,保持现场,并及时联系专业维修 人员。
若发生触电或火灾等紧急情况,应迅 速切断电源,使用灭火器扑灭火灾, 同时拨打紧急电话求救。
安全培训与教育
操作人员应接受专业培训,熟悉电镜的基本原理、操作流程 及安全注意事项。
定期对操作人员进行安全教育培训,提高安全意识,确保操 作过程的安全性。
陶瓷与玻璃材料探索
研究陶瓷和玻璃材料的微观结构,如气孔率、晶相组成和显微组织 。
表面科学探索
01
ห้องสมุดไป่ตู้
02
03
表面形貌分析
利用场发射扫描电镜观察 材料表面的形貌和粗糙度 ,分析表面的物理和化学 性质。
表面元素组成分析
结合能谱仪等附件,对材 料表面元素进行定性和定 量分析,了解表面化学组 成。
日立SU5000场发射扫描电子显微镜说明书

Fig. 1 External appearance of SU5000 FE-SEM New Schottky FE-SEM, SU5000Shigeaki Tachibana *1 William Podrazky *2Introduction1. Scanning Electron Microscopes (SEM) are used for observation and analysis in various fields. Since Field Emission SEM (FE-SEM) equipped with a field emission electron gun source provide higher resolution than those equipped with a thermionic emission electron gun source, the user base for FE-SEM has broadened significantly due to the need to observe specimen features continually decreasing in size. FE-SEMs are increasingly recognized as a tool for performing various surface analyses, however detection technologies for various signals generated from specimens have advanced beyond topographic observation alone. Typically the operator must utilize previous knowledge, training, and skill in microscopy to generate desirable results; therefore, optimal performance may vary based on experience level. For example, optimal performance may not be realized as a result of improper optical axis alignment or astigmatism correction, utilizing unsuitable accelerating voltage(s), or other parameters. Integrating an automated solution for these problems would allow the user to focus on obtaining comprehensive results under the best possible conditions at all times. Hitachi High-Technologies has developed a novel user interface which augments conventional SEM techniques to assist these problems. The “EM Wizard” user interface was developed to bring “new usability” to EM operators of various levels of experience. This Schottky FE-SEM, the SU5000, incorporated with EM Wizard interface, launched in August 2014 (Fig. 1).Fig. 2 EM Wizard, objectives selection screen.New Interface: EM Wizard2. With EM Wizard, rather than setting individual conditions such as the accelerating voltage, working distance, detector, and other parameters, the operator can select an “Observation Purpose,” such as “Surface Information” or “Elemental Information,” from a selection menu (*2). On the screen, a Radar Chart displays the type of content that will be acquired (resolution, surface information, elemental composition), and a simulated SEM image representing how a specimen will appear under each observational objective. This information provides a visual understanding of SEM image characteristics that can guide the operator in selecting these objectives (Fig. 2). When an “Observation Purpose” is selected, related system parameters are set automatically (e.g., accelerating voltage, working distance, detector), and optical axis parameters as well as astigmatism corrections are adjusted to optimal values. Simply by adjusting the brightness/contrast and focus, the operator can easily acquire high quality images at consistent resolution. In addition to an applications selection menu, what makes these functions possible are high-precision automation technologies initially developed for Critical Dimension (CD) SEM. CD-SEM are entirely automated, and must provide highly reproducible measurements, optical axis alignments, and other adjustments; EM Wizard has been designed to use these automation technologies to reproduce and maintain highly precise adjustments invariably. Because optical axis alignment and