人教版第10章:数据的收集、整理与描述导学案
最新人教版初中数学下册第十章 数据的收集、整理与描述 导学案

第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查1.了解全面调查的概念.2.会设计简单的调查问卷,收集数据.3.掌握划记法,会用表格整理数据.4.会画扇形统计图,能用统计图描述数据.5.经历统计调查的一般过程,体验统计与生活的关系.自学指导:阅读教材第136至138页(练习以上),回答下列问题:自学反馈1.下面的调查,哪些适合用全面调查?哪些不适合?(1)调查中央电视台《大风车》的收视率;(不适合)(2)调查我班同学最喜欢的颜色;(适合)(3)调查一批炮弹的杀伤力情况;(不适合)(4)调查我班同学最喜欢的科目;(适合)(5)调查我班同学最喜爱的体育活动.(适合)2.某年级组织学生参加社会实践活动,本次活动将学生分成三组,下面两幅统计图反映了学生报名参加社会实践活动的情况,请你根据图中的信息回答下面问题:(1)该年级报名参加丙组的人数为25人.(2)该年级报名参加本次活动的总人数为50,并补全条形图.3.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区下面两张统计图,利用这些图提供的信息,解答下列问题:(1)1999年该地区销售盒饭共88.5万盒;(2)该地区盒饭销量最大的年份是2000年,这一年的销量是160万盒;(3)这三年中该地区每年平均销售盒饭99.5万盒.活动1 了解统计调查的一般过程步骤一:收集数据问题1 假设我们要了解你班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?举手表决、问卷调查等.问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷.你认为设计调查问卷应包括哪些内容?问卷设计的内容应包括调查中所提的问题、答案选项以及要求等.就上面的问题我们可以设计如下的调查问卷:(1)提问不能涉及提问者个人的观点;(2)不要提问人们不愿回答的问题;(3)提供选择的答案尽可能全面;(4)问题应简明;(5)问卷应简洁.问卷设计好后,请每位同学填写,然后收集起来.例如,某同学经问卷调查,得到如下50个数据:CCADBCADCDCEABDDBCCCDBDCDDDCDCEBBDDCCEBDABDDCBCBDD用字母代替节目的类型,可方便统计.步骤二:整理数据1.从上面的数据中你容易看出你班同学喜爱各类节目的情况吗?为什么?不容易.因为这些数据杂乱无章,不容易发现其中的规律.2.为了更清楚地了解数据所蕴含的规律,需要对数据进行整理.你认为应该怎样整理我们收集到的数据?划“正”字,这就是所谓的划记法.下面我们利用下表整理数据.全班同学最喜爱节目的人数统计表:上表可以清楚地反映你班同学喜爱各类节目的情况.步骤三:描述数据为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据.绘制条形统计图绘制扇形统计图我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分.扇形图通过扇形的大小来反映各个部分占总体的百分比.扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形.因为组成扇形图的各扇形圆心角的和是360°,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数.新闻:360°×8%=28.8°,体育:360°×20%=72°,动画:360°×30%=108°,娱乐:360°×36%=129.6°,戏曲:360°×6%=21.6°.在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比.扇形图是根据扇形的大小来描述各个数据占总体的百分比,而扇形的大小是由扇形对的圆心角决定的,所以画扇形统计图,要先计算扇形的圆心角大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数就越大.扇形所对的圆心角的度数与百分比的关系是什么?(圆心角的度数=百分比×360°)归纳:条形图能够显示每组中具体的数据,易于比较数据之间的差别;扇形图的大小表示部分在总体中所占百分比,易于显示每组数据相对于总数的大小,而不能判断出每组数的绝对大小.步骤四:分析数据你能根据上面的条形统计图和扇形统计图直接说出你班同学喜爱各类电视节目的情况吗?步骤五:得出结论在上面的调查中,我们利用调查问卷得到你班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述.通过分析表和图,了解到了你班同学喜爱电视节目的情况.在这个调查中,你班同学是要考察的全体对象,我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查.例如,2000年我国进行的第五次人口普查,就是一次全面调查.请你举出一些生活中运用全面调查的例子.活动2 全面调查1.全面调查的基本过程2.