采矿工程专业英语(部分重要文章翻译)
采矿专业英语

bed, deposit, field 书馆矿床outcrop 露头fault 断层vein, sean, lode 矿脉gold reef 金矿矿脉pocket 矿穴reservoir 储藏water table 潜水面,地下水面mine 矿stratum, layer 矿层quarry 露天采石clay pit 粘土矿坑peat bog 泥炭沼gold nugget 块金gangue 脉石,矿石,尾矿prospector 探矿者prospecting 探矿boring, drilling 钻探auger, drill 钻excavation 发掘quarrying, extraction 采石borer, drill, drilling machine 钻机stonemason 石工锤stonecutter 切石机miner 矿工mining engineer 采矿工程师pan 淘金盘氨基三乙酸(NTA) || aminotriacetic acid 胺基 || amino铵基 || ammonium安全地层 || safe formation安全试破 || safe destruction安全钻井 || safe drilling坳陷 || down warping region螯合 || chelation凹陷 || sag凹陷地层 || subsidence formation奥陶系 || Ordovician systemAPI模拟法 || API recommened methodB多靶点 || multiple target point白沥青 || white asphalt白油 || mineral oil白云母 || white mica半透膜 || semipermeable membrane包被絮凝剂 || flocculant包被 || envelop包被抑制性 || encapsulating ability 饱和度 || saturation饱和度剖面图 || pro of degree of saturation饱和盐水 || saturated salt water背斜 || anticlinal钡 || barium苯环 || benzene ring苯酚 || phenyl hydroxide本质区别 || essential difference泵压过高 || overhigh pumping pressure 比表面积 || specific surface area比吸水量 || specific absorption比重瓶法 || density bottle method避免 || avoid蓖麻油 || ricinus oil边界摩擦 || boundary friction扁藻(浮游植物) || algae变化趋势 || variation trend标准化 || standardization标准粘度测量 || standard visicosity measure表面粗糙度 || roughness of the surface 表面电位 || surface electric potential 表面活性剂 || surfactant ,surface active agent表面能 || interface energy表面粘度 || surface viscosity表面抛光 || sample surfaceAibbs表面弹性 || Aibbs surface elasticity表面张力 || surface tension表明 || verify /reveal表皮系数(S) || skin coefficient憋钻 || bit bouncing宾汉方程 || bingham equation丙三醇 || glycerine丙烯情 || acrylonitrile丙烯酸 || acrylic acid丙烯酸盐 || acrylate丙烯酰胺 || acrylamide薄而韧的泥饼 || thin,plastic and compacted mud-cake ||薄片 || flake薄弱地层 || weak formation泊松比|| poisson’s ratio剥离 || peel off补救 || remediation不分散泥浆 || nondispersed mud不干扰地质录井 || play no role in geological logging不均质储层 || heterogeneous reservoir 不均匀 || uneven不可逆 || irreversible不同程度 || inordinately部分水解聚丙烯酰胺(PHPA) || partially hydrolyzed polyacrylamideC参数优选 || parametric optimization 残酸 || reacted acid残余饱和度 || residual staturation残渣 || gel residue , solid residue测量 || measure侧链 || side chain侧钻水平井 || sidetrack horizontal well 层间 || interlayer层间距 || the distance between the two crystal layer, layer distance层理 || bedding层流 || layer flow差减法 || minusing尝试 || trial柴油 || diesel oil长连缔合物 || long chain associated matter操作方法 || operation method超伸井 || high deep well超深预探井 || ultradeep prospecting well超声波 || ultrasonography超高密度泥浆 || extremely high density mud超细碳酸钙 || super-fine calcium carbonate产层 || production/pay zone产层亏空 || reservoir voidage产量 || production ,output沉淀 || precipitation沉降 || subside沉降速度 || settling rate沉砂 || sand setting衬套 || sleeve程序 || program采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining , surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiatio n, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy 化学冶金(学)chemical metallurgy 物理冶金(学)physical metallurgy 金属学Metallkunde冶金过程物理化学physical chemistry of process met allurgy冶金反应工程学metallurgical reaction engineering 冶金工程metallurgical engineering 钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy 真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy 喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy 焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utili zation of mineral resources中国金属学会The Chinese Society for Metals 中国有色金属学会The Nonferrous Metals Society of China采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw material s矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration 矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics选矿选矿厂concentrator, mineral processing p lant工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle 粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude 精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate 最终精矿final concentrate 尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concen tration磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing 自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite 铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing 粗碎primary crushing中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass 过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, superso nic particle sizer。
采矿工程英语译文

练习1矿井系统选择的标准图9.2显示了各种采矿方法的生产分布图。
由于现在在短壁工作面工作的少于12个人,所以采用长臂综采法。
很显然连续采煤法越来越受欢迎不是因为每个单元的生产能力增加,而是因为相同吨位的产出需要的人少。
然而,长臂开采的生产率更高是因为每个采矿单元与生俱来的连续开采潜力使其有更大的生产能力。
虽然如此,讨论选择一个系统比另一个系统好要考虑很多因素,这样会让每种形式的细节分析变得明显。
这个表格列出了很多矿井选择特定系统时考虑的各种因素,提供了像自然条件,开采经验,社会关注点,市场条件等重要因素。
一些选择是相当明显的,然而一些是不明显的。
通常,这些选择更能反映出个人偏见。
例如,当缝隙是坚硬的或包含坚硬的杂质,传统的开采方法(爆破)比通过连续开采剥开煤层更容易。
当眼前的隧道顶部很坏时,长臂开采更容易也能够提供更全面的支撑。
常规开采需求的大量设备可能会导致柔软底部的撕裂,所以常规开采比连续开采需要一个坚固的底部。
由于常规开采在房柱式系统已经比在任何老矿区实行时间都长,由于劳动监察部门最熟悉这种方法和设备,在新矿的开采方法选取中这将是一个重要的考虑因素。
然而,如果对于新的从业人员,选择这种传统方法是不太可能的,因为它需要更多的技巧去协调许多设备以及人力。
但是,对于维护人员就不是这样的。
由于传统设备比连续采矿设备更简单,更可靠,更容易保持状态,一个没有经验的维修组更适合使用常规开采的矿区。
市场对于采矿系统的发展有过很大的影响。
而连续开采通常认为已经开始约在1947年,实际上再更早就有了。
在1920年代早期,McKinley Entry Driver,一个出生很早地使用连续开采方法的矿工,加入的很多条目在Illinois.然而煤炭生产靠它,和几乎如今的所有连续开采矿工,这对于全国上下的取暖需求不是很畅销,所以它产生了低回报。
随着实用市场的到来,所有的煤都是粉碎后使用的,连续采煤机已获得广泛的认可。
采矿专业英语

