重要极限的证明

合集下载

两个重要极限的证明

两个重要极限的证明

两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。

当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。

即111sin 222x x <<tgx ,sinx<x<tgx 。

除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。

(1) 由偶函数性质,上式对02x π-<<时也成立。

故(1)式对一切满足不等式0||2x π<<的x 都成立。

由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。

函数f(x)=sin x x的图象如图(b )所示。

2.证明:1lim(1)n n n →∞+存在。

证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。

(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。

由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。

再令a=1,b=1+12n代入(1)。

由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。

不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。

联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。

于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。

两个重要极限的证明

两个重要极限的证明

两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。

当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。

即111sin 222x x <<tgx ,sinx<x<tgx 。

除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。

(1) 由偶函数性质,上式对02x π-<<时也成立。

故(1)式对一切满足不等式0||2x π<<的x 都成立。

由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。

函数f(x)=sin x x的图象如图(b )所示。

2.证明:1lim(1)n n n →∞+存在。

证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。

(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。

由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。

再令a=1,b=1+12n代入(1)。

由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。

不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。

联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。

于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。

微积分:极限存在准则与两个重要极限

微积分:极限存在准则与两个重要极限

02
两个重要极限
第一个重要极限
总结词
当x趋近于0时,sin(x)/x的极限为1。
详细描述
这个极限描述了正弦函数和x轴在x=0处的交点附近的相对大小关系。具体来说, 当x的值非常接近0时,sin(x)和x的大小关系近似相等。
第二个重要极限
总结词
当x趋近于无穷大时,(1+1/x)^x的极 限为e。
= 2epsilon$。最后,我们得出结论 $lim_{n to infty} a_n = L$。
极限存在准则的应用
应用场景
极限存在准则在实数序列的收敛性判断中有着广泛的应用。例如,在判断一个数列是否收敛时,我们 可以先找到一个收敛的子序列,然后利用极限存在准则判断原序列是否收敛。
应用方法
首先,我们需要找到一个收敛的子序列。这可以通过选取适当的项或通过数学变换实现。然后,利用 极限存在准则,我们可以判断原序列是否收敛。如果原序列收敛,则极限值等于子序列的极限值;否 则,原序列发散。
详细Байду номын сангаас述
这个极限描述了一个增长速度的问题。 具体来说,当x的值非常大时, (1+1/x)^x的增长速度近似等于e,这 是自然对数的底数,约等于2.71828。
两个重要极限的证明
第一个重要极限的证明
通过使用三角函数的性质和等价无穷 小替换,可以证明当x趋近于0时, sin(x)/x的极限为1。
第二个重要极限的证明
通过使用二项式定理和等价无穷大替 换,可以证明当x趋近于无穷大时, (1+1/x)^x的极限为e。
03
微积分中的其他概念
导数
导数定义
导数是函数在某一点的变化率,表示函数在 该点的切线斜率。

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

x x0
(x )
(x )
lim f (x) A
x x0 (x )
准则I和准则I′统称为夹逼准则.
注意:利用夹逼准则求极限的关键:构造出 yn 与 zn ,
且 yn与zn的极限是易求的.
2020/6/15
2
例1 求 lim( 1 1 1 ).
n n2 1 n2 2
n2 n
解: 因为 n < 1 + L + 1 < n
单调下降有下界数列必有极限 说 明:
(1) 在收敛数列的性质中曾证明:收敛的数列一定
有界,但有界的数列不一定收敛.
(2) 利用准则I I来判定数列收敛必须同时满足 数列
单调和有界这两个条件.
2020/6/15
9
(3) 准则 I I只能判定数列极限的存在性,而未给出 求极限的方法.
例如,数列 xn (1)n ,虽然有界但不单调; 数列 xn n ,虽然是单调的,但其无界, 易知,这两数列均发散.
sin x
=
1
5
x® 0 x
例2 求
解:
lim
x0
tan x
x
lim x0
sin x
x
1 cos
x
lim
x0
sin x
x
lim 1 x0 cos
x
1
例3 求
解: 令 t arcsin x, 则 x sin t , 因此
原式 lim t t0 sin t
sin t 1
t
注: 利用变量代换,可得更一般的形式 lim sin (x) 1 (x)0 (x)
(4) 对于准则I I函,数极限根据自变量的不同变化过程 (x x0 , x x0 , x , x , x ) 也有类似的 准则, 只是准则形式上略有不同. 例如,