宜采用全面调查①总体中个体数目较少且研究问题要求情况真实、准确性较高时.②调查工作较方便、没有破坏性③当调查的结果有特别要求时,或调查的结果有特殊意义时,如国家的人口普查,我们仍须采用全面调查的方式进行.活动3 跟踪训练幻灯片出示,同学们观看完成.活动4 课堂小结第2课时抽样调查1.了解抽样调查的意义,会针对具体问题选用全面调查或抽样调查.2.掌握总体、个体、样本和样本容量的概念.3.能正确指出抽样调查问题中调查的总体、个体、样本和样本容量.4.了解简单随机抽样的方法.通过解决实际问题,体会抽样调查中样本的代表性的作用.自学指导:阅读教材第138至140(练习以上)页,完成知识探究:知识探究1.抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查.2.总体:所要考察对象的全体叫做总体.3.个体:总体中每一个考察对象叫做个体4.样本:从总体中所抽取的一部分个体叫做总体的一个样本.5.样本容量:样本中个体的数目(不含单位).自学反馈1.为了了解一批电视机的使用寿命,从中抽取了10台进行试验,对于这个问题,下列说法中正确的是(A)A.每台电视机的使用寿命是个体B.一批电视机是总体C.10台电视机是总体的一个样本D.10台是样本容量2.填空:某中学有520名学生参加升学考试.从中随机抽取60名考生的数学成绩进行分析,在这个问题中:总体是:520名考生的升学考试数学成绩;个体是:每一个考生的升学考试数学成绩;样本是:抽取的60名考生的升学考试数学成绩;样本容量是:60.活动1 激发兴趣,设疑导入1.生活中的“小插曲”妈妈:“孩子,再帮妈妈买鸡蛋去”.妈妈:………孩子高兴地跑回来.孩子:“妈妈,这次的鸡蛋全是好的,我每个都打开看过了”.妈妈:“啊!”在这个小故事中,孩子采用的是什么调查方式?这种调查方式好不好?答:全面调查,不好.2.如何知道一锅汤的味道?你知道其中蕴涵的道理吗?根据这个道理,孩子应采用怎样正确的调查方式?活动2 概念学习1.明确概念:(1)抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查.(2)总体:所要考察对象的全体叫做总体.(3)个体:总体中每一个考察对象叫做个体.(4)样本:从总体中所抽取的一部分个体叫做总体的一个样本.(5)样本容量:样本中个体的数目(不含单位).2.解释概念:幻灯片显示:通过调查某地区学生的视力情况,进一步说明总体、个体、样本、样本容量之间的关系,并提出有些时候样本可以估计总体这一想法.抽样调查是实际中应用非常广泛的一种调查方式,它是从总体中抽取样本进行调查,根据样本来估计总体的一种调查.3.比较概念:全面调查是通过调查总体的方式来收集数据,因而得到的调查结果比较精确;但可能要投入数十倍甚至更多的人力、物力和时间.抽样调查是通过调查样本的方式来收集数据,因而调查结果与总体的结果可能有一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择.活动3 跟踪训练1.要调查下面几个问题,你认为应该做全面调查还是抽样调查?(1)要调查市场上某种食品含量是否符号国家标准(2)检测某城市的空气质量(3)调查一个村子所有家庭的收入(4)调查人们对保护环境的意识(5)调查一个班级中的学生对建立班级英语角的看法(6)了解一批灯泡的使用寿命.活动4 比较概念抽样调查是实际中经常采用的调查方式,它只抽取了一部分对象进行调查,然后根据样本数据推断全体对象的情况.如果抽取的样本得当,就能很好地反应总体情况,否则,抽样调查的结果会偏离总体情况.因此在抽样调查中抽取的样本要具有代表性.活动5 跟踪训练请指出下列调查中的样本是否具有代表性.(1)在大学生中调查我国青年业余时间娱乐的主要方式.(2)在公园里调查老年人的健康状况.(3)调查一个班级里学号为3的倍数的学生,以了解学生们对班主任老师某一新举措的意见和建议.(4)为了解公园里一年中的游客情况,小明利用”十一”长假作进园人数调查.活动6 例题解析问题2某校有2 000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你打算怎样进行调查?解:1.确定调查方式:抽样调查.2.可以在全校2 000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.1.为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到.例如,可以在2 000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.2.上面抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样.活动7 课堂小结第3课时用样本估计总体1.对较大数据分层次进行数据抽样.2.正确确定比例进行抽样和由数据描述作出判断,通过样本估计总体.自学指导:阅读教材第140至144页,回答下列问题:自学反馈小红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8天的读数.若每度电收取电费0.5元.