机构的运动分析
第三章 机构的运动分析--相对运动矢量方程图解法

VB VA VBA
大小
•
? √ 方向 ? √
LAB AB
n BA t BA
VA • aA
A V B
VBA
B
aB aA a a
大小
aB •
A
? 方向 ?
√ 2LAB LAB √ BA AB
0
2 1 2 1
a a a
n
大小: 21 vB B 2 1 vB B Sin 90 2 1 vB B
2 1
方向:将 v B B 的方向顺着 1的转向转 900
aB B
2
K
1
大小: 21 vB B 2 1 vB B Sin 90 2 1 vB B
0
2 1 2 1
连接点p与任一点的矢量便代表该点在机构图中的同名点
的绝对速度,其指向是从p指向该点。如p→x代表 vX
连接其他任意两点的矢量便代表该两点在机构图中的同名
点间的相对速度,其指向适与速度的角标相反。如x→y代 表 vYX
速度影像的应用条件是同一构件内。
加速度影像(梅姆克第二定理)
– 一个刚体上三个点的加速度矢量末端在加速度平面图 中所构成的三角形与原始三角形同向相似。 π称为极点,代表所有构件上绝对加速度为零的点。 连接点π与任一点的矢量便代表该点在机构图中的同名点的 绝对加速度,其指向是从π指向该点。如π→x’代表示 aX 连接带有角标’的其他任意两点的矢量便代表该两点在机构 图中的同名点间的相对加速度,其指向适与加速度的角标相 反。如x’→y’代表 aYX 加速度分量一般用虚线表示。切向加速度用同名而不同上标 的两个字母表示,方向指向单撇(’)点。如y”→y’代表 atYX。而Y→X的向心加速度x’ → y”代表 anYX
机构运动分析

常用Pij表示构件i 和j 之间的瞬心 (如图所示的P12)
机械原理
第五章 机构运动学分析
第五章 机构运动学分析
1. 机构运动分析的目的和方法 2. 速度瞬心法的机构速度分析
3. 基于矢量方程图解法的平面机构运动分析
4. 基于解析法的平面机构运动分析
5.1机构运动分析的目的和方 1. 机构运动法分析的内容
机构尺寸和原动件运动规律已知时,求转动构件上某பைடு நூலகம் 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。
先来了解机构运动 分析目的和方法
在机械领域里,时刻要对某构件上某些点位移、轨迹、速度、加速度 等进行有效分析,以确定机构的运动空间、工作性能。并为机构的受力分 析奠定基础。
机构运动分析 的三种方法
图解法(形象、直观) 解析法(精度高、效率高) 实验法
了解它们 各自特点
图解法一般分为速度瞬心法和矢量方程图解法。速度瞬心法能够
十分方便地进行机构速度分析,常用于仅需速度分析的场合。速度瞬心法 作为本讲重点,需要全面掌握其相关概念(如瞬心位置、种类等),以及 常见例题分析。
5.2 速度瞬心及其位置
5.2.1 基本概念
瞬心 ——相互作平面相对运动的两构件上瞬时速度相等的重合点。
瞬心的种类
绝对瞬心 ——重合点的绝对速度为零 相对瞬心 ——重合点的绝对速度不为零
2. 机构运动分析的目的
了解已有机构的运动性能,设计新的机械和研究机械动力性能 的必要前提。
1 确定构件运动空间、某点的轨迹,判定是否干涉; 2 为机构受力分析做准备。 3. 机构运动分析的方法
图解法(速度瞬心法、矢量方程图解法);
解析法
实验法
机械原理第三章 运动分析

例3-4 含三副构件的六杆机构运动分析
例3-5 已知图示机构各构件的尺寸及原动件1的角速度1,求 C点的速度vc及构件2和构件3的角速度2及 3;求E点的速度 vE 加速度aE 。 解: 1) 列矢量方程,分析 各矢量大小和方向。 2) 定比例尺,作矢量 图。 3) 量取图示尺寸,求 解未知量。 2 C
vB 3 vB 2 vB 3B 2
⊥BC ⊥AB ? lAB1
v ?
m/s mm
1
A
1
B
2
方向: 大小: 定比例尺 作矢量图.