第一重要极限证明

第一重要极限证明

第一重要极限证明极限是微积分中的重要概念之一,它在数学和科学中具有广泛的应用。

而第一重要极限证明则是极限理论中最基础的证明之一。

本文将从人类视角出发,详细描述第一重要极限的证明过程,使读者能够更好地理解并感受这一数学原理的美妙。

我们先来介绍一下第一重要极限的概念。

在微积分中,当自变量趋向于某个特定值时,函数的极限就是函数在该特定值附近的行为。

第一重要极限是指当自变量趋向于某个常数a时,函数f(x)的极限。

具体来说,如果对于任意给定的正数ε,存在一个正数δ,使得当0 < |x - a| < δ时,有|f(x) - L| < ε成立,那么我们就说函数f(x)在x趋近于a时的极限为L。

接下来,我们将通过一个实例来说明第一重要极限的证明过程。

考虑函数f(x) = 2x + 1,我们需要证明当x趋近于2时,函数f(x)的极限为5。

我们给定一个任意的正数ε,我们需要找到一个正数δ,使得当0 < |x - 2| < δ时,有|f(x) - 5| < ε成立。

我们可以先尝试通过代入一些近似值来判断可能的δ的取值范围。

当我们令x = 1.9时,可以得到f(1.9) = 2(1.9) + 1 = 3.8 + 1 = 4.8,而当x = 2.1时,可以得到f(2.1) = 2(2.1) + 1 = 4.2 + 1 = 5.2。

可以看出,当x在1.9和2.1之间时,f(x)的值在4.8和5.2之间变化。

根据这一观察,我们可以猜测当0 < |x - 2| < 0.1时,有|f(x) - 5| < 0.2成立。

接下来,我们需要证明这一猜测的正确性。

假设存在一个正数δ,使得当0 < |x - 2| < δ时,有|f(x) - 5| < 0.2成立。

我们可以取δ = 0.1,根据我们的猜测,这个δ是满足条件的。

现在,我们可以证明当0 < |x - 2| < 0.1时,有|f(x) - 5| < 0.2成立。

2-3节两个重要极限

2-3节两个重要极限

222 xxx222
xx 22
22

11
1122
111llliiimm 222xxx00
1 。
ssiinn222 xx 22

xx 22
22
22xx00
xx 22

22
2
重要极限(I):lim sin x 1 , lim sin (x) 1 ((x) 0 )。
x0 x
( x)
例53. 求lim x0
1 cos x x2

解解::解解:l:imlliimm1 x0xx00
11coccsooxss x 2xx22
xx
11lliimmssiinn
222ssisniinn222xxx
limlliimm
xxx000
lim sin x lim 1 1 。 x0 x x0 cos x
重要极限(I):lim sin x 1 , lim sin (x) 1 ((x) 0 )。
x0 x
( x)
例例22. 求lim sin kx (k0)。 x0 x
解解解:::lilmimssininkkxxkklliimm ssiinn kx
x
3
2
x2 3