估计小红家4月份(按30天计)的电费是60元(注:电表计数器上先后两次显示读数之差就是这段时间内消耗电能的度数).活动1 例题解析问题3 某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.(1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?(2)如果抽取一个容量为1 000的样本进行调查,你会怎样调查?从上节课我们已经看到在总体数目比较大时,对它进行全面调查很难做到,甚至根本就不可能,如:问题3中有百万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,能否像上节课中提到的抽100名学生来估计2 000名学生的喜爱情况吗?那么如何按层次抽取呢?可以按年龄段的实际人口的比例分配来确保每个年龄段都有相应的比例的代表,按青少年、成年人、老年人的人数比为2∶5∶3抽取.请同学们计算按这样的比例填表格.在抽取的1 000名观众中,对各类节目的喜爱情况整理、绘制成喜爱节目的人数统计表:那么如何统计出各段人数对节目的喜爱的百分比呢?这个表格又如何设计呢?用折线统计图反映不同年龄段对节目喜爱的百分比变化情况,并根据图形说出各段喜爱节目的变化情况.全面调查和抽样调查是收集数据的两种方式.全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.活动2 探究怎样估计鱼塘里有多少条鱼?具体做法是:第一次捕捞出10条,把它们全部做上标记后放到池塘里,过一段时间进行第二次捕捞,若一共捕捞到100条鱼,其中2条鱼身上有标记,那么池塘里鱼的数目就可以通过近似比例关系,得到估计的数目.其近似比例关系为:池塘里有标记鱼的数目池塘中鱼的数目≈第二次捕捞出有标记鱼的数目第二次捕捞出鱼的数目只进行两次捕捞是不够准确的,应多进行几次,将每次结果相加,求出平均数就比较准确了. 活动3 课堂小结10.2 直方图1.使学生了解描述数据的另一种统计图——直方图.2.通过事例掌握用直方图的几个重要步骤,理解组距、频数、频数分布的意义,能绘制频数分布图.自学指导:阅读教材第146至150页,回答下列问题:自学反馈1.在对七年级某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察图形,并回答下列问题.(1)该班有44名学生;(2)70.5~80.5这一组的频数是14,频率是0.32;(3)请你估算该班这次测验的平均成绩是80.2.对某班同学的身高进行统计(单位:厘米),频数分布表中165.5~170.5这一组学生人数是12,频率是0.25,则该班共有48名学生.3.已知一个样本:27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30.列出频数分布表;并绘出频数分布直方图.解:(1)计算最大值与最小值的差:32-23=9.(2)决定组距为2,因为92=4.5,所以组数为5.(3)决定分点:23~25,25~27,27~29,29~31,31~33.(4)列频数分布表:(5)画频数分布直方图:活动1 对数据分组整理1.问题提出:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:cm)如下:选择身高在哪个范围的学生参加呢?分析:为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况:身高在哪个范围内的学生多,哪个范围内的学生少,因此得对这些数据进行适当的分组整理.活动2 对数据分组整理的步骤①计算最大与最小值的差.最大值-最小值=172-149=23(cm),这说明身高的范围是23 cm.②决定组距和组数.把所有数据分成若干个组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.例如:第一组从149~152,这时152-149=3,则组距就是3.那么将所有数据分为多少组可以用公式:-最大值最小值组距=组数,如:-最大值最小值组距=1721493-=233=723,则可将这组数据分为8组.注意:组距和组数没有固定的标准,要根据具体问题来决定,分组数的多少原则上按照:100个数据以内分为5~12组较为恰当.③列频数分布表.(频数:落在各个小组内的数据的个数)每个小组内数据的个数(频数)在各个小组的分布状况用表格表示出来就是频数分布表.如:对上述数据列频数分布就得到频数分布表.注:划记也可以写成频数累计.你能不能用更直观形象的方法来表示频数分布的情况呢?④画频数分布直方图.所以身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,共有12+19+10=41(人),因此可以从身高在155~164 cm(不含164 cm)的学生中选队员.以上四个步骤也对这63个数据进行了整理,通过这样的整理,选出了比较合适的队员.活动3 频数折线图方法:(1)取直方图上每一个长方形上边的中点.(2)在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距(3)将所取的这些点用线段依次连接起来活动4 例题解析课本166页例题,幻灯片出示.