一元二次方程习题课
《一元二次方程的解法》习题课教案

《一元二次方程的解法》习题课学习目标:1.了解一元二次方程的各种解法,会选择适当的方法解一元二次方程。
2.能根据判别式准确判断一元二次方程根的情况。
学习重点:能正确地选择适当的方法解一元二次方程。
学习难点:熟练解出一元二次方程的解学习过程:一、自主思考题:思考下列问题:1、一元二次方程的解法有哪几种其基本思想是什么它们之间有什么区别和联系2、用配方法解一元二次方程的一般步骤是什么配方的关键是什么3、用公式法解一元二次方程的一般步骤是什么求根公式是怎样推导出来的4、用因式分解法解一元二次方程的一般步骤是什么5、如何利用b 2-4ac 来判断一元二次方程根的情况都是有哪几种情况6、求取的方程的解都符合题意吗有什么判断依据思路点拨:师生共同思考以上几个问题,在解一元二次方程时,往往首先把方程转化成一般形式,然后再去观察到底使用那种方法。
注意配方法的关键是方程两边同时加上一次项系数一半的平方(二次项系数为1时)。
求根公式不要死记,要掌握推导过程。
b 2-4ac 来判断一元二次方程根的情况是考点,要灵活掌握。
二、自学检测:1、一元二次方程x 2-ax+6=0, 配方后为(x-3)2=3, 则a=______________.2、已知关于x 的方程(a 2-1)x 2+(1-a )x+a-2=0,下列结论正确的是( )A 、当a≠±1时,原方程是一元二次方程B 、当a≠1时,原方程是一元二次方程。
C 、当a≠-1时,原方程是一元二次方程D 、原方程是一元二次方程。
3、请你写出一个有一根为1的一元二次方程:4、下列方程是一元二次方程的是( )A 、0512=+-x xB 、x (x+1)=x 2-3C 、3x 2+y-1=0D 、2213x +=315x -5、方程x 2-8x+5=0的左边配成完全平方式后所得的方程是( )A 、(x-6)2=11B 、(x-4)2=11C 、(x-4)2=21D 、以上答案都不对6、关于x 的一元二次方程(m-2)x 2+(2m —1)x+m 2—4=0的一个根是0,则 m 的值是( )A 、 2B 、—2C 、2或者—2D 、127、要使代数式22231x x x ---的值等于0,则x 等于( ) A 、1 B 、-1 C 、3 D 、3或-18、三角形两边长分别是6和8,第三边长是x 2-16x+60=0的一个实数根,求该三角形的第三条边长。
一元二次方程的根与系数的关系习题课

一元二次方程的根与系数的关系习题课一.知识要点100212.()如果关于的一元二次方程:≠的两个根是,,x ax bx c a x x ++= 那么,·。
x x b a x x c a1212+=-= 如果关于的一元二次方程:的两个根是,,那么x x px q x x x x 212120++=+= -=p x x q ,·。
反之也成立。
122. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a ≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:∆=-≥b ac 240二、例题讲解.例1. 如果是方程的一个根,求的值,并求出方程另一x x kx k k =---=2502 个根。
解法一:由于是方程的一个根,所以把代入方程,x x kx k x =---==25022得 22502---=k k ∴;k =-13也就是31402x x +-=;设另一个根为β,由根与系数的关系,有 2143213ββ=-+=-()或 ∴。
β=-73 解法二:设另一个根为β,据方程的根的意义与根与系数的关系,可列出方程组22502522---==--+=⎧⎨⎩k k k k ββ,或()即有-=+=-⎧⎨⎩3125k k ,;β解这个方程组,得k =-=-⎧⎨⎪⎪⎩⎪⎪1373β例2. 