bed, deposit, field 书馆矿床outcrop 露头fault 断层vein, sean, lode 矿脉gold reef 金矿矿脉pocket 矿穴reservoir 储藏water table 潜水面,地下水面mine 矿stratum, layer 矿层quarry 露天采石clay pit 粘土矿坑peat bog 泥炭沼gold nugget 块金gangue 脉石,矿石,尾矿prospector 探矿者prospecting 探矿boring, drilling 钻探auger, drill 钻excavation 发掘quarrying, extraction 采石borer, drill, drilling machine 钻机stonemason 石工锤stonecutter 切石机miner 矿工mining engineer 采矿工程师pan 淘金盘氨基三乙酸(NTA) || aminotriacetic acid 胺基 || amino铵基 || ammonium安全地层 || safe formation安全试破 || safe destruction安全钻井 || safe drilling坳陷 || down warping region螯合 || chelation凹陷 || sag凹陷地层 || subsidence formation奥陶系 || Ordovician systemAPI模拟法 || API recommened methodB多靶点 || multiple target point白沥青 || white asphalt白油 || mineral oil白云母 || white mica半透膜 || semipermeable membrane包被絮凝剂 || flocculant包被 || envelop包被抑制性 || encapsulating ability 饱和度 || saturation饱和度剖面图 || pro of degree of saturation饱和盐水 || saturated salt water背斜 || anticlinal钡 || barium苯环 || benzene ring苯酚 || phenyl hydroxide本质区别 || essential difference泵压过高 || overhigh pumping pressure 比表面积 || specific surface area比吸水量 || specific absorption比重瓶法 || density bottle method避免 || avoid蓖麻油 || ricinus oil边界摩擦 || boundary friction扁藻(浮游植物) || algae变化趋势 || variation trend标准化 || standardization标准粘度测量 || standard visicosity measure表面粗糙度 || roughness of the surface 表面电位 || surface electric potential 表面活性剂 || surfactant ,surface active agent表面能 || interface energy表面粘度 || surface viscosity表面抛光 || sample surfaceAibbs表面弹性 || Aibbs surface elasticity表面张力 || surface tension表明 || verify /reveal表皮系数(S) || skin coefficient憋钻 || bit bouncing宾汉方程 || bingham equation丙三醇 || glycerine丙烯情 || acrylonitrile丙烯酸 || acrylic acid丙烯酸盐 || acrylate丙烯酰胺 || acrylamide薄而韧的泥饼 || thin,plastic and compacted mud-cake ||薄片 || flake薄弱地层 || weak formation泊松比|| poisson’s ratio剥离 || peel off补救 || remediation不分散泥浆 || nondispersed mud不干扰地质录井 || play no role in geological logging不均质储层 || heterogeneous reservoir 不均匀 || uneven不可逆 || irreversible不同程度 || inordinately部分水解聚丙烯酰胺(PHPA) || partially hydrolyzed polyacrylamideC参数优选 || parametric optimization 残酸 || reacted acid残余饱和度 || residual staturation残渣 || gel residue , solid residue测量 || measure侧链 || side chain侧钻水平井 || sidetrack horizontal well 层间 || interlayer层间距 || the distance between the two crystal layer, layer distance层理 || bedding层流 || layer flow差减法 || minusing尝试 || trial柴油 || diesel oil长连缔合物 || long chain associated matter操作方法 || operation method超伸井 || high deep well超深预探井 || ultradeep prospecting well超声波 || ultrasonography超高密度泥浆 || extremely high density mud超细碳酸钙 || super-fine calcium carbonate产层 || production/pay zone产层亏空 || reservoir voidage产量 || production ,output沉淀 || precipitation沉降 || subside沉降速度 || settling rate沉砂 || sand setting衬套 || sleeve程序 || program采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining , surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiatio n, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy 化学冶金(学)chemical metallurgy 物理冶金(学)physical metallurgy 金属学Metallkunde冶金过程物理化学physical chemistry of process met allurgy冶金反应工程学metallurgical reaction engineering 冶金工程metallurgical engineering 钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy 真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy 喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy 焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utili zation of mineral resources中国金属学会The Chinese Society for Metals 中国有色金属学会The Nonferrous Metals Society of China采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw material s矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration 矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics选矿选矿厂concentrator, mineral processing p lant工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle 粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude 精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate 最终精矿final concentrate 尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concen tration磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing 自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite 铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing 粗碎primary crushing中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass 过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, superso nic particle sizer。
采矿工程-煤矿发展历程(英文翻译)

History Of Coal MiningThe exact date of man’s first use of coal is lost in antiquity .The discovery that certain black rock would burn was undoubtely accidently and probably occurred independently and many times in the world over thousands of year’s It is quitely likely that these independently discoveries were made when primitive man chanced to build camp fires on exposed ledges of a black rock ,then was amazed when it caught fire.The chinese recorded the use of coal 1000 years before the Christian Era and from the Bible we learn that King Solomon was familiar with coal in what is now Syria .In Wales, there is evidence that the Bronze Age people used coal for funeral pyres ,and it is known that the Romans used this fuel .There are other ancient references.So the knowledge that coal would burn, and there even some uses of that knowledge ,go back thousands of years .However ,practical and consistent use of coal seems to date to Englangd in the Middles Ages.In the Amercias ,there is evidence here and there of occasional use by the Indians ,However, the first recorded discovery of coal ,in what is now US was by French explorers,who reported an outcrop exposure on the Illinois River in 1679. Following this other discoveries were made by French and Btitish explores ,but the first recorded actual usage was in Virginia in 1702,where a French settler was granted permission to use coal for his forge.Earliest recorded commercial mining was in 1750 from the James River coalfiele near Richmond ,V A,a deposit now abandoned .Besides local consumption from this field ,shipments were made to Philadephia,New York, and Boston.At first all coal was hewed by hand from the solid bed by use of pick and bar .It was then shoveled into baskets ,boxes or wheelbarrows and dragged by men ,or women ,to the outside or to the foot of a shaft .Later ,cars were developed but still drawn over wood plank by humans .As time went on ,iron straps ,then rails ,were used for the cars while mules ,ponies ,or horese did the pulling.Gradually ,black powder was introduced to blast down the coal ,but undercutting,sidecutting, and drilling were still done by hand .During thedate 1700s and 1800s ,a number of basic developments greatly aided the mining of coal .The first steam engine was invented by James Watt in 1775 in Britain to pump water from mines ,a very important applicantion