∥BC
?
3 C 4
vB3B 2 v b2b3
p b3 b2
vB 3 v pb3 3 lBC lBC
顺时针方向
2) 求构件3的角加速度3 列方程:
机械原理 第三章 平面机构的运动分析
§3-1 概述
§3-2 速度瞬心及其在平面机构速度分析中的应用 §3-3 平面机构运动分析的矢量方程图解法 §3-4 平面机构运动分析的复数矢量法 §3-5 平面机构运动分析的杆组法
§3-1 概述
1.机构运动分析的内容 机构尺寸和原动件运动规律已知时,求转动构件上某点 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。 2.机构运动分析的目的
绝对速度相等的重合点。用Pij表示。
若该点绝对速度为零——绝对瞬心。 若该点绝对速度不为零——相对瞬心。 二、瞬心的数目 设N 为组成机构的构件数(含机架),K为瞬心数,则
2 K CN =N ( N 1) / 2
三、瞬心的位置 1.两构件组成转动副 P12
1 2
以转动副相联,瞬心在其中心处。
P12、P13 的位置(绝对瞬心),P23
机构运动分析范文

机构运动分析范文机构运动分析是研究机构在运动中的性能、特点、力学模型等方面的学科。
机构是由若干个构件通过连接件组成的一种刚性机械系统,广泛应用于各个领域,如机械工程、土木工程、航空航天工程等。
了解机构运动分析对于优化设计、改进运动效能、提高机构性能等都具有重要意义。
在机构运动分析中,常常会考虑到机构的运动学、静力学和动力学方面的问题。
首先,机构的运动学分析是研究机构构件之间相对运动的学科。
它关注构件之间的几何关系、速度、加速度等参数,通过数学方法描述机构的运动状态。
常见的运动学分析方法包括坐标法、矩阵法、几何法等。
在机构运动学分析中,常常使用平面机构和空间机构这两种类型进行研究。
平面机构是指机构构件在平面内运动的机构,而空间机构是指机构构件在三维空间内运动的机构。
其次,机构的静力学分析是研究机构在受到外力或外力矩作用下的平衡条件和力学特性的学科。
在机构的静力学分析中,常常使用静力平衡方程、杆件的材料力学性质等来求解机构的内力分布、受力大小等问题。
静力学分析能够帮助工程师了解机构的结构强度、稳定性等方面的问题,为机构的设计和优化提供重要依据。
最后,机构的动力学分析是研究机构在运动中的力学特性和性能的学科。
它关注机构在运动过程中的惯性力、动力学特性和能量转换等问题。
动力学分析可以通过构建机构的动力学模型,使用牛顿第二定律、运动学方程等进行分析,从而了解机构的惯性反应、动力传递等特性。
动力学分析对于优化机构的运动路径、减小振动和噪音等问题具有重要意义。
总结起来,机构运动分析包括运动学分析、静力学分析和动力学分析三个方面,是研究机构性能、特点和力学模型等内容的学科。
它在优化机构设计、改进机构性能、提高机构运动效能等方面有着重要的应用价值。
平面机构的自由度与运动分析

平面机构的自由度与运动分析一、平面机构的自由度平面机构是指机构中的构件只能在一个平面内运动的机构,它由多个连接杆、转动副和滑动副组成。
平面机构的自由度是指机构中能够独立变换位置的最小的连接杆数目,也可以理解为机构中独立的变量的数量。
对于平面机构,其自由度可以通过以下公式计算:自由度=3n-2j-h其中,n表示连接杆的数量,j表示驱动链的数量,h表示外部约束的数量。
根据上述公式可以看出,自由度与平面机构中连接杆的数量和驱动链和外部约束的数量有关。
连接杆的数量越多,机构的自由度就越大,可以实现更复杂的运动。