活动5 课堂小结画频数分布直方图的一般步骤:(1)计算最大值与最小值的差(极差).(2)决定组距与组数.(3)决定分点.(4)列频数分布表:数出每一组频数.(5)绘制频数分布直方图.横轴表示各组数据,纵轴表示频数,该组内的频数为高,画出一个个矩形.10.3 课题学习从数据谈节水1.使学生经历收集、整理、分析数据,得出结论的过程,从中体会节水的重要性.2.通过分析数据,得出结论,让学生体会用数据分析问题的过程,提出合理化建议,感受数学给生活带来的价值.3.通过具体的数据,使学生了解节水的重要性.自学指导:阅读教材第154至156页,回答下列问题:自学反馈1.近30年来,我国湖泊水面面积已缩小了30%.洞庭湖在1949年至1983年的34年间湖区面积已减少了1 459 km2,平均每年减少42.9 km2,容量共减少115亿m3,平均每年减少3.4亿m3.如果按此速度发展,现有容量为168亿m3的洞庭湖将会在50年内消失.2.郑光调查了他们班50名同学各自家庭的人均日用水量(单位:升),结果如下:55 42 50 48 42 35 38 39 40 51 47 5250 42 43 47 52 48 54 52 38 42 60 5241 46 35 47 53 48 52 47 50 49 57 4340 44 52 50 49 37 46 42 62 58 46 4839 60请根据以上数据绘制频数分布表和频数分布直方图,并回答下列问题:(1)家庭人均日用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?(2)如果每人每天节约用水8升,按全班50人计算,一年(按365天计算)可节约用水多少吨?按生活基本日均需水量50升的标准计算,这些水可供1个人多长时间的生活用水?解:计算最大值与最小值的差:62-35=27.决定组距与组数:取组距为4,由于27÷4=6.75,因此要将整个数据分为7组,用x(升)表示人均日用水量,则所分的组为35≤x<39,39≤x<43,43≤x<47,…,59≤x<63.列频数分布表:根据频数分布表和频数分布直方图可以得到:(1)家庭人均日用水量在不小于47升而小于51升的范围内的家庭最多,这个范围内的家庭共有14家,占全班家庭的28%.(2)一年可节约水:8×50×365÷1 000=146(吨)按生活基本日均需水量50升的标准计算,这些水可供1个人生活:146×1 000÷50÷365=8(年)资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?(2)你了解世界及我国有关水资源的现状吗?活动1 探求新知阅读课本的“背景资料”,从中收集数据,画出统计图,并回答下列问题:(1)地球上的水资源和淡水资源分布情况怎么样?(2)我国农业和工业耗水量情况怎么样?(3)我国不同年份城市生活用水的变化趋势怎么样?(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?学生阅读资料,通过小组合作、讨论的形式完成.活动2 数据整理收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?(4)如果每人每天节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?(5)你还可以得到哪些信息?(教师巡视,指导各小组开展调查实验活动)活动3 资料展示资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活中节约用水的好办法.活动4 课堂小结。
人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
七年级数学下册 第十章 数据的收集、整理与描述复习导学案(新版)新人教版

第10章复习
反思
问题后,给学生交流的时间。同时深入各组倾听学生的 交流,
再次点拨统计的思想以及统计的过程
.学生先独立思考再组内交流后分组报告,其他同学补充
.
依案自学,针对不会的问题用双色笔做好标记,在组内交流时向其他同学请教。
对于组内交流无法解决的问题提交老师或组间交流解决 疑问。
学生回答的不完整及时补充纠正
Hale Waihona Puke 时习P 158复习巩固1、2、3、4、5、6。
第十章数据的收集、整理与描述
导学目标
1、巩固数据的统 计
2、培养节约用水的意识
3、梳理本章所学知识,弄清本章知识的框架结构,巩固所学概念,明确统计的基本思想,会对 数据进行整 理、描述。
重点
认识框架建立和知识梳理
难点
对数据的整理和描述
教学过程
教学环节
教学内容
教学任务
教师活动
学生活动
预见性问题及对策
复
习
1.调查分为哪几种形式?各有什么优、缺点?
2.几个名词概念
总体:
个体:
样本:
样本容量:
频数:
3.抽样调查要注意的问题
①要有随机性,广泛性和代表性。
②在数据较大,情况较复杂时,应采取分类、分层抽 样进行调查(常采取比例的抽样方法)。
4.数据的整 理和描述主 要采取什么方法?