that made it possible for mines to go deeper .The first rail transportation was for mining ,the first steam locomtive was developed in 1814 by George stephenson in England for a colliery ,and the first electric locomotive was developed in 1883 in Genmany for underground use .Mechanization of operations at the face started before 1900 with development of punching machines and chain-type cutters for undermining the coal seam before blasting ,of coal and rock drills ,electric and compressed air locomotives ,and even some early experiments with continuous mining machines.Longwall mining was used here and there in the US until about 1910 ,particularly in Illionois ,but then became noncompetiteve with roon-and-pillar methods in thicker seama that better lent themselves to mechanization .In the meantime ,longwall continued to be dominant in Europe and asia because of thin coal and depth of cover.During Worle WarⅡ,the Germansdeveloped the longwall scraper for continuous loading onto a chain conveyor at the face .This was followed by various types of shearing machines developed in several counties.However ,the most important development was in hydraulic ,selfpropelled roof jacks and chocks that greatly reduced the manpower formerly required to set and reset individual jacks and to build cribs by hand .With these developments ,US coal companies again became interested in the longwall system .Numerous modifications and a general “beefing-up”were found necessary for US conditions but ,after some faliures and misapplications ,longwallminging has became practical in this country, providing mining conditions are right ,as attested by the gradually increasing number of units .Surface mining was the earliest methord of extracting coal .It consisted of recovering coal exposed in stream beds and visible outcrops with zero to a few feet of loose dirt cover. Under deeper vover and erder rock the cheapest methord---in fact the only means of recovery atfirst---was by underground mining ,so surface developments were insignificant until about 1910 ,although ,here and there ,slip and cart scrapers drawn by mules were used to a very small extent.采煤发展历程有关人类首次使用煤的确切时间,历史上并没有记载,发现能燃烧的“黑色石头”毫无疑问是个偶然,并且在过去的几千年里,在世界各地有着各种不同的传说。
采矿工程专业毕业设计外文文献翻译(中英文翻译)

外文原文:Adopt the crest of the coal work noodles plank managementproblem studyCrest the plank management is the point that adopts a safe management of the coal work noodles.Statistics according to the data, crest the plank trouble has 60% of the coal mine trouble about, adopting the trouble of the coal work noodles and having a crest 70% of the plank trouble above.Therefore, we have to strengthen a plank management, reducing to adopt the coal work noodles crest the occurrence of the plank trouble.1,the definition of the crest,scaleboard and it categorizeEndow with the existence coal seam on of the close by rock strata be called a plank, endow with the existence coal seam under of the close by rock strata be called scaleboard.Crest the rock,strength of the scaleboard and absorb water sex and digging to work the management of the noodles contain direct relation, they is certain crest the plank protect a way and choose to adopt the empty area processing method of main basis.1.1 planks categorizeAccording to rock,thickness and return to adopt process to fall in the 垮of difficult easy degree, crest the plank is divided into the false crest,direct crest and old crest.According to direct crest sport to adopt a field to the influence for press, the direct crest is divided into broken up,unsteady,medium etc. stability,stability,strong and tough crest plank etc. is five.According to old crest the sport Be work mineral inside the noodles press to present degree and to work safe threat of noodles of size, the old crest is is divided in to press very and severely, press mightiness, press to compare obviously, don't obviously press etc. is four.1.2 scaleboards categorizeAccording to the opposite position relation of the rock strata and the coal seam, the scaleboard is divided into direct bottom with the old bottom.Locate coal seam directly under of the rock strata be called direct bottom;locate the direct bottom or coal seam under of the rock strata be called old bottom.The coal seam crest the scaleboard type expects the influence of the geology structure sport after be subjected to the deposition environment and, its growth in different region degree dissimilarity, the coal seam possibility for have isn't whole.2,crest that need to be control plank classification and adopt the processing way of the empty areaAccording to different crest the plank type and property, choose to pay to protect a way and adopt the empty area processing method differently, is a plank management of basic principle.2.1 crest needed to pull to make plank classificationPress a knothole rock strata strength, the crest plank that needs to be control can is divided into: general crest the plank,slowness descend to sink a plank and is whole fall the crest of the cave in the danger plank etc..2.2 work noodles adopt the processing method of the empty areaThe processing method that adopts empty area mainly has: all 垮s fall a method,partial full to fill a method,the coal pillar to prop up a method to alleviate to descend to sink a method slowly etc..3,crest the plank pressure present a characteristic3.1 top the cover rock strata of the sport regulation and the work in front pay to accept pressure to distribute behindDuring the period of mine, adopt empty area above of the rock strata will take place ambulation, according to crest the plank change mind condition, taking the cranny rock strata in up the cover rock strata follow the work noodles to push forward the direction demarcation as three areas: the coal wall prop up the influence area,leave layer area and re- press solid area.The noodles opens to slice an eye to go to push forward forward