设方程的两根为,,不解方程,求下列各式的值:4730212x x x x --= ()()()()1332121323x x x x --+ ()()3114211212x x x x x x +++-()()()5132312121222x x x x x x x x +=+-+=++-()[()]x x x x x x 12122123=+-+()()x x x x x x 12312123解:由根与系数的关系可得: x x x x 12127434+==-, ()()()()133********x x x x x x --=-++ =--+343749× =3 ()()()2313231231212x x x x x x x x +=+-+ =--()()74334743×× =59564()()()()()31111112112221112x x x x x x x x x x +++=+++++ =+-+++++()()()x x x x x x x x x x 1221212121221=--+-++()()7423474347412× =10132()()412122x x x x -=-± =+-±()x x x x 122124 =--±()()744342 =±1497 例3. 已知关于x 的一元二次方程:x m x m 22224084+-++=()的两个实数根的平方和比这两根的积大, 求:实数m 的值。
一元二次方程解法习题课(公开课)

通过本次课程,我掌握了一元二次方程的三种解法,并 能够灵活运用这些方法解决问题。
配方法原理及步骤
配方法原理:通过配方,将一元二次方程转化 为完全平方的形式,从而求解。
01
配方法步骤
02
04
将二次项系数化为1;
05
加上并减去一次项系数一半的平方,使左 边成为完全平方;
将原方程化为一般形式;
03
06
开方求解。
典型例题分析与解答
例题1
01 解方程 $x^2 + 6x + 9 = 0$
02
4. 对等式左边进行完全平方,得到 $left(x + frac{b}{2a}right)^2 = frac{b^2 - 4ac}{4a^2}$。
03
5. 开平方,得到 $x + frac{b}{2a} = pm sqrt{frac{b^2 4ac}{4a^2}}$。
04
6. 解得 $x_1, x_2 = frac{-b pm sqrt{b^2 - 4ac}}{2a}$。
一元二次方程根的性质
根的存在性
当判别式 $Delta = b^2 - 4ac geq 0$ 时,一元二次方程有两个实根。
根的和与积
对于一元二次方程 $ax^2 + bx + c = 0$($a neq 0$),若其两个根为 $x_1$ 和 $x_2$, 则有 $x_1 + x_2 = -frac{b}{a}$,$x_1 times x_2 = frac{c}{a}$。
2. 将方程两边同时除以 $a$($a neq 0$),得到 $x^2 + frac{b}{a}x = frac{c}{a}$。
直接开平方法原理及步骤
一元二次不等式及其解法(习题课)

∴原不等式解集为x|x<-12或x>13. 答案:A
2.若集合 A={x|-1≤2x+1≤3},B=x|x-x 2≤0,则 A∩B=(
)
A.{x|-1≤x<0}
B.{x|0<x≤1}
C.{x|0≤x≤2}
D.{x|0≤x≤1}
解析:∵A={x|-1≤x≤1},B={x|0<x≤2},
∴A∩B={x|0<x≤1}.
即
m>-16. 3
- b =-2m>2 2a 2
m<-2
解得-16<m≤-4. 3
总结:
设关于 x 的一元二次方程 ax2+bx+c=0(a>0)对应的二次函数为: f(x)=ax2+bx+c(a>0),结合二次函数的图象的开口方向、对称轴位 置,以及区间端点函数值的正负,可以得到以下几类方程根的分布问 题(此时Δ=b2-4ac).
∴7m-6<0,解得 m<67. ∴0<m<6.
7
∴m<0.
综上所述,m
的取值范围为
-∞,6 7
.
探究二 不等式中的恒成立问题
[典例 2] 设函数 f(x)=mx2-mx-1.
(2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
法二:f(x)<-m+5 恒成立, 即 m(x2-x+1)-6<0 恒成立.
Δ≥0, (1)方程 f(x)=0 在区间(k,+∞)内有两个实根的条件是- fk2ba>>0k. ,
(2)方程 f(x)=0 有一根大于 k,另一根小于 k 的条件是 f(k)<0.