整理数据:
描述数据:
条形图能够显示数据:扇形图能够显示数据: 折线图能够显示数据: 直方图能够显示数据:
人教版第10章:数据的收集、整理与描述导学案

王兰庄学校七年级数学第十章导学案(1)第一课时统计调查(1)主备教师:刘清生审核教师:张欢欢课型:新授讲课时间:2013 年6月学习目标:了解全面调查的意义,初步学会简单的数据的收集、整理以及会用条形统计图、扇形统计图直观地描述数据.重点:对数据的收集、整理及描述难点:绘制扇形统计图和条形统计图一、自学课本135—137页。
一、自学活动:1.全面调查:2.抽样调查:3.简单随机抽样:二、交流展示:1、阅读课本第135页问题1,并回答以下问题:(1)我们都可以通过怎么样的方法收集数据?该怎样设计调查问卷呢?(2)如果我们得到数据之后,该怎么来整理这些数据呢?说一说你的方法,它们各有什么好处呢?(3)为了更直观地看出划记法表中的信息,可以用哪些方法来描述数据?2、分组合作――探究扇形统计图的画法:阅读课本第136页图10.1-1.(1)扇形统计图中的整个圆代表什么?(2)你认为图中的各个百分比是如何得到的?所有的百分比的和是多少?(3)图中各个扇形分别代表了什么?它的圆心角是怎样确定的?(4)你认为扇形统计图有什么特点?3、分组讨论,并归纳统计调查的一般过程.4、阅读课本第137页问题2:某中学有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,应该怎样进行调查?组织小组合作学习,思考并讨论以下问题:(1)你准备用什么调查方法解决?(2)问题2中的总体、个体和样本分别是什么?(3)运用抽样调查法确定样本容量很重要,,应该抽取多少名学生进行调查比较合适?你考虑了哪些因素?(4)被调查的学生该如何抽取呢?说一说你的抽取方案。
(5)你还能想出使每个学生都有相等机会被抽到的方法吗?5、说出“简单随机抽样”的概念。
三、达标练习:1.要调查某校初三学生周日的睡眠时间,选取调查对象最合适的是()A、选取一个班级的学生B、选取50名男生C、选取50名女生D、随机选取50名初三学生2.下面的调查,不适合抽样调查的是()A.中央电视台《实话实说》的收视率 B.全国人口普查C.一批炮弹的杀伤力情况 D.了解一批灯泡的使用寿命3.在火车的站台上,有200袋黄豆将装上火车运出北京,袋子的大小都一样,随机选取10袋的重量分别为 (单位:斤): 196、198、199、200、197、198、196、196、200、198,估计这200袋黄豆的总重量为_______________ .4.166中某某同学为了调查北京市初中生人数,他对自己所在的东城区人口和东城区初中生人数作了调查:东城区人口约62.5万,初中生人数约16500人.北京常住人口1633万人,为此他推断全市初中生人数为43.1万.但市教育局提供的全市初中生人数约30.6万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因________ _ _。
人教版七年级下册第十章 数据的收集、整理与描述《复习课》导学案

第十章复习课1.会设计简单的调查问卷收集数据,能够区分全面调查和抽样调查.2.会进行简单随机抽样,会用样本估计总体.3.能根据需要选择适当的统计图描述数据.4.通过实际参与收集、整理、描述和分析数据的活动,感受统计在生活和生产中的作用.5.重点:能根据需要选择合适的统计图描述数据.◆体系构建◆核心梳理1.考察全体对象的调查叫做全面调查,抽取一部分对象进行调查的方法,叫做抽样调查.总体中的每一个个体都有相等的机会被抽到的抽样方法为简单随机抽样.2.抽样调查的相关概念:总体:要考察的全体对象;个体:组成总体的每一个考察对象;样本:被抽取的个体;样本容量:样本中个体的数目.3.绘制频数分布直方图步骤:(1)计算最大值与最小值的差;(2)决定组距和组数;(3)列频数分布表;(4)画频数分布直方图.专题一全面调查BA.了解全班同学每周体育锻炼的时间B.鞋厂检查生产的鞋底能承受的弯折次数C.学校招聘教师,对应聘人员面试专题二抽样调查成绩进行分析.在这次抽样分析过程中,总体是450名七年级学生期中考试的数学成绩,样本是 50名七年级学生期中考试的数学成绩 ,个体是 每个七年级学生期中考试的数学成绩 ,专题三 扇形统计图的应用3.某校开展“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的来由”这个问题,对部分学生进行了调查,调查结果如图,其中不知道的学生有8人.下列说法不正确...的是 (C ) A .被调查的学生共50人B .被调查的学生中“知道”的人数为32人C .图中“记不清”对应的圆心角为60°D .全校“知道”的人数约占全校人数的64%专题四 条形图及其应用. A.其中有3个区的人口数都低于40万 B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数 专题五 折线统计图及其应用.