3

lim1 x
x
3
2
2


e3.
解法2
1 1 x lim1 1 x
原式
lim
x
1
x 2 x


x lim1
x 2
x
x
x x
其中
lim1

考研数学:两个重要极限

考研数学:两个重要极限


n n 1 (n n 1) 1 n 1 n n 1 1 1+ 2 n 1! n 2! n n! n n n 1 1 n n 1 (n n 1) 1 2 n; 2! n n! n 11
1+1 1 xn 1 1 n 1
版权所有
翻印究
考研数学:两个重要极限
高等数学中两个重要极限指的是:
1 sin x lim 1 lim 1 e x x 0 x x 和 .
对于其重要性在这里不多加累述,这篇文章主要介绍两个重要极限的证明.
x
sin x 1 首先证明 x 0 x . lim
分析: 求极限的主体思想代入不能用,四则运算也不适用,只能运用求极限的另一个重要 方法夹逼准则.
显然数列
xn 有界,根据单调有界数列必有极限,可证得数列 xn 的极限存在,令
n
1 lim 1 e. n n 极限 1 1 1 1 1 1 n 1 x 1 n 又可设 n x n 1 ,易得
1 lim 1 e. n n
版权所有 再令 x (t 1) ,可知 x 时,t , 从而
翻印必究
1 1 lim 1 lim 1 x t x t 1
x
( t 1)
/
x x
版权所有 翻印必究 有界数列必有极限)来证明极限存在,再利用夹逼准则来求出极限. 证 首先考虑 x 取正整数 n 即趋于 的情形.
n
1 xn 1 n ,则 设 1 xn 1 n
n 二项式定理

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ
/(2n+1))=√(2n +1)/2^n,
Sol:复数方法:
复数方程 z^(2n+1)=1的根是 a1,a2,a3,...,a(2n),1。

其中,ak=cos(2kπ/(2n+1))+i sin(2kπ/(2n+1)),k=1,2,...,2n。

所以,ak=(a1)^k
所以,z^(2n+1)-1=(z-a1)(z-a2)...(z-a(2n))(z-1),即
(z-a1)(z-a2)...(z-a(2n))=(z^(2n+1)-1)/(z-1)=z^(2n)+z^(2n-1)+...+z+1。

两边令z=1,并取模,则:
|1-a1|×|1-a2|×......×|1-a2n|=2n+1.........(*)
因为,|1-ak|=√|(cos(2kπ/(2n+1))-1))+i sin(2kπ/(2n+1))|=2×
sin(kπ/(2n+1)),所以由(*)式得:
2^n×sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))
=2n+1。

所以,sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n+1)/2^n
2.三角函数
求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ
/(2n+1))=√(2n +1)/2^n.
证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ
/(2n+1))=√(2n +1)/2^n
设Z=cos2π/(2n+1)+ isin2π/(2n+1)
则x^(2n+1)=1的根为1,z,...z^2n
得x^2n+...+x+1=(x-z)(x-z^2)...(x-z^2n)
2n+1=|(1-z)||(1-z^2)|...|(1-z^2n)| (1)
又|(1-z^k)|=2sinkπ/(2n+1) (2)
|1-z^k| = |1-(cos(2kπ/(2n+1)) +sin(2kπ/(2n+1)) )|
=|1-cos(2kπ/(2n+1))) -sin(2kπ/(2n+1)) )|
=√((1-2cos(2kπ/(2n+1)) +cos^2 (2kπ/(2n+1))) + sin^2 (2kπ/(2n+1))) =√(2-2cos(2kπ/(2n+1)) )
=√(4sin^2(kπ/(2n+1))
=2sin(kπ/(2n+1)

