黑十字消光原理

合集下载

高分子物理第1、2章习题答案

高分子物理第1、2章习题答案

高分子物理答案详解(第三版)第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。

所谓构型(configuration),包括:旋光异构(全同、间同、无规立构),由不对称中心(或手性C原子)的存在而引起的;几何异构(顺、反异构),由主链上存在双键引起的;键接异构(头尾、头头、尾尾相连)。

聚氯丁二烯的各种可能构型有如下六种:2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答:(1)由于等规立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。

(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。

4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。

该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯腈与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。

聚合物球晶黑十字消光图像的计算机模拟

聚合物球晶黑十字消光图像的计算机模拟
镜 图像 。真 实聚 丙烯球 晶的黑 十字 消光 图像 中心 是
解 光 Klm 、 l 1ip 的分 解光 lo 通 过检 偏 镜 后 , s cs
此合 成波 的强 度为 :
, A s  ̄ i ( / ) = i 2 s n p n 82

() 3
亮 的带 状 区域 ,表 明其 球 晶 中心 处是 多层 片 晶形成 的捆 束状 结 构 J ,而 聚 乙 烯 球 晶 中 心 是 暗 区 ,偏 振光 不 能透过 ,表 明其 晶核并 非结 晶。 由图 2还可
验 。通过 观察 高聚物球 晶的形 态和尺 寸 ,能够加 深 对结 晶高 聚物 的微 观结构 与制备 方法 、宏 观 力学性 能相互 关 系的理解 。然而 ,限 于国 内高分 子物 理实 验 教学 条件 ,学生往 往没有 时 间制 备 出非常完 善 的
收 稿 日期 :2 1 0 0—1 0 2— 7
域 也是完 全黑 暗的 。 当入射 光经 过光 学各 向异性 的 晶体 时 ( 立 方 除 晶为 各 向同性体 外 ) ,发 生 双折 射 ,产 生 与 晶 体光
第 9卷
第 5期
翟俊学 ,等 :聚合物球 晶黑十字消光图像的计算机模拟
・ 7・ 4
轴平 行 和垂 直 的 两种 偏 振 光 、 ,而 且 由 于 折
时 ,由于其各 个方 向 的折射率 相 同 ,不 会发生 双折
射 ,不 会改变 人射光 的振 动方 向 ,因此 观察到 的视
作者简介 :翟俊 学( 9 6一) 17 ,男,博 士研 究 生,从 事高分
子 物 理 教 学/ 征 工 作 ,主要 研 究 方 向 为 高 分 子 表
结 构 与 性 能 的研 究 。
之 间的 相差 ,6:2r A A;d为 试 样 的厚 度 ;△为 , / r d

高分子物理课后习题答案(详解)

高分子物理课后习题答案(详解)

高分子物理答案详解(第三版)第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。

等。

2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。

(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。

4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。

该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。

(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。

(1)线性高分子梯形高分子(2 非晶高分子结晶性高分子(3)柔性(4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。

高分子物理实验指导书详解

高分子物理实验指导书详解

高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。

二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。

球晶可以长得比较大,直径甚至可以达到厘米数量级。

球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。

因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。

偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。

球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。

光是电磁波,也就是横波,它的传播方向与振动方向垂直。

但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。

但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。

a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。

实验一 偏光显微镜法观察聚合物球晶形态

实验一 偏光显微镜法观察聚合物球晶形态

=0.64,根据 [] K M求 出
。M
29
高分子材料专业实验
六、回答问题及讨论
• 1.乌贝路德粘度计中支管C有何作用?除去支管C是 否可测定粘度?
• 2.粘度计的毛管太粗或太细有什么缺点? • 3.用乌氏粘度计测量溶液的流出时间时,为什么要
打开C管的夹子使毛细管末端通大气?如果不打开, 对流出时间测定会有什么影响?影响流出时间测定 准确性的因素有哪些? • 4.利用粘度法测定高聚物分子量的局限性如何?适 用的分子量范围是多大?
高分子材料专业实验
四、实验步骤
• 3.聚丙烯的结晶形态观察 • 将制备好的样品放在载物台上,在正交偏
振条件下观察球晶形态,读出相邻两球晶 中心连线在分度尺上所占的格数,将格数 乘以mm/格(已经过显微尺标定)即可估算 出球晶直径。
高分子材料专业实验
四、实验步骤
聚丙烯颗粒
以45°斜角 盖上另外一 片载玻片
30
高分子材料专业实验
实验三 GPC法测聚合物的分子量 及分布
一、实验目的 二、实验原理 三、仪器与试剂 四、实验步骤 五、数据处理 六、回答问题及讨论
高分子材料专业实验
一、实验目的
• 1. 了解凝胶渗透色谱法(GPC)的基本原理。 • 2. 掌握GPC法测定聚合物的分子量及分子
量分布的实验技术及数据处理。
26
高分子材料专业实验
四、实验步骤
• 5.整理工作 • 倒出粘度计中的溶液,倒入纯溶剂,将其吸
至a线上方小球的一半清洗毛细管,反复几 次,倒挂毛细管粘度计以待后用。
27
高分子材料专业实验
五、数据处理
l.测得数据记入下表
记录 t0
t
r