成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是 抽样调查 (填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值:A : 20 ;B : 40 ; (3)求该地区喜爱娱乐类节目的成年人的人数.解:300000×53+5+2=150000,108360=30%, 150000×30%=45000(人).专题六直方图及其应用6.6月份以来我国南方强降雨范围继续扩大,雨量增强,部分县市区降雨量达100毫米以上,造成严重洪涝灾害.依据右图解答下列问题:(1)降雨量在100毫米以上的有几个县市?(2)最需要救助的县市有几个?(3)降雨量在100~150毫米之间要进行黄色预警,150毫米以上要进行橙色预警,如果你是天气预报员,你将怎样发布预警信息?解:(1)36;(2)4;(3)32个县市黄色预警,4个县市橙色预警.见《导学测评》P46。
人教版七年级数学下册第十章数据的搜集、整理与描述单元教学设计

2.分组合作,探究学习:鼓励学生分组合作,共同完成数据收集、整理与描述的任务,培养学生的合作意识和沟通能力。
-教师可以设计不同难度的任务,让各小组自主选择,使学生在合作中共同进步。
3.案例分析,提升能力:通过分析实际案例,让学生了解数据在实际生活中的应用,提高其分析问题和解决问题的能力。
-教学中,教师应注重过程性评价,关注学生在课堂上的表现,鼓励他们提出问题和解决问题。
6.信息技术,辅助教学:利用信息技术手段,如计算机软件、网络资源等,辅助数据处理和展示,提高教学效果。
-引导学生运用Excel等软件进行数据处理和分析,提高其信息素养。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组与学生生活密切相关的数据,如班级同学的身高、体重分布情况,引发学生的兴趣和思考。
-例如,分析某城市一年内各月份的降雨量数据,引导学生运用所学知识预测未来的降雨趋势。
4.适时引导,突破难点:针对教学重难点,教师应适时进行引导,帮助学生克服困难,掌握关键知识点。
-在讲解概率时,通过实例让学生理解概率的含义,并引导他们运用概率知识解决实际问题。
5.多元评价,激发潜能:采用多元化评价方式,关注学生的个体差异,激发学生的学习潜能。
人教版七年级数学下册第十章数据的搜集、整理与描述单元教学设计
一、教学目标
(一)知识与技能
1.理解数据收集、整理与描述的基本概念,掌握数据收集的途径和方法,如问卷调查、观察法等。
2.学会使用表格、图表等工具整理和展示数据,能够运用条形图、折线图、扇形图等对数据进行描述和分析。
3.掌握简单概率的计算方法,了解概率的意义和在实际生活中的应用。
6人教七下第十章 数据的收集、整理与描述导学案

第十章数据的收集、整理与描述10.1 统计调查10.1 统计调查(第1课时)学习目标1.借助典型事例了解全面调查的概念;会设计简单的调查问卷,收集数据.2.经历统计调查的过程,能根据问题查找有关资料,获得数据信息、描述数据;感受统计思想.3.经历统计调查的一般过程,体验统计与生活的关系.学习过程一、情境导入,激趣诱思中国共产党第十八次全国代表大会在北京人民大会堂胜利闭幕.这是所有代表们在举手表决.二、提出问题,自主学习如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎样做?三、分组学习,合作探究活动一:你知道咱们班的同学喜爱大熊猫、滇金丝猴、藏羚羊、丹顶鹤、遗鸥、亚洲象这些动物的情况吗?如果通过问卷调查的方式完成此项任务的统计调查需要完成哪几个环节?活动二:讨论统计表和统计图的区别.活动三:总结全面调查的步骤.四、精练精讲,重难突破观察统计图,回答问题.某地区10万人中大学人数变化折线图2000年某地区10万人中受教育程度分布统计图2000年某地区10万人中受教育程度条形图(1)三幅统计图分别表示什么内容?(2)从哪幅统计图你能看出10万人中大学人数的变化情况?(3)2000年10万人中初中人数是多少?你是从哪幅图中得到这个数据的?(4)2000年10万人中初中人数约占多少?从哪幅统计图中可以明显得到结果?(5)比较三种统计图的特点,并相互交流.五、师生共进,课堂小结学生回顾本节课的学习历程,总结本节课的所学内容及收获.布置作业设计简单的调查问卷:你们班的学生最喜欢哪个福娃?结论:全班同学喜爱的最多,有人,占%,然后依次是、、、.10.1 统计调查(第2课时)学习目标1.了解抽样调查及相关概念.2.了解抽样调查的必要性和简单随机抽样调查,初步体会样本估计总体的思想.3.引导学生经历统计调查的一般过程,体验统计与生活的关系.学习过程一、情境导入,激趣诱思一天,爸爸叫儿子去买一盒火柴.临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了好一会儿,儿子才回到家. “火柴能划燃吗?”爸爸问.“都能划燃.”“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”问题1:在这则笑话中,儿子采用的是什么调查方式?