离散数学07 序列与求和
离散数学及应用

强连通与弱连通
在有向图中,如果任意两个节点 之间都有路径,则称图是强连通 的;在无向图中,如果任意两个 节点之间都有路径,则称图是弱 连通的。
最短路径问题
问题描述
Dijkstra算法
在一个图中,找到两个节点之间的最短路 径。
用于在有向图中找到单源最短路径。
Bellman-Ford算法
Floyd-Warshall算法
离散数学中的图论、集合论等在土木工程中用于描述和分析建
筑结构、道路网络等。
经济学中的应用
决策分析
离散数学中的概率论、统计决策理论等在经济学中用于决策分析,如风险评估、效用函数等。
博弈论
离散数学中的博弈论在经济学中用于研究竞争和策略行为,如寡头竞争、拍卖理论等。
THANKS
感谢观看
归纳推理
从特殊到一般的推理 方式,即从个别性前 提推出一般性结论的 推理。
推理规则
在逻辑推理中需要遵 循的规则,如“假言 推理”、“拒取式” 、“析取三段论”等 。
逻辑谬误
在逻辑推理中需要避 免的错误,如“偷换 概念”、“循环论证 ”等。
05
离散概率论
离散随机事件
01
定义
离散随机事件是样本空间中有限 或可数的子集,通常表示为E、F 、G等。
03
图论
图的基本概念
01 节点
图中的顶点称为节点。
03 边
连接两个节点的线段称为
边。
02 定向图与无向图
边是否有方向决定了图的
定向或无向性。
04 权重
某些边可以带有数值,表
示某种度量或权重。
图的连通性
连通性
如果图中的任意两个节点之间都 存在路径,则称图是连通的。
离散数学必备知识点总结资料

离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。
它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。
以下是离散数学必备的一些知识点总结。
一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。
2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。
3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。
4. 集合与运算:集合是指不同元素组成的一个整体。
基本的集合运算包括并、交、差等。
5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。
6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。
划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。
二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。
包括度、路径、连通性等概念。
2. 图的表示方法:邻接矩阵和邻接表。
3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。
4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。
最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。
三、代数系统1. 代数结构:包括群、环、域等概念。
2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。
四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。
2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。
3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。
离散数学基础知识

离散数学基础知识离散数学是计算机科学中一门重要的数学基础学科,它研究离散对象的性质和关系,主要涉及逻辑、集合论、图论、代数结构等方面的内容。
具备扎实的离散数学基础知识对于计算机科学领域的学习和研究都具有重要的意义。
本文将重点介绍离散数学的一些基础知识。
1. 逻辑逻辑是离散数学的基础,它研究判断和推理的规则。
在计算机科学中,逻辑常常用于描述程序的正确性和推理的过程。
逻辑包括命题逻辑和谓词逻辑两个分支。
命题逻辑研究命题与命题之间的关系,它使用命题变量和逻辑运算符来构造复合命题。
常见的逻辑运算符有非(¬)、与(∧)、或(∨)、蕴含(→)和等价(↔)等。
通过逻辑运算符的组合,可以构建出复杂的逻辑表达式,并通过真值表来确定表达式的真值。
谓词逻辑是对命题逻辑的扩展,它引入了量词和谓词,用于描述对象之间的关系。
谓词逻辑包括一阶逻辑和二阶逻辑两个分支。
一阶逻辑主要研究命题中包含变量的情况,而二阶逻辑则允许变量代表集合或者谓词。
2. 集合论集合论是离散数学的另一个重要分支,它研究集合及其运算和关系。
在计算机科学中,集合论被广泛应用于描述数据类型、数据结构和算法等方面。
集合是由一些确定的对象组成的整体,可以用罗素概念公理或者包含-属于公理来描述。
常见的集合运算有并(∪)、交(∩)、差(-)和补(\)等。
通过这些运算,可以构建出各种复杂的集合。
集合论中的函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数可以用来描述计算机程序中的算法和操作。
常见的函数类型有单射、满射、双射等。
3. 图论图论是离散数学的一个重要分支,它研究图的性质和关系。
在计算机科学中,图论被广泛应用于网络、算法和人工智能等方面。
图是由顶点和边组成的结构,可以用来描述对象之间的关系。
图的类型包括有向图和无向图,以及它们的变种如加权图和带标签的图等。
图的常见概念有度、路径、连通性和环等。
图的表示方法有邻接矩阵和邻接表两种。
邻接矩阵使用二维数组来表示顶点之间的连接关系,邻接表则使用链表来表示边的信息。
离散数学公式范文