消光黑十字

消光黑十字

球晶具有双折射性并呈现特殊的Maltese黑十字(Maltese cross)学名“十字消光”,因而很容易在偏光显微镜下观测到。

有时还可以观察到具有一系列同心环消光的球晶(bended spherulite),这是由于球晶中径向发射的晶片协同扭曲而造成的。

球晶有正负光学性质之分,当径向的折射率大于切向的折射率进为正光性球晶(positivespherulite),反之为负光性球晶(negative spherulite)。

球晶是聚合物最常见的、最重要的一类结晶形态。

当聚合物从浓溶液中析出或从熔体中冷却结晶时,并且在不存在应力或流动的情况下,会形成外观几何形状为球体的结晶形态——球晶。

球晶是一种多晶,其最基本结构单元是折叠链晶片。

这些小晶片由于聚合物熔体迅速冷却或者其它条件的限制来不及进行规则生长,因而不能按照最理想的方式生长成单晶。

但是为了减少表面能,它们往往以某些晶核为中心放射生长,结晶成球晶正交偏光100倍放大球晶单偏光100倍放大球状的多晶聚集体——球晶。

1.解释出现黑十字和一系列同心圆环的结晶光学原理。

答:当偏振光照射到各向异性的晶体表面时,会发生双折射现象,即原来的一束偏正光会分解为振动平面互相垂直的光线,由于两束光线在两个方向上的折射率不同,从而光线通过样品时的速度也不同,这样两束光就就会产生一定的相位差,发生干涉现象,这样有些光线可以通过检偏器,而有些光线不能通过检偏器,在照片上就形成了明暗的区域,即所谓的黑十字现象、又由于球晶中各个径向发射堆砌的条状晶片有时按照一定的周期规则的螺旋形扭转,使得球晶在偏振显微镜中呈现出一系列的消光同心圆环。

2.在生产中如何控制球晶的形态?答:可以通过控制球晶的生成条件,即:结晶温度、溶剂类型、溶液浓度、冷却速度等。

3.制样时,应注意哪些环节?答:(1)在制备显微镜样品时,首先要将已洗干净的载玻片、盖玻片以及专用的砝码放在恒温箱中保温5min,温度控制在比Tm高约30℃。

实验

实验
介质中的原子、分子等在三维空间完全无规排列时,对于任何入射方向和偏振方向的光线的折射率都是相等的,称为光学各向同性体。
双折射体
对不同振动方向的偏振光有不同的折射率,这样的物体称为双折射体。
线性双折射体
对光线没有吸收的双折射体。这种物体对任意方向进入的光线一般都会分解成振动面互相垂直的两个偏振光,并具有不同的折射率。
偏光显微镜的最佳分辨率为200 nM,有效放大倍数越过500—1000倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。
球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。
光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波.即偏振光。一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。
(1)
两个偏振光合成为具有δ相位差,振动方向互相垂直的光线。
平行光束的偏光干涉
在光路中放置两个互相垂直的偏振片P(起偏镜)和A(检偏镜),在两者之间放置一片双折射平板M,其光轴和偏振光片的偏振方向成45°,则由于偏光干涉作用,有光线通过检偏镜A,透射光强为
(2)
其中I0为起始透过光强。
偏光观察的意义:求得光程差Δ,然后——①由Δ和M的厚度即可以求得双折射率;②已知双折射率而求得平板的厚度。