(3) 方 程 f(x) = 0 在 区 间 (k1 , k2) 内 有 两 个 实 根 的 条 件 是
17.2一元二次方程求根公式(第4课时)(2种题型基础练+提升练)(解析版)

17.2一元二次方程求根公式(第4课时)(2种题型基础练+提升练)考查题型一 公式法解一元二次方程1.24x -【答案】1x =2x =【详解】解:∵4a =,b =-1c =.∴(()22444148b ac D =-=--´´-=,∴x =,∴1x =2x =.2.解方程:220x --=【答案】122, 2.x x =-【详解】解:由题意得:1,2,a b c ==-=-(()22441216b ac \=-=--´´-=V >0,2,x \==122, 2.x x \=+=3.解方程:21-【答案】12x x ==【详解】解:23410x x --=a=3, b=-4, c=-1,∴()()2244431280b ac D =-=--´´-=>方程有两个不相等的实数根=即12x x =4.解方程: 2430x x +-=【答案】1222x x =-=-【详解】解:其中143a b c ===-,,,22428b -=得2x ====-即2x =-2x =-所以原方程的根是1222x x =-=-5.解方程:23【答案】12x x ==【详解】原方程可化为:23620x x --=x =12x x ==6.解方程:21=(用公式法)【答案】x 1x 2.【详解】解:23410x x --=,24b ac -=()()24431--´´- =28,x 1x 2.7.解方程:x 2﹣12x =4【答案】x 1=26x =-【详解】解:2124x x -=,21240x x --=,1a =Q ,12b =-,4c =-,\△2(12)41(4)1600=--´´-=>,则6x ===±16x \=+26x =-.8.解方程:(x +2)(x ﹣3)=4x +8;【答案】x 1=7,x 2=-2【详解】解:方程整理得:x 2-5x -14=0,则a =1,b =-5,c =-14,∵b 2-4ac =25+56=81>0,∴x =592±,解得:x 1=7,x 2=-2.9.解方程:()()2131x x -+=【答案】1x =,2x =【详解】解:方程整理得:22540x x +-=,这里2a =,5b =,4c =-,Q 224542(4)570b ac D =-=-´´-=>,x \=即1x 2x =.10.用公式法解方程:x 2﹣﹣3=0.【答案】x 1x 2【详解】解:∵x 2x -3=0,∴13a b c ==-=-,,∴()22Δ=4=-41-3=8+12=20b ac -´´,∴x ==,∴x 1x 211.解方程:230x --=.【答案】1x =,2x =-【详解】解:1a =Q ,b =-3c =-,224(41(3)81220b ac \-=--´´-=+=,x \===即1x =2x =考查题型二 公式法解一元二次方程的应用12.已知等腰三角形的周长为20,腰长是方程212310x x -+=的一个根,则这个等腰三角形的腰长为_______.【答案】6+【详解】212310x x -+=公式法解得:1266x x ==(1)当腰长为6时,由周长可得,底边为202(68-´+=-(686->;(2)当腰长为6202(68-´=+系(668<+.13.阅读理解:对于()321x n x n -++这类特殊的代数式可以按下面的方法分解因式:()()()()3232222()()(1)()1x n x n x n x x n x x n x n x x n x n x n x n x nx -++=--+=---=+-=-+--一理解运用:如果()3210x n x n -++=,那么()2(10)x n x nx -+-=,即有0x n -=或210x nx +-=,因此,方程0x n -=和210x nx +-=的所有解就是方程()321x n x n -++=0 的解.解决问题:求方程31030x x -+=的解为___________.【答案】1233,x x x ===【详解】解:∵x 3−10x +3=0,∴x 3−9x−x +3=0,x (x 2−9)−(x−3)=0,(x−3)(x 2+3x−1)=0,∴x−3=0或x 2+3x−1=0,∴1233,x x x ===.故答案为:1233,x x x ===.14.解方程:()()2210290x x --++=【答案】1277x x =+=-【详解】解:()()2210290x x --++=整理,得:21470x x --=1,14,7a b c ==-=-224(14)41-7b ac =-=--´´V ()=224>0∴7x ===±1277x x =+=-15.