astigmatism correction values change with lens conditions over time, they cannot be maintained for long periods, even if stored in the system. However, EM Wizard includes an auto-calibration function which automatically restores parameters to optimal values responsive to long-term changes in lens conditions (*3), eliminating any need for proficiency in readjustment procedures. This feature makes it easier for the operator to obtain images in focus, maintain high reproducibility, and acquire data efficiently. Figure 3 is an example of a catalyst observed at 200,000× magnification after auto-calibration with the use of EM Wizard. Metal particles several nm in size are discernible during operation without complex adjustment.Fig. 4 Observation of lithium ion battery positive electrode. Left: Secondary electron image. Right: Backscattered electron image.Magnification: 25,000×.Fig. 3. Catalyst observation. Magnification: 200,000×Low-energy observation3. In addition to the assistance functions provided by automation as shown above, the SU5000 is equipped with optical and detection systems suitable for any variety of analysis required. The emitter used is a Schottky-type device which delivers a spatial resolution of 2.0 nm at 1 kV (*4) and high probe current (>200 nA). Figure 4 is an example of the positive electrode of a lithium-ion battery observed at a landing voltage of 0.3 kV. The positive electrode of Lithium ion batteries is comprised of an active substance consisting of conductors, binders, and other elements. However, some binder materials cannot withstand electron beam irradiation and must be observed at the lowest possible energy. The left image in Fig. 4 was produced by a secondary electron detector mounted inside the electron column, and the right image was produced by a backscattered electron detector inserted below the lens. In the secondary electron image, the binder appears dark by voltage contrast, while the backscattered electron image allows for distribution of contrast based on each material. In this example, multiple signals are used to evaluate different components of the electrode including topographic and compositional distributions. It is inferred that the enhanced voltage contrast in the secondary electron image is attributed to differences in the charge effect of each material due to the secondary electron generation efficiency when irradiated by very low-energy incident electrons.4.Concluding RemarksThe SU5000 was developed to address the various needs of SEM users in materials science, biomedicine, and many other fields. As the FE-SEM grows in popularity, Hitachi will continually place importance on functions such as EM Wizard, which are capable of providing high-resolution and optimized contrast images with high reproducibility, regardless of the user experience level.(*2)Patent No. 5416319(*3)Patent No. 5464534(*4)With use of deceleration mode (optional)ReferencesSato M., History of Technologies in high resolution SEM, Kobunshi, 9 (2014)(Japanese).Authors*1 Shigeaki Tachibana, Hitachi High-Technologies Corp., Marketing Department*2 William Podrazky, Hitachi High-Technologies America, Inc.。
扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)

扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)扫描电子显微镜(Scanning Electron Microscope, SEM)是一种高分辨率的显微镜,能够通过扫描样品表面的电子束来获取高清晰度的图像。
蔡司Gemini 450是一种常见的扫描电子显微镜,拥有多种模式和探头,下面将对其各模式和探头的使用参数进行介绍。
1.高真空模式:-工作距离:3-20毫米之间可调。
-放大倍率:高达1,000,000倍。
-检测器:二次电子检测器、能量分散X射线(EDX)探测器等。
高真空模式适用于大多数样品,特别是金属、半导体等导电材料。
该模式下的电子束会扫描样品表面,从而产生二次电子图像。
EDX探测器可用于进行元素成分分析。