实验六偏光显微镜研究聚合物的晶态结构讲述

实验六偏光显微镜研究聚合物的晶态结构讲述

实验六偏光显微镜研究聚合物的晶态结构用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

众所周知,随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶可以长得很大。

对于几微米以上的球晶,用普通的偏光显微镜就可以进行观察;对小于几微米的球晶,则用电子显微镜或小角激光光散射法进行研究。

聚合物制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态,晶粒大小及完善程度有着密切的联系,因此,对聚合物结晶形态等的研究具有重要的理论和实际意义。

一、目的要求1.了解偏光显微镜的结构及使用方法。

2.观察聚合物的结晶形态,估算聚丙烯球晶大小。

二、基本原理球晶的基本结构单元具有折叠链结构的片晶(晶片厚度在10mm左右)。

许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。

根据振动的特点不同,光有自然光和偏振光之分。

自然光的光振动(电场强度E的振动)均匀地分布在垂直于光波传播方向的平面内如图6-1所示;自然光经过反射、折射、双折射或选择吸收等作用后,可以转变为只在一个固定方向上振动的光波。

这种光称为平面偏光,或偏振光如图6-1(2)所示。

偏振光振动方向与传播方向所构成的平面叫做振动面。

如果沿着同一方向有两个具有相同波长并在同一振动平面内的光传播,则二者相互起作用而发生干涉。

由起偏振物质产生的偏振光的振动方向,称为该物质的偏振轴,偏振轴并不是单独一条直线,而是表示一种方向。

如图6-1(2)所示。

自然光经过第一偏振片后,变成图6-1偏振光,如果第二个偏振片的偏振轴与第一片平行,则偏振光能继续透过第二个偏振片;如果将其中任意一片偏振片的偏振轴旋转90°,使它们的偏振轴相互垂直。

这样的组合,便变成光的不透明体,这时两偏振片处于正交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶。

球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。

结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系,如较小的球晶可以提高冲击强度及断裂伸长率。

例如球晶尺寸对于聚合物材料的透明度影响更为显著,由于聚合物晶区的折光指数大于非晶区,因此球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对于聚合物球晶的形态与尺寸等的研究具有重要的理论和实际意义。

球晶是以晶核为中心对称向外生长而成的。

在生长过程中不遇到阻碍时形成球形晶体;如在生长过程中球晶之间因不断生长而相碰则在相遇处形成界面而成为多面体,在二度空间下观察为多边体结构。

由分子链构成晶胞,晶胞的堆积构成晶片,晶片迭合构成微纤束,微纤束沿半径方向增长构成球晶。

晶片间存在着结晶缺陷,微纤束之间存在着无定形夹杂物。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对于更小的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