in the process from the work, break original should the equilibrium of the dint field, cause should the dint re- distribute.Be adopting the coal work noodles to become to pay to accept pressure in front and back, it concretely distributes shape to have something to do with adopting the empty area processing method.3.2 first times to press to press a main manifestation with the periodFirst time to press a main manifestation:BE a plank"by oneself the vield song" range enlargement;the coal wall transform and fall to fall(the slice help);pay to protect to drill bottom etc..First time to press to want to keep on more and suddenly and generally for 2-3 days.Period to press a main manifestation:Main manifestation BE:crest the plank descend to sink nasty play increment of speed, crest the plank descend to sink quantity to become big;pay what pillar be subjected to load widespread increment;adopt empty area to hang a crest;pay pillar to make a noise;cause the coal wall slice to help,pay pillar to damage,crest plank occurrence the step descend to sink etc..If pay the pillar parameter choice to be unsuited to a proper or single body to pay the pillar stability worse, may cause the partial crest or crest plank follow the work noodles to slice to fall etc..4,crest the plank choice for protectThe work noodles the function for protect decelerate a plank to descend to sink, supporting to control a crest to be apart from the knothole integrity inside the crest, assurance work space safety.4.1 choices that protect material and formPay to protect material to mainly there are the metals support and the wood support.Pay to protect a form to mainly have a little the pillar to protect,the cote type protect to press a support with liquid.4.2s protect a specification choiceWhile choosing to pay to protect specification, mainly control the following 2:00:1.Control the work noodles adopt high and its variety.Generally can according to drill a holethe pillar form or have already dug the tunnel data of to make sure to adopt high.From last the movable regulation of the cover rock strata, can the initial assurance crest plank at biggest control a crest to be apart from place of average biggest descend to sink quantity, select to pay a pillar model number suitablely2 control the crest plank of the normal appearance to descend to sink the quantity and support can the draw back pute the biggest and high Hmax and minimum and high Hmin that pays pillar, select specification of pay the prehensive the pillar model number and specification, check related anticipate, assurance the model number of the pillar.5,the work noodles manages everyday of pointEveryday crest the point of plank management is the with accuracy certain protects density and control a method, right arrangement and organize to adopt coal and control a crest to relate to in fixed time, strengthen to pay to protect the quality management before press, the assistance that chooses to use a good necessity protect etc., attain to expel to emit a trouble, assurance the purpose of[with] efficiency.1 choice that protects density and controls a methodAccording to the work noodles crest plank rock,adopt a periodic to press obvious degree, press strength and to press in front and back a crest knothole variety a circumstance etc., the certain protect density and control a method.It adopt coal in 2 production lines with control of the crest to relate to in fixed timePeriod to don't obviously press to adopt a field, emphasize to pay to protect,adopt coal, control a parallel homework, possibly contract to adopt coal,return to pillar to put distance between an operations with speed the work noodles propulsion degree;period to press more and obviously adopt a field, at to press in front and back adopt different of,control the relation organization project, before press should not adopt coal,put a crest in the meantime homework, press after should adopt to adopt coal,put a crest to keep minimum wrong be apart from parallel homework.Field to strengthen to pay to protect the quality management assurance to pay pillar to have to prop up dint,prevent°from paying pillar to drill bottom enough before press,right adoption the assistance protect.Adopt the coal work noodles crest, the plank manages everyday of the key lie in raising the spot management,the operation level, paying to protect and adapt to adopt a field to press and crest the scaleboard variety circumstance, adopt right of the assistance protect measure, well exertivecontrol a result.译文:采煤工作面的顶板管理问题探讨顶板管理是采煤工作面安全管理的重点。
采矿工程毕业设计英文翻译

Underground MiningMost present-day mining in Europe occurs under 2000 to 4000 ft of overburden, as more easily mined coal deposits have been depleted. At this depth most mines are developed as shaft mines. All personnel, material, and coal have to be hoisted trough these shaft. Considering the two factors of hoisting capacity and required length of shaft, a considerable investment is necessary to reach the coal-bearing strata. The requires huge investments. Openings at this depth have to be equipped with costly supports, and periodic reworking and repair is necessary.Mines not only extend horizontally but also vertically through the development of new levels. The life of the mines is thus extend considerably, and surface installations can be amortize over a longer period.The more limited reserves have forced companies into mining less favorable deposits, and European government require that all possible deposits be mined to conserve the nation’s energy resources. These factor and the large percentage of inclined seams and faults make mining very difficult and costly. The population density and the heavy surface buildup cause additional expense in the form of payments for subsidence damage to surface structures. Therefore, backfilling is frequently practiced to reduce subsidence. The close spacing of faults often severely