驱动链的数量越多,机构中的动力驱动器越多,自由度就越小,机构的运动变得更加确定。
外部约束的数量越多,机构中的约束条件就越多,自由度就越小,机构的运动也会变得更加确定。
二、平面机构的运动分析1.闭合链和链架分析:首先需要确定机构中的闭合链和链架,闭合链是指机构中连接杆形成一个封闭的回路,闭合链中的连接杆数目应该为n 或n-1,n是机构中的连接杆数量。
链架是指机构中的连接杆形成一个开放的链路。
通过分析闭合链和链架中的链接关系和约束条件,可以确定机构中构件的位置和运动方式。
2.位置和速度分析:根据机构的连接杆的长度和角度,可以通过几何方法或代数方法确定机构中构件的位置和速度分量。
通过分析连接杆的长度和角度的变化规律,可以推导出机构中构件的位置和速度随时间的变化关系。
3.加速度和动力学分析:根据机构中各个构件的位置和速度,可以通过几何方法或动力学方法计算构件的加速度和动力学特性。
通过分析机构中构件的加速度和动力学特性,可以确定机构中构件的运动稳定性和质量分布。
4.动力分析:对于需要携带负载或进行力学传动的机构,需要进行动力学分析,确定机构中各个构件的受力和承载能力。
通过分析机构中构件的受力情况,可以确定机构的设计参数和强度要求。
总结起来,平面机构的自由度与运动分析是确定机构中构件位置和运动状态的重要方法,通过分析机构中的闭合链和链架、构件的位置和速度、加速度和动力学特性,可以确定机构的运动方式和特性,为机构的设计和优化提供依据。
第3章机构的运动分析-1

an EB
C 3 4
ω3
aE e'
b'
ω2
A
2
aB
1
w4
D
a
t EB
a
n EB
(P12 )
以曲柄滑块机构为例,进一步说明用矢量方程图 解法作机构的速度分析和加速度分析的具体步骤。
例 : 已知曲柄滑块机构原动件 AB 的运动规律和各构件尺寸。求: (1)图示位置连杆BC的角速度和 其上各点速度。 (2)连杆BC的角加速度和其上C点 加速度。 ω2 2
极点
C
vEC
vCB vEB
b
bc 代表 vCB 。
e
3)在速度多边形中,极点p 代表机构中速 度为零的点。 4)已知某构件上两点的速度 ,可用速度影 像法求该构件上第三点的速度。
速度多边形
E B
A
C
vC x
p
极点
C
vEC e
vCB
vB
vEB
b
△bce ~ △BCE
已知连杆上两点的速度vB 、vC 用速度影像法可以确定vE 。
④确定点的轨迹(连杆曲线)。
V型发动机运动简图
D
E
C B
A
3-1
机构运动分析的任务、目的及方法
1.机构运动分析的任务与目的
(2)速度分析
5 4
①掌握从动件的度变化规律 是否满足工作要求。如牛 头刨床; ②为加速度分析作准备。
2
1 3
6
3-1 机构运动分析的任务、目的及方法
1.机构运动分析的任务与目的
用三心定理可以确定ω3、ω4 的大小。
平面铰链四杆机构
例2:用三心定理分析凸轮机构速度 (v3)。 1
1.机构的运动分析

第二章机构的运动分析• 2.1 对机构进行运动分析的目的和方法• 2.2 用速度瞬心法进行速度分析• 2.3 相对运动图解法• 2.4 解析法•2.1 对机构进行运动分析的目的和方法一、平面机构运动分析的目的1. 求解机构中某些点的运动轨迹或位移,确定机构的运动空间2.求解机构某些构件的速度、加速度,了解机构的工作性能3.为力分析作前期工作构件的惯性力与其加速度成正比,惯性力矩与其角加速度成正比。