问题2:这种调查方式好不好?还可采用什么调查方式?二、提出问题,自主学习某校有2 000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?三、展示成果,查找问题四、分组学习,合作探究思考与归纳概念:1.抽样调查;2.总体;3.个体;4.样本;5.样本容量.五、精练精讲,重难突破【例1】要调查下面几个问题,你认为应该作全面调查还是抽样调查.(1)调查市场上某种食品质量是否符合国家标准.(2)检测某城市的空气质量.(3)调查某一城市百岁老人的人数.(4)调查某厂生产的烟花爆竹的质量情况.【例2】某中学有520名学生参加升学考试从中随机抽取60名考生的数学成绩进行分析.在这个问题中:总体是;个体是;样本是;样本容量是.【例3】怎样估计鱼塘里有多少条鱼?六、当堂评价,反馈深化1.为了了解某种家用空调工作1小时的用电量,调查10台该种空调每台工作1小时的用电量.在这个问题中,总体是( )A.10台空调B.所有空调C.10台空调每台工作1小时的用电量D.某种家用空调工作1小时的用电量2.2013年某区有15 000名学生参加中考,为了考察他们的数学考试情况,评卷人从中抽取了800名考生的数学成绩进行统计,那么下列四个判断正确的是( )A.每名考生是个体B.这15 000名考生的数学成绩是总体C.800名考生是总体的一个样本D.这属于全面调查七、师生共进,课堂小结回顾本节课的学习历程,总结本节课的所学内容及收获.布置作业举一个适合全面调查或抽样调查的实例.10.2 直方图10.2 直方图(第1课时)学习目标1.认识直方图,能画直方图,能利用直方图解释数据中蕴含的信息.2.经历绘制频数分布直方图的过程,提高对直方图的特点及适用范围的认识.3.在小组合作绘制频数分布直方图的过程中感受合作学习的重要.学习过程一、情境导入,激趣诱思为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位: cm)如下:要挑出身高相差不多的40名同学参加比赛,我们应该怎样整理数据?二、提出问题,自主学习1.究竟分几组比较合适呢?2.组数的多少由什么决定?三、分组学习,合作探究活动一:讨论绘制频数分布直方图的步骤需要哪几步?活动二:讨论直方图的特点是什么?活动三:认识频数分布折线图.四、精练精讲,重难突破某校18名数学老师的年龄(岁)如下:29 42 58 37 53 52 49 24 37 42 55 40 38 50 26 54 26 44请填写下列频数分布表:五、师生共进,课堂小结1.你能说出绘制直方图的步骤吗?2.我们都学习了哪些统计图表,它们各有什么特点?布置作业2014年中考结束后,某市从参加中考的12000名学生中抽取200名学生的数学成绩(考生得分均为整数,满分120分)进行统计,评估数学考试情况,经过整理得到如下频数分布直方图,请回答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图.(3)若成绩在72分以上(含72分)为及格,请你评估该市考生数学成绩的及格率与数学考试及格人数.10.2 直方图(第2课时)学习目标1.进一步认识直方图,能画直方图,能利用直方图解释数据中蕴含的信息.2.经历绘制频数分布直方图的过程,提高对直方图的特点及适用范围的认识.3.在小组合作绘制频数分布直方图的过程中感受合作学习的重要.学习过程一、复习导入,激趣诱思你能说出画频数分布直方图的步骤和特点吗?二、提出问题,自主学习活动:为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(单位:cm)如下表分组讨论,列出样本的频数分布表,画出频数分布直方图,并说明从图表中可以得到什么信息?三、分组学习,合作探究讨论直方图的特点是什么?四、精练精讲,重难突破已知一个样本:27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30.列出频数分布表,并绘出频数分布直方图和频数折线图.五、课堂练习,巩固基础1.一个样本含有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果组距为2,那么应分成组,33~35(不含35)这组的频数为.2.对某班同学的身高进行统计(单位:厘米),频数分布表中165.5~170.5这一组学生是12,占总人数的25%,则该班共有名学生.六、师生共进,课堂小结布置作业某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班同学的上学方式进行一次调查统计.如图是一同学通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该班共有名学生,其中乘车有名学生;(2)将频数分布直方图补充完整;(3)若该校七年级有400名学生,试估计七年级骑自行车上学的人数为多少.10.3 课题学习从数据谈节水学习目标1.查阅资料和从事统计调查活动所得的结果来谈论有关的节水问题,就是用数据说话.2.