limits the size of a mining section, forcing frequent moves and excessive development work.The thickness of the overburden results in very high ground pressure. This would require extremely large pillars if the room and pillar method was applied. Additionally, support is required for any opening, adding prohibitive costs to a multiple-entry room and pillar operation.As a result, single-entry longwall operations requiring the minimum number of entries and allowing maximum recovery of resources is the mining method almost exclusively practiced.Shaft mines dominate the European coal mining industry. Shafts 20 to 30 ft in diameter, with circular cross section, lined with masonry, concrete, or steel are the dominant meansof gaining access to the coal-bearing strata. They are often extended beyond the last mining level to provide for future expansion. As in the Unite States, shafts are developed by drilling, blasting, and excavating or by large-diameter shaft-boring equipment. Shaft boring is more frequently used, particularly on the smaller and shorter subshaft, which connect the different levels but do not extend to the surface.Haulage in the shaft is usually accomplished by hoisting of the filled mine cars on multistage cages or by skips. Pumping of coal slurry is also done in special cases.The complex system of forces and the resulting rock mechanical problems developed by mining activities at different levels result in significant differences between European and US underground development. The rock mechanical interaction of the extraction operations at the various levels require that all deposits be mined as completely as possible. Pillars left after mining create zones of extreme and often unmanageable ground control problem, as well as a high probability of roof bounce.Since the number of entries is kept to a minimum because of cost, no bleeder systems are provided. If retreat mining is practiced, only two entries are advanced in to a new mining area.Panels are laid out as large as possible. The large-panel layout is used as another means of reducing the number ofentries. Minded–out panels are sealed off to prevent spontaneous combustion through the removal of oxygen.The main levels, with extensive entry systems, are used for coal, supply, and personnel haulage and for ventilation. They are often spaced with little regard to the position of the coal seams, because the deposits are reached selectively through other means. In the past, 165-or330-ft intervals were selected while increasing ground pressures and development and maintenance increase substantially, requiring large volumes of air for cooling. As a result, entry cross sections at these levels have to be increase.Fig.9.1 German multilevel, multiseam shaft-type coal mine.Underground facilities:(1) main shaft with skip hoisting;(2) exhaust ventilation shaft with multistage cage;(3) third-level station;(4) blind shaft with cylindrical storage bin;(5) blind shaft with car-hoisting facilities;(6) main entry;(7) main entry;(8) section or panel entry;(9) road heading machine(10) longwall section with plow;(11) longwall section with shearer;(12) longwall section in a steeply pitching seam mined manually with air picks;(13) longwall section in steeply pitching seam with plow;(14) minded-out gob area;(15) ventilation lock;(16) belt conveyor as main haulage;(17) main car haulage;(18) storage bin and skip-loading facilities;(19) supply haulage with a mono-rail;(20) supply haulage with mine cars;(21) monorail system as personnel carrier;(22) worker-trip cars;(23) pump station. Surface facilities:(a) hoisting tower with overhead hoist;(b) shaft building;(c) head frame;(d) main exhaust fan and diffuser;(e) coal preparation plant with loading facilities;(f) coking coal silo;(g) container vehicle for filling of coke ovens;(h) coke oven battery;(i) coke watering car;(k) coke quenching tower;(l) gas tank;(m) water-treatment plant;(n) refuse pile;(o) power plant;(p) cooling tower;(q) water tower;(r) supply storage area;(s) sawmill;(t) training and teaching center.地下采煤目前,大部分欧洲的煤矿开采都已经达到了2000到4000英尺,主要是因为浅部容易开采的煤层都已经采完。
采矿工程专业毕业论文外文翻译

英文原文:Analytical model and application of stressdistribution on mining coal floorAbstract:Given the analysis of underground pressure,a stress calculation model of cola floor stress has been established based on a theory of elasticity.The model presents the law of stress distribution on the relatively fixed position of the mining coal floor:the extent of stress variation in a fixed floor position decreases gradually along with depth.The decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth.The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face.The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests.Which is an important mechanical basis for preventing water inrush from confined aquifers.Key words:model;coal floor;stress distribution;analysis1 IntroductionWith the development of coal seam mining,The stress field of rock strata of coal seam floors will change and continue to be redistributed because of the effect of mining.The results will bring on floor deformation,displacement and possible destruction to attain a new balance[1].A study of the law of stress distribution of floors has important,practical implications in understanding deformation and destructive characteristics and predicting water inrush from floors and for designing suitable locations for tunnels and selecting maintenance methods when depth increased.At present,the study of the law of stress distribution of floors mostly proceeds from a number of calculations based on finite element analyses and similar material tests[2-6].In this paper,the study of stress distribution of floors in relatively fixed positions is discussed analytically with a theory of elasticity and we present an application combined with actual data of a particular site.2 Fundamental principleThe formulas of stress distribution are derived from the superposition principle,given the theory of elasticity on distributed loads on a semi-infinite plane[7-8].The vertical distribution load of AB on a semi-infinite plane is assumed to be q(x),as illustrated in Fig.1.We want to solve the state of stress at a specific point inside a semi-infinite plane,such as point M .Supposing the coordinate of point is (x,z),the micro-1ength dζfrom the origin of coordinate is ζon the AB segment,the micro-concentration force d p=q dζis regarded as its force and the state of stress of the micro-concentration force at point is defined as follows.In order to calculate the stress at point M from all distributed loads,the stress which is caused by every micro-concentration force is superposed.We need to integrate Eq.