二、运动分析的方法复数法矩阵法矢量法速度瞬心法相对运动图解法(一)图解法(二)解析法(三)实验法2.2 用速度瞬心法进行速度分析2.2.1 瞬心的基本概念2.2.2 用瞬心法进行机构的速度分析2.2.1 瞬心的基本概念一、瞬心概念二、平面机构瞬心的数目三、瞬心位置的确定在任一瞬时,两个作平面相对运动的构件都可以看成是围绕一个瞬时重合点作相对转动。
瞬时重合点若你站在机架上看是等速重合点或同速点瞬时回转中心瞬心一、瞬心A 1(A 2)B 1(B 2)12A2A1V B2B1V P 12平面运动两构件肯定存在一个相对速度为零,绝对速度相同的点.如果你站在机架上看那就是同速点二、平面机构瞬心的数目2(1)2NN N K C -==假设机构中含有N 个构件,每两个构件之间有一个瞬心,则全部瞬心的数目三、瞬心位置的确定1.两个构件之间用运动副连接的瞬心位置2.两个构件之间没有用运动副连接的瞬心位置1.两个构件之间用运动副连接的瞬心位置(1)两个构件用转动副连接时的瞬心位置(2)两个构件用移动副连接时的瞬心位置(3)两构件用平面高副连接时的瞬心位置12 P12P12P121122(1)两个构件用转动副连接时的瞬心位置P 1212∞(2)两个构件用移动副连接时的瞬心位置半径无穷大的转动副(3)两个构件用平面高副连接时的瞬心位置纯滚动连滚带滑2.两构件之间没有用运动副连接时的瞬心位置(1)三心定理(2)瞬心多边形法的步骤(1)三心定理作平面运动的三个构件有三个瞬心,且位于同一直线上。
机械原理-机构的运动分析

3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a
c´
aC a G e´
aCB
n2 ´ n2
p´
n3
aF
b´
加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-2 用速度瞬心法作机构的速度分析
1、速度瞬心的定义: 互作平面相对运动的两构件上瞬时速度相等的重合点,即为此两机构的速 度瞬心用 Pij 表示。 深入理解速度瞬心: A、两构件上相对速度为零的重合点,即同速点; B、瞬时具有瞬时性(时刻不同,位置不同) ; C、两构件的速度瞬心位于无穷远,表明两构件的角速度相同或仅作相对移 动。 D、相对速度瞬心:两构件都是运动的; E、绝对速度瞬心:两构件之一是静止的(绝对速度为零的点;并非接触点 的变化速度) 。
F 3n 2( Pl P h ) 3 3 ( 2 4 1) 0 故不能实现设计意图,
一种修改方案如图(b)所示。
2 3 1
(a) 3 4 1 2
(b)
2-16 解: (a) n 4
Pl 5 Ph 1 F 3n 2( Pl P h ) 3 4 2 5 1 1
n V K A P ) P n B (P ) V
1
2
瞬心位于同一条直线上。
(2)速度瞬心法在机构运动分析中的应用
4
3
如图所示:铰链四杆机构 ABCD,已知各杆长度以及杆 1 的 1 、1 ,求杆 2 的 2 和杆 3 的 3 。 解:四杆机构的构件数目为: N 4 该四杆机构的瞬心数目为:
青 岛 滨 海 学 院 教 师 教 案 课 题 教 学 目 的 要 求 教 学 重 点 教 学 难 点
§3-1 机构运动分析的任务、目的和方法 §3-2 用速度瞬心法作机构的速度分析
需 2 课时
1、明确机构运动分析的内容、目的及方法 2、理解瞬心的概念,学会用“三心定理”确定瞬心,掌握用瞬心法进行机构的速度 分析 用瞬心法对机构进行速度分析 教案编写日期 瞬心的概念及求法 年 月 日
教