一、实验目的和要求了解偏光显微镜的原理、结构及使用方法。

了解双折射体在偏光场中的光学效应及球晶黑十字消光图案的形成原理。

观察聚丙烯熔体与浓溶液结晶生成的球晶形态,测定溶液结晶的球晶尺寸,判断球晶的正负性。

二、实验内容和原理球晶结晶与性能结晶聚合物材料的性能(如光学性能、冲击强度等)与球晶的结晶形态、尺寸及完善程度有密切的关系。

较小的球晶可以提高冲击强度及断裂伸长率。

一般球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,直至其尺寸与光的波长相当则得到完全透明的材料。

球晶的形成球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。

球晶是以核为中心对称向外生长而成的。

在生长过程中不遇到阻碍时可形成球形晶体;如在生长过程中球晶之间相碰则在相遇处形成界面而成为多面体(二维空间观察为多边形)。

影响球晶尺寸的因素冷却速度、结晶温度、成核剂等因素。

偏光显微镜原理偏振光和双折射表1偏振光和双折射的相关概念名称意义天然光天然光可分解为与传播方向垂直的所有方向上的振动的矢量,并且各方向上的振幅相等。

偏振光偏振光是指矢量的振动方向有一定规律的光线。

光矢量在一个平面内振动的光线称为线性偏振光,该平面称为振动面,可由天然光通过偏振器(如偏振片)获得。

光学各向同性体介质中的原子、分子等在三维空间完全无规排列时,对于任何入射方向和偏振方向的光线的折射率都是相等的,称为光学各向同性体。

双折射体对不同振动方向的偏振光有不同的折射率,这样的物体称为双折射体。

线性双折射体对光线没有吸收的双折射体。

这种物体对任意方向进入的光线一般都会分解成振动面互相垂直的两个偏振光,并具有不同的折射率。

光率体表2 光率体的相关概念光率体双折射体的几何模型,是由确定的三轴椭球体,nx、ny、nz称为主折射率。

运用光率体可采用几何作图来确定双折射体的各种光学性质。

光轴当入射光方向与光轴一致时,不改变光的振动方向,也不会发生双折射。

对光率体做切面时,可得两个包含y轴且与x轴和y轴对称的圆形,这两个切面的垂直方向即为光轴。

二轴双折射体具有两条光轴的物体称为二轴双折射体。

单轴双折射体光率体中有两个主折射率相等,则称为单轴双折射体。

当双轴性双折射体的两个主折射率较接近时也可当做单轴体处理(如聚乙烯)。

正常波(O波)任意方向的入射光都可分解为振动面与主切面垂直的偏振光以及振动面在主切面上的偏振光。

振动面与主切面垂直的光波称为正常波,其速度是恒定的,折射率为常数,记为no。

异常波(E波)振动面处于与主切面内的光波称为异常波,其速度和折射率随入射光的方向而改变,其折射率记为ne。

正的双折射体当光波垂直于光轴射入时,正常波的折射率仍为no,异常波的折射率为ne=nz,当no<nz时,正常波的速度大于异常波,称为正的双折射体,其光率体呈瘦长形。

负的双折射体当no>nz时,正常波的速度小于异常波,称为负的双折射体,其光率体呈扁平形。

图1 光率体与光轴(nx<ny<nz)图2 正的单轴光率体及光的振动方向双折射体的光学效应线性偏振光对双折射的透射入射线性偏振光PA与光轴成一定角度,于是入射光波分解为平行于光轴振动的异常波和与之垂直的正常波两个偏振光,分别以折射率ne,no传播。

设平板的厚度为d,则正常波与异常波在板中的光程分别为nod和ned,光线穿过平板时两波的光程差为Δ=(ne- no) d,变换成相位差为(1)两个偏振光合成为具有δ相位差,振动方向互相垂直的光线。

平行光束的偏光干涉在光路中放置两个互相垂直的偏振片P(起偏镜)和A(检偏镜),在两者之间放置一片双折射平板M,其光轴和偏振光片的偏振方向成45°,则由于偏光干涉作用,有光线通过检偏镜A,透射光强为(2)其中I0为起始透过光强。

偏光观察的意义:求得光程差Δ,然后——①由Δ和M的厚度即可以求得双折射率;②已知双折射率而求得平板的厚度。

光程差的测量:直接法——在白色照明光下进行偏光干涉,由式(2)可知,对于给定的Δ,不同波长的光有不同的透过强度。

例如当Δ=540nm时,根据上式此时波长为540nm黄绿色的光都过为零,视野呈紫红色;相反可以通过透过光的颜色确定光程差,光程差在500~600nm附近变化时颜色变化最为显著,540nm 最为敏感,称为敏锐色,可以认为是显微观察中的标准波长。

球晶的光学效应黑十字消光球晶在偏光显微镜下可以看到黑十字消光图案。

球晶是由放射形的微纤束组成,这些微纤束为片晶,具有折叠链结构,其晶轴成螺旋取向。

高聚物球晶在偏光显微镜下可以看到黑十字消光图案(Maltese Cross)。

在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。

球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。

而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。

黑十字消光图象是高聚物球晶的双折射性质和对称性的反映。

一束自然光通过起偏器后,变成平面偏振光,其振动方向都在单一方向上。

一束偏振光通过高分子球晶时,发生双折射,分成两束电矢量相互垂直的偏振光,它们的电矢量分别平行和垂直于球晶的半径方向,由于这两个方向上折射率不同,这两束光通过样品的速度是不等的,必然要产生一定的相位差而发生干涉现象,结果使通过球晶的一部分区域的光可以通过与起偏器处在正交位置的检偏器。