(1) from ζ= -a to ζ= b and Eq.(1) then becomes:3 Stress calculation of coal seam floor3.1Foundation of the mechanical modelBased on the theory of underground pressure,the mechanical model of supporting pressure in front of the working face can be simplified,as shown in Fig.2[9-11].Where the OA segment is the plastic area,with a length of x0;the AB segment is the elastic area,with a length of L0x0.In order to calculate easily the supporting pressure of both areas p z(1),p z(2),without losing its rational,we can assume the following two linear functions:Where is the supporting pressure of the plastic area(kPa),the supporting pressure of the elastic area(kPa),the maximum stress concentration coefficient,the width of the plastic area(m),H the buried depth of the coal floor(m),the width of the area affected by the supporting pressure(m) and is the average weight of the volume of the over-lying strata (kN/m3) .3.2Stress calculation processAccording to the theory of elasticity on distributed loads on a semi-infinite plane,we can use Eq.(2) to calculate the vertical stresses σz(1) and σz(2) and the horizontal stresses σx(1)and σx(2)which are affected by the supporting pressures and .The stress equations at point M(x, z) can then be obtained correspondingly by superposition (this calculation neglects the effect of the transferred load from the goaf and the overlying strata movement as well as the effect of the initial ground stress because it does not produce subsidiary stress at point M;largely we considered the action of the supporting pressure in front of the working face). The calculations are as follows:Therefore,σz = σz(1)+σz(2)(4) and σx = σx(1)+σx(2)(5). By coordinate transformation(x = x(n = 0,1,2,…)),x is regarded as x0 in Eqs.(4) and (5) and the stress values of each section can be calculated,where the variable expresses the relative distance from the pushing position of the working face to the origin of the coordinate system. Given the related parameters of supporting pressures,the stress values,located at the relatively fixed floor section,(x =) at different depths,can be calculated by computer when the working faces advance.When x = x,Eqs.(4) and (5) can be represented as follows:3.3Example analysisGiven the actual geological conditions and mining technology at the 2702 working face of the Yangcun Colliery of the Yanzhou Mining Group Limited Company,the following related parameters are determined:=3,=5 m,=50 m,=25 kN/m3 and H=500 ing Eqs.(6) and (7),the stress distribution curves are obtained on the relatively fixed floor section x=at different depths with the working face advancing by calculation. The results are shown means of computer in Figs. 3 and 4.Fig. 3 shows that vertical stress maintains its maximum at the interface between the coal seam and floor on the section x=from the original coordinates and then quickly decreases with the increasing depth and slowly decreases at a specific depth. A similar situation is obtained when the working face advances,i.e.,the range of the vertical stress decreases with an increase in depth. From the results it can be seen that the range of depth, given the variation of vertical stress, is relatively large, i.e., within 40 m. The range of the vertical stress is clearly smaller after the working face advances 30 m.According to the relationship of the variation between vertical and horizontal stress, the multiplication of the variation of vertical stress and its corresponding coefficient of horizontal pressure (λ) is equal to the increment of horizontal stress at the point M[1]. Then the increment of horizontal stress and the horizontal stress at the point M continues to be superposed, which is inversed analysis when the working face advances 30 m. The results of the variation in stress show that the vertical stress is larger than the horizontal stress when the working face is at its original position: the maximum principal stress is the vertical stress; the minimum principal stress is horizontal stress. Because the rate of decrease of the vertical stress is faster than the horizontal stress, the horizontal stress is larger than the vertical stress within 42 m when the working face advances 30 m (for details, see Fig. 4). Considering the effect of the variation in vertical stress, the horizontal stress is much larger than the vertical stress. The maximum principal stress is the horizontal stress and the minimum principal stress is the vertical stress. It agrees with the partial reasons of the mechanical principle of floor heave[12-14].Fig. 3 also shows that the variation is almost steady on the section x=when the working face advances 30 m. Therefore, the relationship of variation in stress with depth is calculated when the working face advances from 0 to 30 m. The details are shown in Table 1.Table 1 Data of rock characteristics and correlative stress of the floor on 2702 working face in Yangcun colliery (MPa)岩层深度(m)ΔλλΔx=0 m x=30 m x=30 m x=30 mλΔ泥岩0 37.50 0.00 0.00 0.00 37.500.4316.13 16.13 5 27.25 0.04 2.12 2.08 27.21 11.70 13.78砂岩10 22.53 0.28 3.83 3.55 22.250.327.12 