用公式法解下列方程:(1)2356x x =+;(2)2(3)(28)1025x x x +++=.【答案】(1)方程无解;(2)方程无解.【解析】(1)因为536a b c ==-=,,,则011142<-=-ac b ,所以原方程无解;(2)整理可得:0145142=++x x ,则042<-ac b ,所以原方程无解.【总结】本题主要考查对求根公式的理解及运用.16.用公式法解下列方程:(120x --=;(2)210.20.3020x x -+=;(3)226(21)2x x x -++=-.【答案】(1)221-=x ,22=x ;(2)4531+=x ,4532-=x ;(3)41751+=x ,41752-=x .【解析】(1)∵1a b c ==-=,942=-ac b ,∴2231±=x ,∴原方程的解为:221-=x ,22=x ;(2)整理可得:01642=+-x x ,461a b c ==-=,,,则2042=-ac b ,8526±=x ,∴原方程的解为:4531+=x ,4532-=x ;(3)整理可得:01522=+-x x ,251a b c ==-=,,,则1742=-ac b ,4175±=x ,∴原方程的解为:41751+=x ,41752-=x .17.用公式法解下列关于x 的方程:(1)20x bx c --=;(2)2100.1a x a --=.【解析】(1)∵c b 42+=D ,∴当042≥+c b 时,2421c b b x ++=,2422c b b x +-=;当042<+c b 时,原方程无实数根;(2)原方程可化为:22100x a --=,∵2222400a b a D =+≥,∴原方程的解为:1x ,2x =.【总结】本题主要考查利用公式法求解一元二次方程的根,注意分类讨论.18.设m 是满足不等式1≤m ≤50的正整数,关于x 的二次方程(x ﹣2)2+(a ﹣m )2=2mx +a 2﹣2am 的两根都是正整数,求m 的值.【答案】1、4、9、16、25、36、49【详解】将方程整理得:x 2﹣(2m +4)x +m 2+4=0,∴x 2+m ,∵x ,m 均是整数且1≤m ≤50,∴m 为完全平方数即可,∴m =1、4、9、16、25、36、49.19.阅读理解:小明同学进入初二以后,读书越发认真.在学习“用因式分解法解方程”时,课后习题中有这样一个问题:下列方程的解法对不对?为什么? ()()310=1x x +-解:()31x +=或()10=1x -.解得2x =-或11x =.所以12x =-,211x =.同学们都认为不对,原因:有的说该题的因式分解是错误的;有的说将答案代入方程,方程左右两边不成立,等等.小明同学除了认为该解法不正确,还给出了一种因式分解的做法,小明同学的做法如下:取()3x +与()10x -的平均值72x æö-ç÷èø,即将()3x +与()10x -相加再除以2.那么原方程可化为713713=12222x x æöæö-+--ç÷ç÷èøèø左边用平方差公式可化为22713=122x æöæö--ç÷ç÷èøèø.再移项,开平方可得x =请你认真阅读小明同学的方法,并用这个方法推导:关于x 的方程()200++=¹ax bx c a 的求根公式(此时240b ac -≥).【答案】)240x b ac =-≥【详解】∵()200++=¹ax bx c a ∴2b c x x a a+=-∴b c x x a a æö+=-ç÷èø 取x 与b x a æö+ç÷èø的平均值2b x a æö+ç÷èø,即将x 与b x a æö+ç÷èø相加再除以2,即b 2x b a x 22a+=+ 那么原方程可化为:2222b b b b c x x a a a a a æöæö+-++=-ç÷ç÷èøèø 左边用平方差公式可化为:2222b b c x a a a æöæö+-=-ç÷ç÷èøèø 再移项可得:222224244b c b ac b x a a a a -+æö+=-+=ç÷èø240b ac -≥Q开平方可得:b x 2a =-±2b a -=.。
一元二次方程解法及根与系数关系习题课

一元二次方程解法及根与系数关系习题课(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③就是一元二次方程。
(2)一般表达式:例1、下列方程中是关于x的一元二次方程的是( )A B C D变式:当k 时,关于x的方程是一元二次方程。
★1、方程的一次项系数是 ,常数项是 。
★2、若方程nx m+x n-2x2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;针对练习:2、已知关于x的方程的一个解与方程的解相同。
⑴求k的值; ⑵方程的另一个解。