一、 二、 三、 四、 组织课堂 复习 讲解作业题 讲授新课
学
内
容
与
教
学
过
程
提示与补充
1、 机构运动分析的任务、目的和方法 2、 用速度瞬心法求机构速度分析 概念、瞬心数目、瞬心位置的确定、作速度分析 3、 小结 4、 作业
青 岛 滨 海 学 院 教 师 教 案 讲解课后作业题
2-11 解: 简易冲床的运动简图如下图(a)所示,
青 岛 滨 海 学 院 教 师: K
N ( N 1) 2
其中: N 为机构中构件的数目(包括机架) 。 3、速度瞬心位置的确定: (1)直接观察法(定义法,用于直接形成运动副的两构件) ; 如下图所示: 第一个以转动副相连接的两构件的瞬心就在转动副的中心处; 第二个以移动副相连接的两构件间的瞬心位于垂直于导路方向的无穷远 处; 第三个以平面高副相连接的两构件的速度瞬心,当高副两元素作纯滚动时 就在接触点处;当高副两元素之间有相对滑动时,则在过接触点两高副元素的 公法线上。
(2)三心定理法 用于没有直接形成运动副的两构件 三心定理:作平面运动的三个构件共有 3 个瞬心,它们位于同一直线上。 证明(反证法) :
N
3(3 1) 3 2
青 岛 滨 海 学 院 教 师 教 案
P23 位于 P12、 P13 的连线上(为方 便起见, 设 1 固定不 动) 设: K 代表 P23, 设 K 不在 P12、 P13 连线上,根据速 度瞬心的定义有: VK 21 VK 31 , (同速点)从图形上看显然速度不相等 即:V k 21 V k 31 ,故要使速度相等点 K 必须在直线 AB 上。 4、用瞬心法做机构的速度分析 (1)补充内容 为了便于确定不直接构成运动副的瞬心, 我们引入瞬心多边形,如图所示: 四个顶点为构件(编号) ; 任意两个顶点的连线: 其中构成运动副的 为实线,不能构成运动副的为虚线; 则: 任何构成三角形的三边所代表的三个
所以: 2 1
P14 P12 P24 P12 P14 P13 P34 P13
同理: 3 1
结论:两构件的角速度之比等于它们的绝对瞬心被相对瞬心所分线段的反 比,内分时反向,外分时同向。 关键:找出已知运动构件和待求运动构件的相对瞬心和它们的绝对瞬心。 小结:首先讲解上次作业中出现问题较多的部分;讲授机构运动分析的任 务、目的和方法,重点讲解了瞬心法。 作业:P44 3-3 3-4 3-6
K
N ( N 1) 4 3 6 2 2
其中:位于铰链中心的速度瞬心是: P 12 、 P23 、 P34 、 P41
青 岛 滨 海 学 院 教 师 教 案
用三心定理确定瞬心: P13 、 P24
绝对瞬心: P 14 、 P24 、 P34 相对瞬心: P 12 、 P23
VP12 1 P14 P12 l 2 P24 P12 l
(a) n 7
Pl 8 Ph 2
青 岛 滨 海 学 院 教 师 教 案
F 2
F 3n 2( Pl P h ) F 3 7 ( 2 5 2) 2 1
第三章平面机构的运动分析 §3-1 机构运动分析的任务、目的和方法
1、机构运动分析的任务: 已知:机构中各构件的长度尺寸及原动件的运动规律 确定:从动件中各构件和其上各点的位移、速度、加速度 2、机构运动分析的目的: 检验机构中各构件或点运动情况是否满足要求,为后续设计提供必要的原 始参数和数据。 3、机构运动分析的方法: 机构运动分析的方法很多,主要有图解法和解析法两种。图解法:形象直 观、概念清晰精度不高;解析法:高的精度,工作量大。 我们主要研究图解法。图解法可以分为两种:速度瞬心法和矢量方程图解 法。