10.67 15 19.95 0.77 4.91 4.14 19.18 6.14 10.28 21 18.17 1.46 5.40 3.94 16.71 5.35 9.29石灰岩25 16.75 2.21 5.46 3.25 14.540.284.07 7.32 28 15.55 2.94 5.24 2.30 12.61 3.53 5.83From the analysis of the related data, the stresses + λΔin Table 1 can be regarded as the stress values,obtained from mechanical rock tests. So the variations of the principal stress from theoretical calculations and the results from the servo-controlled tests can be contrasted. Given these contrasts it is seen that, the largest stress value of mudstone is 16.13 MPa and the largest stress value of sandstone10.67 MPa. When combining Fig. 5 with Table 1 it is seen that, the largest calculated principal stress is less than the peak value of the principal stress in Fig. 5, and the calculated section is at an elastic deformation section of Fig. 5, where permeability is relatively weak. So there is still a certain ability of water resistance. It can be shown that the obvious destruction is not produced in the mudstone and sandstone when the working face advances 30 m. This is essentially consistent with the conclusions of the survey report.4 Conclusions1) Based on the mechanical model of the floor, the analysis of stress distribution is obtained on the relatively fixed floor position with an advancing of working face. Owing to heterogeneity and discontinuity of the rock mass of the coal floor, there is a certain divergence between the ideal model and actual conditions. But from analyses and calculations, the basic variation law of stress distribution is discovered on the relatively fixed floor position with an advancing of working face when specific parameters are given for the working face.2) The decreasing rate of the vertical stress is faster than that of the horizontal stress up to a certain depth and the direction of the maximum principal stress is changed from vertical at the original position to horizontal with an advancing of the working face. The horizontal stress is larger than vertical stress within 42 m when the working face advances 30 m.3) The difference between the theoretically calculated principal stress and the results of the servo-controlled penetrability test can be contrasted. Deformation and penetrability can be obtained from the floor rock mass. From an example, it is seen that the mudstone and sandstone of coal floor are at an elastic deformation stage. There is no extreme destruction on the relatively fixed floor section with an advancing of working face and there still is a certain ability of water resistanceAcknowledgementsHere we express our sincere appreciation to director for Zhao Zhenzhong, minister Song Shun of Zhengzhou Coal Industry Group for their help during the course of the sampling. Appreciating Dr. Xi Yantao of China University of Mining and Technology for his help for modification.References:[1] Zhang J C, Zhang Y Z, Liu T Q. Rock Mass Permeability and Coal Mine Water Inrush.Beijing:Geological Publishing House, 1997. (In Chinese)[2] Miao X X, Lu A H, Mao X B, et al. Numerical simulation for roadways in swelling rock undercoupling function of water and ground pressure. Journal of China University ofMining and Technology, 2002, 12(2): 120-125.[3] Gong P L, Hu Y Q, Zhao Y S, et al. Three-dimensional simulation study on law of deformationand breakage of coal floor on mining above aquifer. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4396-4402. (In Chinese)[4] Shi L Q, Han J. Floor Water-Inrush Mechanism and Prediction. Xuzhou: China University ofMining and Technology Press, 2004. (In Chinese)[5] Jing H W, Xu G A, Ma S Z. Numerical analysis on displacement law of discontinuous rockmass in broken rock zone for deep roadway. Journal of China University of Mining and Technology, 2001, 11(2): 132-137.[6] Liu Y D, Zhang D S, Wang Ii S, et al. Simulation analysis of coal mining with top-coal cavingunder hard-and-thick strata. Journal of China University of Mining and Technology,2006, 16(2): 110-114.[7] Dun Z L, Gao J M. Mechanics of Elasticity and Its Application in Geotechnical Engineering.Beijing: China Coal Industry Publishing House, 2003. (In Chinese)[8] Xu Z L. A Concise Course in Elasticity. Beijing: Higher Education Press, 2002. (In Chinese)[9] Liu W Q, Miao X X. Numerical analysis of finite deformation of overbroken rock mass in gobarea based on Euler model of control volume. Journal of China University of Mining and Technology, 2006, 16(3): 245-248.[10] Jiang F X. Rock Pressure and Stress Control. Beijing: China Coal Industry Publishing House,2004. (In Chinese)[11] Qian M G, Shi P W. Rock Pressure and Stress Control. Xuzhou: China University of Miningand Technology Press, 2003. (In Chinese)[12] Xu N Z, Tu M. The mechanism and control of floor heave of road driving along next goaf ofhigh seam. Journal of Anhui University of Science and Technology (Natural Science), 2004, 24(2): 1-4. (In Chinese)[I3] Wang W J, Hou C J. Study of mechanical principle of floor heave of roadway driving along next goaf in fully mechanized sub-level caving face. Journal of Coal Science and Engineering, 2001, 7(1): 13-17.[14] Zhai X X, Li D Q, Shao Q, et al. Control over surrounding rocks deformation of soft floorand whole-coal gateways with trapezoidal supports. Journal of China University of Mining and Technology, 2005, 15(2): 118-123.中文译文:采场底板岩层应力的分析模型及应用摘要:在分析矿山压力的基础上,运用弹性理论建立了煤层底板应力分析计算模型。
采矿工程专业英语翻译

采矿工程专业英语专业:矿业工程姓名:常晓贇学号:1370845Page1:Evidence of early copper mining exists in many parts of the world . For example , a recent archeometallurgical expedition has uncovered a prehistoric mining complex at PhuLon(“Bald Mountain”)on the Mekong River in Thailand , that ma y be dated as early as 2000BC.Workers at this complex used massive river cobble mauls to break the friable skarn matrix that held squatz veins rich in malachite (Pigott, 1988). The world's oldest known copper smelting furnace,dating to 3500BC, has been found near the modern Timna copper mine in Israel (Raymond , 1986).在世界上许多地方都有早期铜开采存在的证据。