★★3、方程的一个根为( )A B 1 C D考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:※※对于,等形式均适用直接开方法1、解方程: =0;2、解关于x的方程:3、若,则x的值为 。
类型二、因式分解法:方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如, ,例1、的根为( )A B C D例2、若,则4x+y的值为 。
变式1: 。
变式2:若,则x+y的值为 。
变式3:若,,则x+y的值为 。
例3、方程的解为( )A. B. C. D.例5、已知,且,则的值为 。
变式: 已知,则的值为 。
★1、下列说法中:①方程的二根为,,则 ② .③④⑤方程可变形为正确的有( )A.1个 B.2个 C.3个 D.4个★2、以与为根的一元二次方程是()A.B.C.D.★★4、若实数x、y满足,则x+y的值为( )A、-1或-2B、-1或2C、1或-2D、1或25、方程:的解是 。
6、已知,且,,求的值。
7、方程的较大根为r,方程的较小根为s,则s-r的值为 。
类型三、配方法※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
一元二次方程习题课设计

(A)有两个不个相等的实数根(D)有一个实数根
3.已知关于x的一元二次方程
ax2 -2x+6=0没有实数根,求实数a的取值范围。
4.设x1、x2是方程x2-3x-2=0的两根。求x12+x22的值
5.关于x的一元二次方程x2+2x+k+1=0
的实数解是x1、x2,
(1)求k的取值范围;
(2)如果x1+x2- x1x2<-1且k为整数,求k的值。
6、若α、β是方程2x2-4x+1=0的两个根,则 + + 2 =----------
21.大连某小区准备在每两幢楼房之间,开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为 米,则可列方程为---------------------------
小结
通过本节课的学习,谈谈你的收获……
作业
同步练习二次方程第23页3到10题。
秦安县莲花中学集体备课教学设计
年级:九年级学科:数学主备人:冯耀军
习 题 课:一元二次方程复习
教学过程
导入
本节课我们将对二次方程的相关知识进行复习练习
目标
任务
1.能熟练运用各中方法解二次方程;
2.熟练掌握根的判别式、根与系数之间的关系解答问题;
习题解答
练习:
2.方程 的解的情况是()
A. B. C. D.以上答案都不对
7.一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是------------------
8.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价减少进货量的办法增加利润,已知这种商品每涨0.5元,其销售量就减少10件,问应将售价定为多少时,才能使每天所得利润最大,并求出最大利润。
第2课时 一元二次不等式的综合应用(习题课)

[自主解答] (1)要使 mx2-mx-1<0 恒成立, 若 m=0,显然-1<0. 若 m≠0,Δm=<0பைடு நூலகம்,2+4m<0 ⇒-4<m<0. ∴-4<m≤0, 即 m 的取值范围是-4<m≤0.
(2)解法一 要使 y<-m+5 在 x∈[1,3]上恒成立,
就要使 mx-122+34m-6<0 在 1≤x≤3 上恒成立.
解析 设产销量为每年 x 万瓶,则销售收入为每年 70x 万元,从中征收税金为 70x·R% 万元,并且 x=100-10R.
由题意可知 70(100-10R)·R%≥112, 即 R2-10R+16≤0. ∴2≤R≤8,∴税率定在 2%~8%之间,年收附加税不少于 112 万元.
02
课后案 学业评价
6 m<7.
解法二 当 x∈[1,3]时,f(x)<-m+5 恒成立, 即当 1≤x≤3 时,m(x2-x+1)-6<0 恒成立. ∵x2-x+1=x-122+34>0, 又 m(x2-x+1)-6<0,∴m<x2-6x+1. ∵函数 y=x2-6x+1=x-1262+34在 1≤x≤3 上的最小值为67, ∴只需 m<67即可.∴m 的取值范围是 m<67.
题型三 一元二次不等式的实际应用 某物流公司购买了一块长 AM=30 米,宽 AN=20 米的矩形地块,计划将图
中矩形 ABCD 建设为仓库,其余地方为道路和停车场,要求顶点 C 在地块对角线 MN 上,B,D 分别在边 AM,AN 上,假设 AB 的长度为 x 米.
(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式; (2)要使仓库占地 ABCD 的面积不少于 144 平方米,则 AB 的长度应在什么范围内?