离散数学公式范文离散数学是一门关于离散结构及其运算规则的数学课程。
它研究的对象包括离散对象(如集合、图、函数等)和离散运算(如关系、代数运算等),以及这些对象和运算之间的关系和性质。
离散数学具有广泛的应用领域,如计算机科学、信息技术、电子通信等。
本文将介绍一些离散数学中常用的公式及其应用。
一、集合公式1.交集运算:对于集合A和B,它们的交集记作A∩B,定义为A和B 中都包含的元素所组成的集合。
A∩B={x,x∈A且x∈B}2.并集运算:对于集合A和B,它们的并集记作A∪B,定义为A和B 中所有元素所组成的集合。
A∪B={x,x∈A或x∈B}3.差集运算:对于集合A和B,它们的差集记作A-B,定义为属于A 但不属于B的元素所组成的集合。
A-B={x,x∈A且x∉B}4.对称差运算:对于集合A和B,它们的对称差记作A△B,定义为属于A或属于B但不同时属于A和B的元素所组成的集合。
A△B={x,(x∈A且x∉B)或(x∉A且x∈B)}二、数学归纳法数学归纳法是一种证明方法,用于证明一类命题对于所有正整数成立。
它的基本思想是通过证明基本情况成立,然后证明如果对于一些正整数n成立,则对于n+1也成立,从而得出结论对于所有正整数成立。
数学归纳法的三个步骤:1.基础步骤:证明当n取最小值时命题成立。
2.归纳假设:假设当n=k时命题成立,即P(k)成立。
3.归纳步骤:证明当n=k+1时命题也成立,即P(k+1)成立。
三、逻辑公式逻辑公式是描述命题之间关系的数学表达式。
常用的逻辑公式有如下几种:1.否定:对于命题p,它的否定记为¬p,表示p是假的。
2.合取:对于命题p和q,它们的合取记为p∧q,表示p和q同时为真时整个表达式才为真。
3.析取:对于命题p和q,它们的析取记为p∨q,表示p和q至少有一个为真时整个表达式才为真。
4.蕴含:对于命题p和q,它们的蕴含记为p→q,表示如果p为真,则q也为真;如果p为假,则整个表达式为真。
离散数学的基础知识点总结

离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。
它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。
下面是对离散数学的基础知识点进行的总结。
1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。
2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。
3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。
4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。
5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。
7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。
8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。
9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。
离散数学:认识集合、排列和组合的概念和应用

离散数学在计算机科学中的应用
离散数学在数据结构中的应用:集合论用于描述数据结构的集合性质,图论用于 描述数据结构的图性质。
离散数学在算法设计中的应用:集合论中的计数原理和排列组合原理用于设计算 法,图论中的最短路径算法用于优化算法。
集合是由确定的、不同的元 素所组成的总体。
集合中的元素是有序的,即 集合中的元素有顺序性。
集合可以通过列举法或描述 法进行定义。
列举法:通过一一列举出集合中的元素来表示集合 描述法:通过描述集合中元素的共同特征来表示集合 符号法:使用大括号{}来表示集合,并在大括号内列出集合中的元素
区间法:使用数轴上的区间来表示集合,包括开区间、闭区间和半开半闭区间等
离散数学在现实生活中的应用
离散概率论:离散概率论是离散数学在统计学中的应用,它为统计学提供了理论基础。
离散概率分布:离散概率分布是描述随机事件发生的可能性,例如二项分布、泊松分布等。
离散统计推断:离散统计推断是利用样本数据对总体参数进行估计和推断的方法,例如参数估计、 假设检验等。
离散数据模型:离散数据模型是描述离散数据的数学模型,例如概率图模型、贝叶斯网络等。
排列的应用:在离散数学中,排列的概念被广泛应用于组合数学、图论、逻辑推理等领域。
排列的性质:排列具有可交换性、可结合性和有界性。
排列的定义:从n个不同元素中取出m个元素(m≤n),按照一定的顺序排成一列, 称为从n个元素中取出m个元素的排列。
排列的计算方法:排列数用符号A(n,m)表示,计算公式为A(n,m)=n!/(n-m)!,其中 "!"表示阶乘。
离散概率论:离散随机事件的数学描述,如掷骰子、抽签等 概率空间:离散随机试验所有可能结果的集合,以及每个结果的概率 离散概率分布:描述离散随机变量取各个可能值的概率 条件概率和独立性:在离散概率论中,条件概率和随机事件的独立性有明确的定义和性质
离散数学07 序列与求和

作业 7
P91 2、3 P100 1、11
序列的描述方式
– 通常按下标从小到大列举项
2.4 序列与求和
定义2:几何序列 a, ar, ar2 , … , arn
– 其中 a(初项), r(公比) 为实数
定义3:等差序列 a, a+d, a+2d , … , a+nd
– 其中 a(初项), d(公差பைடு நூலகம் 为实数
2.4.3 特殊的整数序列
第2章 基础:集合、函数、序列、求和
2.4 序列与求和
2.4 序列与求和
序列用来表示有序表
– 计算机学科中有序表是一种重要的数据结构
• 线性表、链表
2.4 序列与求和
定义1:序列(sequence)是从整数集合的子集 到集合 S 的函数,记为 { an }
– an:整数 n 的像,称为序列的项(item)
寻找序列的通项式
– 例 5. – 例 6. 能写出其通项式吗? – 例 7. an=an-1+6an=6n-1?
2.4.4 求和
n
am+am+1+…+an的记号为 a j jm – 例 9.
求和
– 例 10. 11. 12.
如果上限为一般的 n,如何表示求和的结果?
– 闭公式
2.4.4 求和
离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 序列与求和
2.4 序列与求和
序列用来表示有序表
– 计算机学科中有序表是一种重要的数据结构
• 线性表、链表
2.4 序列与求和
定义1:序列(sequence)是从整数集合的子集 到集合 S 的函数,记为 { an }
– an:整数 n 的像,称为序列的项(item)
序列的描述方式
– 通常按下标从小到大列举项
2.4 序列与求和
定义2:几何序列 a, ar, ar2 , … , arn
– 其中 a(初项), r(公比) 为实数
定义3:等差序列 a, a+d, a+2d , … , a+nd
– 其中 a(初项), d(公差) 为实数
2.4.3 特殊的整数序列
定理 1. 几何序列的求和公式 表 2-5. 常用的求和公式
作业 7
P91 2、3 P100 1、11
寻找序列的通项式
–an=6n-1?
2.4.4 求和
n
am+am+1+…+an的记号为 a j jm – 例 9.
求和
– 例 10. 11. 12.
如果上限为一般的 n,如何表示求和的结果?
– 闭公式
2.4.4 求和