2.低真空模式:-气压范围:从10到130帕斯卡(Pa)。
-工作距离:5-25毫米之间可调。
-放大倍率:高达100,000倍。
低真空模式适用于非导电材料以及生物样品等需要避免高真空环境的样品。
低真空模式下,可以使用水冷样品冷凝器来减少样品的水膜蒸发。
3.非接触模式:-工作距离:约为30微米。
-放大倍率:高达100,000倍。
非接触模式使用非接触方式扫描样品表面,减少了对样品的损伤。
它适用于对样品表面要求严格的情况下,如软性材料或纳米材料等。
4.电子背散射模式:-工作距离:约为3毫米。
-放大倍率:高达300,000倍。
电子背散射模式用于观察样品的表面形态和材料本身的晶体结构。
通过背散射电子来获取高对比度的图像。
探头是扫描电镜中十分重要的组成部分,蔡司Gemini 450电镜提供了多种探头供选择,具有不同的特点和应用范围。
1.热阴极电子枪:-适用于常规高真空模式下的成像。
-具有较高的亮度和小的发射面积。
2.场发射电子枪:-适用于较低真空模式下的成像。
-具有更小的亮度和更小的发射面积。
3.高抛射场发射电子枪:-适用于非接触模式。
-具有更大的发射面积,可以提供更高的电子流,为非接触模式下的成像提供更好的性能。
蔡司sigma300扫描电镜操作步骤及实例

界面-操作软件简介
选择图像储存的 分辨率 扫描速度
图像的冻结是以 手动形式还是扫 描完整幅图片后 自动冻结
积分次数或平均 次数
SEM control: Scan界面
选择图像噪点去 除的六种方式: 帧平均、帧积分、 线平均、线积分、 像素平均、连续 平均
界面-操作软件简介
SEM control: Stage界面
线扫描元素质量分数变化曲线
功能-面扫描(EDS)
喷涂环氧富锌漆的金属表面
单种元素面分布色图
功能-电子背散射衍射(EBSD)
简介
EBSD技术主要应用 于晶体学取向、再结 晶形核与长大机制、 织构、相变及其位向 关系、界面结构特征、 晶体缺陷密度、绝热 剪切带内部的取向及 织构等。
02
基本流程与界面
基于Windows7SmartSEM操作系统
SIGMA300/VP扫描电子显微镜/实验楼4层
工作原理和特点
01
02
表(界)面形貌 分析;
分辨率高,可达 纳米级;
03
放大倍数可连续 调节放大,十几 倍到几十万倍;
04
三维立体效果 好,扫描电镜 图像景深大;
05
样品制备简单。 导电样品只要尺 寸大小合适,可 直接观察;
流程-控制台
样品台上下高度调整、
左右倾斜角度调整
X、Y方向像散
亮度、对比度
样品台前后 左右平移、 自转
放大倍数调节
聚焦
流程-图片保存方法
注意
调整好噪点参数, 使图像平滑清晰。 鼠标移动到图片上, 点击鼠标右键,选 择 “send to” , 然后选择需要保存 的图片格式。
流程-图片保存方法
选中需要保存的图 片格式后,跳出左 边对话框 选择你要保存的目 录
蔡司激光共聚焦显微镜安全操作及保养规程

蔡司激光共聚焦显微镜安全操作及保养规程引言蔡司激光共聚焦显微镜(以下简称CLSM)是一种先进的显微镜技术,在生物学、医学、材料科学等领域具有广泛应用。
为了确保操作人员的安全以及设备的正常运行,本文将介绍CLSM的安全操作事项和保养规程。
安全操作事项1. 环境安全在使用CLSM过程中,必须保证实验室环境安全,避免火源、化学品等危险物质进入工作区域。
同时,确保实验室通风良好,以免激光辐射、化学气体等对人体产生伤害。
2. 个人防护在操作CLSM时,需要佩戴个人防护设备,包括实验室上岗证、防护眼镜、防护手套等。
特别是需要注意保护眼睛,避免激光直接照射眼睛,以免造成视觉损伤。
3. 激光操作CLSM中常用的激光器会产生强光束,因此在操作过程中需要注意以下事项: - 调整激光器功率时,要小心操作,避免功率过大造成危险。
- 使用激光笔定位时,避免直接照射人体、反射镜面和易燃物。
- 在使用蓝光激光时,要避免直接照射眼睛,以免损伤视网膜。
4. 样品操作在CLSM中,样品的操作也需要注意以下事项: - 处理生物样品时,要遵循生物安全操作规程,避免对身体造成伤害。
- 操作过程中,避免将样品接触到显微镜镜头或激光器,以免污染或损坏设备。
- 废弃样品需要妥善处理,遵循实验室废弃物管理规定。
设备保养规程为了保持CLSM的正常运行和延长设备寿命,有必要进行定期保养。
以下是常见的保养规程: 1. 清洁镜头:使用纯棉布或银纤维布轻轻擦拭镜头,避免使用有溶剂的纸巾或棉签,以免造成损坏。
2. 检查激光器:定期检查激光器的工作状态,如发现异常情况,及时联系专业维修人员进行检修。
3. 校准仪器:根据使用手册中的要求,定期进行仪器的校准,确保数据的准确性。
4. 更换滤镜:根据实际需要,定期更换滤镜,以保证成像效果和实验结果的准确性。
5. 定期维护:根据设备的使用频率和实验要求,制定定期维护计划,并按计划进行相关工作,如更换零配件、清洁系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场发射电子显微镜∑IGMA
详细描述:
品牌:卡尔·蔡司 型号:∑IGMA
制造商:德国卡尔蔡司公司 经销商:欧波同纳米技术有限公司
免费咨询电话:800-8900-558
【品牌故事】
世界顶级光学品牌,可见光及电子光学的领导企业----德国蔡司公司始创于1846年。
其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥),积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS 电子束技术在世界上创造了数个第一:
第一台静电式透射电镜 (1949)
第一台商业化扫描电镜 (1965)
第一台数字化扫描电镜(1985)
第一台场发射扫描电镜(1990)
第一台带有成像滤波器的透射电镜 (1992)
第一台具有Koehler照明的 200kV 场发射透射电镜(2003)
第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003)
CARL ZEISS以其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。
自成立至今,一直延续不断创新的传统,公司拥有电镜制造最核心最先进的专有技术,随着离子束技术和基于电子束的分析技术的加入、是全球唯一为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案的电镜制造企业。
其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。
作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。
【总体描述】
采用先进的第三代GEMINI镜筒的∑IGMA场发射电子显微镜在处理所有材料方面有杰出表现。
GEMINI 镜筒因其操作简单,极低压成像和超稳定探测电流等优势得到广大用户的认可,同时可提供高分辨率的能谱分析和波谱分析.
∑IGMA可处理直径达250mm和高为145mm的试样,此外,理想的共面设计使得能谱分析(EDS)和背散射电子分析(EBSD)同时使用。
【技术参数】
分辨率: 1.3nm@ 20KV 1.5nm@ 15KV 2.8nm@ 1KV
放大倍数:12 – 1,000,000x
加速电压:0.1-30KV
探针电流:4 pA - 20 nA (4pA-40nA 可选)
样品室: 330 mm (φ) x 270 mm (h)
样品台: 5轴优中心全自动
X = 125 mm
Y = 125 mm
Z = 50mm
T = 0 - 90°
R = 360°连续旋转
系统控制:基于Windows XP 的SmartSEM操作系统,可选鼠标、键盘、控制面板控制
【产品应用】
扫描电镜(SEM)广泛地应用于金属材料(钢铁、冶金、有色、机械加工)和非金属材料(化学、化工、石油、地质矿物学、橡胶、纺织、水泥、玻璃纤维)等检验和研究。
在材料科学研究、金属材料、陶瓷材料、半导体材料、化学材料等领域进行材料的微观形貌、组织、成分分析,各种材料的形貌组织观察,材料断口分析和失效分析,材料实时微区成分分析,元素定量、定性成分分析,快速的多元素面扫描和线扫描分布测量,晶体、晶粒的相鉴定,晶粒尺寸、形状分析,晶体、晶粒取向测量。