2n+1 =( n(π/(2n+1)). n(2π/(2n+1)) n(3π/(2n+1))........ n(2nπ/(2n+1)) 两边开方,得
sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ/(2n+1)) =√(2n+1) / 2^n
另外那个类似,可以尝试自己证一下.
3.为什么sinπ/n+sin2π/n......+sin(n-1)π/n=cotπ/2n?
解:2 sin [π/(2n)]·sin(π/n)= cos [π/n -π/(2n)]- cos [π/n +π/(2n)]= cos [π/(2n)]- cos [3π/(2n)]2 sin [π/(2n)]·sin(2π/n)= cos [2π/n -π/(2n)]- cos [2π/n+π/(2n)]= cos [3π/(2n)]- cos
[5π/(2n)]2 sin [π/(2n)]·sin(3π/n)= cos [3π/n -π/(2n)]- co s [3π/n +π/(2n)]= cos [5π/(2n)]- cos [7π/(2n)]……2 sin [π/(2n)]·sin[(n-1)π/n]= cos [(n-1)π/n -π/(2n)]- cos [(n-1)π/n +π/(2n)]= cos [(2n-3)π/(2n)]- cos [(2n-1)π/(2n)]
故:2 sin [π/(2n)] ·{sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]}= cos [π/(2n)]- cos [(2n-1)π/(2n)]= cos [π/(2n)]- cos [π-π/(2n)]=2 cos [π/(2n)]
故:sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]= cos[π/(2n)]/ sin
[π/(2n)]= cot [π/(2n)]
4.级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么? Sol:收敛,Dirichlet 判别法.这是最典型的一个用Dirichlet 判别法判别收敛的例子.sinn 的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[cos1/2-cos(2n+1)/2)]/sin1/2,于是有界,1/(n+1)单调递减趋于0,收敛.不绝对收敛.|sinn/(n+1)|>=sin^2n/(n+1)=[1-cos(2n)]/2(n+1).类似用Dirichl et 判别法知道级数cos2n/(n+1)收敛,但级数1/(n+1)发散,于是易知不绝对收敛.建议记住这个典型例子.
1
2122ln ln ...ln lim .2ln ln ln ...ln n ln 2ln 1:ln 2ln =ln 2
o n n n n x n
o n n n n c c c I n
n c c c n n sol n n n n n
I →∞+++=+++-≤==-求
5.求sin π/n*sin2π/n*…*sin(n-1)π/n 的值,用复数思想
6.三角函数连乘(正弦)求证:sin[π/(2n+1)]*sin[2π/(2n+1)]*sin[3π/(2n+1)]*……*sin[nπ/(2n+1)]=(根号下2n-1)/2^n
Sol:
7.证一般项级数∑sin√(n^2+1)π条件收敛
Sol:∵sin√(n²+1)π
=[(-1)^n]sin[√(n²+1)π-nπ]
=[(-1)^n]sin[√(n²+1)-n]π
=[(-1)^n]sin{1/[√(n²+1)+n]}π
lim(n→∞)[sin{1/[√(n²+1)+n]}π]/(1/n)
=lim(n→∞)nπ/[√(n²+1)+n]
=π/2
∴∑sin{1/[√(n²+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n²+1)+n]}π发散
lim(n→∞)sin{1/[√(n²+1)+n]}π=0,且sin{1/[√[(n+1)²+1]+(n+1)]}π≤sin{1/[√(n ²+1)+n]}π
由莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n²+1)+n]}π收敛
∴原级数条件收敛
其他回答:sin√(n^2+1)π=(-1)^n sin(√(n^2+1)π+nπ)
再利用分子有理化可得:(-1)^n sin(π/[根号(n^2+1)+n])
利用 Dirichlet判别法可知级数收敛。

而它的绝对值级数可以等价为:sin(π/[根号(n^2+1)+n])~π/[根号(n^2+1)+n]~1/n即发散。

9.Sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n) 这等式怎么证?大概要从哪个方面入手?
sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n)
用复数
w=cos(2π/n)+isin(2π/n)
w'=cos(2π/n)-isin(2π/n)
z^n=1
(z-1)(z^(n-1)+z^(n-2)+……+z+1)=0
z^(n-1)+z^(n-2)+……+z+1=(z-w)(z-w^2)(z-w^3)……(z-w^(n-1))

z=1
n=(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))
1-w^k=2sinkπ/n(sinkπ/n+icoskπ/n)
|1-w^k|=|2sinkπ/n(sinkπ/n+icoskπ/n)|=|2sinkπ/n||(sinkπ/n+icoskπ
/n)|=|2sinkπ/n|=2sin(kπ/n)
取模
|n|=|(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))|
|n|=|(1-w)||(1-w^2)||(1-w^3)|…|(1-w^(n-1))|
n=2^(n-1)sin(π/n)sin(2π/n)……sin[(n-1)π/n]
得证。

相关文档
最新文档