而另一部分区域不能,最后分别形成球晶照片上的亮暗区域。

黑十字消光原理:如图3所示,pp为通过其偏镜后的光线的偏振方向,aa为检偏镜的偏振方向。

在球晶中,b轴为半径方向,c轴为光轴,当c轴与光波方向传播方向一致时,光率体切面为一个圆,当c轴与光率体切面相交时为一椭圆。

在正交偏光片之间,光线通过检偏镜后只存在pp方向上的偏振光,当这一偏振光进入球晶后,由于在pp和aa方向上的晶体光率体切面的两个轴分别平行于pp和aa方向,光线通过球晶后不改变振动方向,因此通过球晶后不改变振动方向,因此不能通过检偏镜,呈黑暗。

而介于pp和aa之间的区域由于光率体切面的两个轴与pp和aa方向斜交,pp振动方向的光进入球晶后由于光振动在aa方向上的分量,因此这四个区域变得明亮,聚乙烯球晶在偏光显微镜下还呈现一系列的同心消光圆环,这是由于在聚乙烯球晶中晶片是螺旋形的.即a轴与c轴在与b轴垂直的方向上转动,而c轴又是光轴,即使在四个明亮区域中的光率体切面也周期性地呈现圆形而造成消光。

图3 正交偏光场中球晶的偏光干涉球晶的正负我们用半径方向上的折光指数nr和垂直于半径方向(切线方向)的折光指数ni来描述球晶的正负性,如果nr>ni,则此球晶为正球晶,反之则称为负球晶。

nr和ni是由微晶的三个方向(a,b,c)上的折光指数na,nb,n c决定的。

正负球晶的判断:在正交偏振镜间插入一块补色器就可以从图像中观察到的干涉色来判断球晶的正负性。

补色器是具有固定光程差的双折射平板。

补色器是与正交偏振镜的偏振方向成45°插入的,当球晶为正时,Ⅰ,Ⅲ象限中光率体切面的长轴与补色器中的光率体椭圆切面的长轴一致,光程差增加,干涉色为蓝色;而Ⅱ,Ⅳ象限中的球晶光率体椭圆切面的长轴与补色器中的长轴不一致是,光程差减小,干涉色为黄色。

如为负球晶则正好相反。

三、主要仪器设备仪器偏光显微镜(配有显微摄影仪,并与计算机相联接),如图4所示。

图4实验用偏光显微镜实物图试样①全同聚丙烯熔体结晶试样(慢冷);②全同聚丙烯浓溶液结晶得到的球晶悬浮液(慢冷,溶剂为十氢萘);③全同聚丙烯浓溶液结晶得到的球晶悬浮液(自然冷,溶剂为十氢萘)。

四、操作方法和实验步骤球晶的制备1) 熔体结晶将加热台的温度调整到230℃左右,在加热台上放上载玻片,并将一小颗聚丙烯试样放在载玻片上,盖上盖玻片,熔融后用镊子小心地压成薄膜状。

做两块同样的试样,做好后保温片刻,将其中的一片取出放在石棉板上以较快的速度冷却,另一片放在已升温至230℃左右的烘箱内并关掉加热电源,以较慢的速度冷却待用。

2) 浓溶液结晶取聚丙烯数颗置于标记好的三只25ml磨口三角烧瓶中,加入适量的十氢萘并加热溶解,然后分别置于冷水中、空气中及已加热到150℃的烘箱中(放入后关掉电源自然冷却)以显著不同的冷却速率合三只样品分别冷却结晶,后者由于冷却速度很慢,可预先制样。

根据实验时间的安排,样品制备可由老师预先完成。

偏光显微观察在显微镜上装上物镜和目镜,打开照明电源,推入检偏镜,调整起偏镜角度至正交位置。

在试板孔插入1λ石膏试板,观察干涉色。

取少量溶液结晶生成的球晶悬浮液(慢冷)滴于载玻片上,并盖上盖玻片。

将试样置于载物台中心,调焦至图像清晰。

取少量溶液结晶生成的悬浮液(自然冷)制样观察。

熔体结晶的样品进行同样观察。

球晶直径的测量用物镜测微尺对目镜测微尺进行校正。

将物镜测微尺放在载物台上,采用与观察试样时相同的物镜与目镜进行调焦观察,并将物镜测微尺与目镜测微尺在视野中调至平行或重叠,如测得目镜测微尺的N格与物镜测微尺的X格重合,则目镜测微尺上每格代表的真正长度D为:D =0.01X / N (mm) (3)移动视野,选择球晶形状较规则,数量较多的区域进行测量,然后寻找另一个视野,重复测量。

相关文档
最新文档