经历课题学习的过程,提高在解决实际问题中用数据说话的认识.3.在小组中感受合作学习的重要.学习过程一、情境导入,激趣诱思你知道吗?目前全球正面临着缺水的严峻挑战.我国是一个严重缺水的国家.通过下面的统计活动,同学们将对世界淡水资源、中国缺水的形势以及我国水资源的利用情况有所了解.二、提出问题,自主学习问题1:地球上的水资源和淡水资源是怎样分布的?问题2:我国农业和工业耗水量情况是怎样的?问题3:我国不同年份城市生活用水的变化趋势是怎样的?问题4:根据国外的经验,一个国家的用水量超过其水资源总量的20%,就可能发生“水危机”,依据这个标准,我国2000年是否曾出现“水危机”?三、分组学习,合作探究活动一:用简单随机抽样方法,调查全校同学家庭人均月用水量,并回答问题.问题1:设计的调查问卷应包括哪些内容?问题2:抽取的样本容量是多少?如何抽取样本?问题3:制作频数直方图.活动二:1.家庭人均月用水量在哪个范围的家庭最多?占全班家庭的百分之几?2.家庭人均月用水量最多和最少的小组各有多少家庭各占全班家庭的百分之几?3.全班同学家庭人均日用水量平均数是多少?按生活基本日均需水量(BWR)50升的用水标准全班平均是否超标?4.如果每人每天节约用水10升,按12亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可供1人多少年的生活用水?5.你还可以得到哪些信息?四、师生共进,课堂小结课题学习的主要收获是什么?。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例

3.教师可以引导学生回顾之前学过的数据处理方法,如用表格整理数据,用图表展示数据等,激发学生的学习兴趣和回忆。
4.教师可以总结之前的知识,并提出本节课的学习目标,引导学生明确本节课的学习内容和要求。
3.游戏情境:设计有趣的数学游戏,如数据接龙、图表猜猜看等,让学生在游戏中体验数据的收集、整理与描述的过程,提高学生的实践能力。
4.媒体情境:利用多媒体课件、视频等资源,为学生提供丰富的数据资源,丰富学生的数据感知,帮助学生更好地理解和掌握数据处理的方法。
(二)问题导向
1.教师可以通过设计具有挑战性和启发性的问题,引导学生主动思考,激发学生的求知欲,激发学生解决问题的动力。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第十章“数据的收集、整理与描述”为主题,旨在通过实际教学案例,探讨如何在数学教学中有效地引导学生掌握数据的收集、整理与描述的方法,提高学生的数据处理能力,培养学生的逻辑思维和分析问题的能力。
在实际教学中,教师可以通过设计丰富多样的教学活动,如小组合作、动手操作、问题探究等,激发学生的学习兴趣,引导学生主动参与,从而更好地理解和掌握数据收集、整理与描述的方法。同时,教师还需关注学生的个体差异,给予不同程度的学生个性化的指导,确保每个学生都能在课堂上得到有效的锻炼和提升。
(二)讲授新知
1.教师可以通过讲解和示例,向学生介绍数据的收集方法,如调查、实验等,并解释每种方法的优缺点。
2.教师可以通过讲解和示例,向学生介绍图表的制作方法,如条形图、折线图、饼图等,并解释每种图表的特点和适用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新世纪教育网 精品资料 版权所有@新世纪教育网
新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网 不等式的解集
教学目标:1、知道不等式解集的含义
2、会在数轴上表示不等式的解集
重、难点:
教 具:投影仪
教学内容及程序:
一、前提测评
1、 不等式的意义是什么?什么是不等式的解?
2、 不等式的基本性质有几条?请说出来。
3、 根据不等式的基本性质,将下列各式化成x>a 或x<a 的形式:
⑴ x -3<5 ⑵ 5x<4x -1 ⑶ 0.5x>3 ⑷ -3x>6
二、达标导学
1、 引入不等式的解集的概念
由前提测评3得不等式x -3<5可以变形为x<8,说明x 取小于8的任何一个数时,不等式都能成立;x 取大于或等于8的任何一个数时,不等式都不能成立。
因此,小于8的任何一个数都是不等式x -3<5的解;而大于或等于8的任何一个数,都不是不等式x -3<5的解。
不等式x -3<5的所有的解,组成不等式x -3<5的解的集合,简称不等式x -3<5的解集。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
2、 不等式的解集的表示
不等式x -3<5的解集,可以记作x<8
3、 不等式的解集的数轴上的表示
如不等式x -3<5的解集是x<8,可以用数轴上表示8的点的左边部分来表示,表示8的点的位置上画空心圆圈,表示不包括8这一点。
4、 例题1、下列各数中,哪些是不等式2x -3>1的解?
2,-3,0,21
,3.5,7,32 三、达标检测
四、评价总结:
五、作业:
六、教后感。