例如,最近一个冶金考古探险队发现了一个史前采矿综合体在在泰国湄公河的PhuLon(“秃山”)上,这可能要追溯到公元前2000年。
工人们用大量鹅卵石撞击易碎的富含孔雀石的矽卡岩脉石(Pigott,1988)。
世界上已知的最古老的铜矿石冶炼炉可以追溯到公元前3500年,它被发现是在以色列的现在亭纳铜矿(Raymond,1986)。
The link between native copper and malachite might well have been suggested to Neolithic man by the common association of these two forms of the metal in outcrops.But the process by which he then learned how to extract copper from the malachite remains an historic mystery . One suggested answer is that both metal smelting and pottery making appeared to have evolved about the same time . The potter , the first technician in the management of heat , had under his control all the materials and conditions necessary for smelting copper(Raymond, 1986).自然铜矿和孔雀石之间的联系更可能被新石器时代的人建议为这两种金属露头形式之间常见的关联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P1 二、复合难句:1、Mining may well have been the second of humankind's earliest endeavors--granted that agriculture was the first. The two industries ranked together as the primary or basic industries of early civilization如果说农业是人类最早的产业(文明)的话,那么采矿就理所当然地排在第二。
这两种产业作为人类早期文明最原始或最基本的产业联系在了一起。
2、If we consider fishing and lumbering as part of agriculture and oil and gas production as part of mining , then agriculture and mining continue to supply all the basic resources used by modern civilization如果我们把捕鱼业和伐木业作为农业的一部分,而石油和天然气产业作为采矿的一部分,那么农业和采矿业至今仍是现代文明所使用的基础资源的支柱3、Here the term mining is used in its broadest context as encompassing the extraction of any naturally occurring mineral substances-solid , liquid , and gas-from the earth or other heavenly bodies for utilitarian purposes.这里所说的采矿是指广义上的,因为它包括为实利目的而从地球或其他天体岩石中获取任何天然形成的固态、液态和气态矿物的开采4、Mine:An excavation made in the earth to extract minerals采矿:为了开采矿物而在地球上进行的一种挖掘5、Mining: the activity , occupation , and industry concerned with the extraction of minerals采矿业:一种与开采矿物有关的活动、职业和产业6、Mining engineering: the practice of applying engineering principles to the development ,planning , operation , closure and reclamation of mines.采矿工程:运用工程原理生产、规划、运作和关闭(充填)以及对矿山再利用(复垦)的一种实践7、Mineral:A naturally occurring inorganic element or compound having an orderly internal structure and a characteristic chemical composition , crystal form , and physical properties.矿物:一种天然形成的无机元素或化合物(无机物),它有着有序的内部构造、特有的化学成分、结晶形式和物理性质。
8、Rock:Any naturally formed aggregate of one or more types of mineral particles岩石:任何天然形成的、由一种或多种矿物颗粒组成的集合体9、Metallic ores:Those ores of the ferrous metals (iron , manganese ,molybdenum and tungsten) , the base metals (copper , lead and tin) , the precious metals (gold , silver, the platinum group metals) and the radioactive minerals( uranium , thorium and radium) .金属矿:包括黑色金属(铁、锰、钼、钨),基础金属(铜、铅、锡),贵重金属(金、银、铂金类金属)和放射性金属(铀、钍、镭)10、Nonmetallic minerals:(also known as industrial minerals) The nonfuel mineral ores that are not associated with the production of metals. These include phosphate ,potash , halite , trona ,sand , gravel , limestone , sulfur , and many others.非金属矿物:(也被称为工业矿物)与金属产品无关的非燃料矿物。
它包括磷酸盐、碳酸钾、岩盐、天然碱、砂、砾、石灰岩、硫磺和一些其他的矿石11、Fossil fuels:(also known as mineral fuels) The organic mineral substances that can be utilized as fuels , such as coal , petroleum , natural gas , coal-bed methane ['mi:θein] (甲烷、沼气),gilsonite and tar sands.化石燃料:(也称作矿物燃料)能够被用作燃料的有机矿物质,比如煤、石油、天然气、煤层气硬沥青和沥青砂12、These fields of boreholes are also called mines ,as they are the means to mine a mineral deposit ,even if no one enters into the geologic realm ofthe deposit这些有钻孔的领域同样被划归采矿,因为钻孔意味着开采矿床,即使没有人进入这个矿床的地质区域13、Note that when the economic profitability of a mineral diposit has been established with some con fidence , ore or ore deposit is preferred as the descriptive term for the mineraloccurrence.注意:当因有些把握而确立了矿床的经济收益时,矿石或矿床就成为矿物出现的首选描述性术语。
14、If the excavation used for mining is entirely open or operated from the surface , it is termed a surface mine. If the excavation consists of openings for human entry below the earth's surface , it is called an underground mine.如果矿山挖掘是完全露天的或是从地表开始剥离岩石的,那么这种开采方式称为露天开采;如果挖掘只有方便人们进出地下的开口,则称这种方式为地下开采露天采矿简介 P211、In open pit mining, a mechanical extraction method, a thickdeposit is generally mined in benches or steps, although thindeposits may require only a single bench or face.在露天采矿(一种机械开采法)中,一个厚的矿床通常都是按平台或台阶进行开采的,尽管薄的矿床可能只需要一个简单的平台或工作面。
2、Hydraulicking utilizes a high-pressure stream of water that isdirected against the mineral deposit (normally but not always aplacer) , undercutting it , and causing its removal by the erosiveactions of the water.水力开采利用一根高压水柱直接冲击矿床(通常不总是砂矿),由于水的侵蚀作用慢慢切割,进而引起移动剥落3、Dredging performed from floating vessels, accomplishes theextraction of the minerals mechanically or hydraulically.从漂浮的船上“挖泥”,实现机械或水力的矿物开采。
4、Solution mining includes both borehole mining, such as the methods used to extract sodium chloride or sulfur, and leaching, either throughdrill-holes or in dumps or heaps on the surface.溶浸采矿包括井眼采矿(比如开采盐和硫磺的方法)和浸滤采矿,或者通过钻孔或者通过倾倒或地面堆浸的方法实现浸滤开采。
5、An open pit mine is an excavation or cut made at the surface ofthe ground for the purpose of(为了……目的) extracting ore andwhich is open to the surface for the duration of the mine's life.露天开采是为了开采矿石而在地表进行的一种挖掘或切割,它在采矿的整个过程中都是露天开放的6、The selection of physical design parameters and the schedulingof the ore and waste extraction program are complex engineeringdecisions of enormous economic significance.物理设计参数的选择和矿石及废矿开采工作的进度计划是具有巨大经济意义的复杂工程抉择7、Among these are increasing production, a shift in emphasis fromunderground to surface mining , a decline in ore grade and qualityof some crude materials , and , with few exceptions , an increase in productivity of labor在这些因素中,属于产量增加的因素是:开采重心由地下开采向露天开采的转变,一些原矿矿石在等级和质量方面的下降,以及,少有例外的员工生产力的提高8、Paradoxically , productivity has increased even with declininggrade and quality ,which is indicative of the rapid technological improvement taking place in open pit mining techniques相矛盾的是,甚至在矿石等级和质量下降的情况下生产力一直在提高。