八年级第二学期期中考试数学试卷

合集下载

山东省枣庄市台儿庄区2023-2024学年八年级下学期期中考试数学试卷(含解析)

山东省枣庄市台儿庄区2023-2024学年八年级下学期期中考试数学试卷(含解析)

2023-2024学年度第二学期阶段性检测八年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内.1. 下列图形中,既是轴对称图形又是中心对称图形是()A. B. C. D.【答案】A解析:解:、既是轴对称图形,又是中心对称图形,符合题意;、既不是轴对称图形,也不是中心对称图形,不符合题意;、是轴对称图形,不是中心对称图形,不符合题意;、是中心对称图形,不是轴对称图形,不符合题意;故选:.2. 实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A. B. C. D.【答案】C解析:由数轴可知,∴,故A选项错误;∴,故B选项错误;∴,故C选项正确;∴,故D选项错误;故选:C.3. 如图,直线经过点,则关于x不等式的解集是()A. B. C. D.【答案】A解析:解:由函数图象可知,当直线的图象在直线上方时,,∴关于x的不等式的解集是,故选A.4. 将一副直角三角板和一把宽度为2cm的直尺按如图方式摆放:先把和角的顶点及它们的直角边重合,再将此直角边垂直于直尺的上沿,重合的顶点落在直尺下沿上,这两个三角板的斜边分别交直尺上沿于,两点,则的长是()A. B. C. 2 D.【答案】B解析:解:如图,在中,,∴,∴,在中,,∴,∴,∴,∴.故选:B.5. 在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A. B. C. D.【答案】D解析:解:将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是.故选:D.6. 如图,直线,直线与直线分别相交于点,点在直线上,且.若,则的度数为()A. B. C. D.【答案】C解析:解:∵,,∴,∵,∴,故选:C.7. 已知不等式组的解集是,则()A. B. C. D.【答案】C解析:解:,解得,,解得,,∴,∵,∴,,∴,,∴,故选:.8. 如图,将绕点A逆时针旋转到,旋转角为,点B的对应点D恰好落在边上,若,则旋转角的度数为()A. B. C. D.【答案】C解析:解:如图,,∵,∴,∵,∴,∵旋转,∴,,∴,∴,即旋转角的度数是.故选:C.9. 如图,在正方形网格内,线段的两个端点都在格点上,网格内另有四个格点,下面四个结论中,正确的是()A. 连接,则B. 连接,则C. 连接,则D. 连接,则【答案】B解析:解:如图,连接,取与格线的交点,则,而,∴四边形不是平行四边形,∴,不平行,故A不符合题意;如图,取格点,连接,由勾股定理可得:,∴四边形是平行四边形,∴,故B符合题意;如图,取格点,根据网格图的特点可得:,根据垂线的性质可得:,,都错误,故C,D不符合题意;故选B10. 如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A. B. C. D. 【答案】D解析:解:∵点P(m,1+2m)在第三象限内,∴,解不等式①得:,解不等式②得:,∴不等式组的解集为:,故选D.11. 如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于()A. B. C. 3 D. 2【答案】C解析:解:如图,过作于由,结合旋转:为等边三角形,∴A到的距离为3.故选C12. 如图,在平面直角坐标系中,已知点,点B在第一象限内,,,将绕点O逆时针旋转,每次旋转,则第2023次旋转后点B坐标为()A. B. C. D.【答案】C解析:解:过点B作轴于H,在中,,,,∴,∴,,由勾股定理得,∴B(,3),∵,,∴,∴逆时针旋转后,得,以此类推,,,,,...,6次一个循环,∵,∴第2023次旋转后,点B的坐标为,故选:C.二、填空题:每题4分,共24分,将答案填在答题纸的横线上.13. 等腰三角形的一个内角是,则它顶角的度数是_____.【答案】或解析:解:当度数为的内角是顶角时,则顶角的度数为;当度数为的内角为底角时,则顶角的度数为;综上所述,顶角的度数为或,故答案为:或.14. 如图,在中,以A为圆心,长为半径作弧,交于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线,交于点E,若,,则______.【答案】4解析:解:根据题意可知,以点C和点D为圆心,大于长为半径作弧,两弧交于点P,∴垂直平分,即,∴,又∵在中,以A为圆心,长为半径作弧,交于C,D两点,其中,∴,在中,,故答案为:4.15. 已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2解析】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为a≥2.16. 某种商品进价为700元,标价为1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于,则至多可以打_____折.【答案】7##七解析:解:设该商品打x折出售,由题意得,,解得,∴至多可以打7折,故答案为:7.17. 如图,点的坐标是(0,3),将沿轴向右平移至,点的对应点E恰好落在直线上,则点移动的距离是______.【答案】3解析:解:当时,,点的坐标为,沿轴向右平移个单位得到,点与其对应点间的距离为,即点移动的距离是3.故答案为:.18. 如图所示,在中,,,一动点从向以每秒的速度移动,当点移动______秒时,与腰垂直.【答案】或解析:解:如图,当时,则,∵,,∴,,∴,,∴,∵,∴,∴,∴,∴,∴点移动的时间为(秒);如图,当时,,∵,∴,∵,∴,∴,∴点移动的时间为(秒);综上,点移动的时间为或秒时,与腰垂直,故答案为:或.三、解答题:(满分60分)19. 解不等式组【答案】解析:解:,解不等式得,,解不等式得,,∴不等式组的解集为.20. 已知两个有理数:-9和5.(1)计算:;(2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.【答案】(1)-2;(2).解析:(1)=;(2)依题意得<m解得m>-2∴负整数=-1.21. 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)平移,点A的对应点的坐标为,画出平移后对应的,并直接写出点的坐标;(2)绕点C逆时针方向旋转90°得到,按要求作出图形;(3)如果通过旋转可以得到,请直接写出旋转中心P的坐标.【答案】(1)见解析,坐标为(2,-2)(2)见解析(3)P【小问1解析】(1)如图所示,的对应点的坐标为,沿横轴正方向平移6上单位,沿纵轴负方向平移6个单位;△即为所求.点B的坐标,坐标为(2,-2)【小问2解析】如图所示,△即为所求【小问3解析】旋转中心P的坐标22. 某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元(1)求购进A,B两种礼品盒的单价分别是多少元;(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?【答案】(1)A礼品盒的单价是100元,B礼品盒的单价是120元;(2)至少购进A种礼品盒15盒.【小问1解析】解:设A礼品盒的单价是a元,B礼品盒的单价是b元,根据题意得:,解得:,答:A礼品盒的单价是100元,B礼品盒的单价是120元;【小问2解析】解:设购进A礼品盒x盒,则购进B礼品盒盒,根据题意得:,解得:,∵x为整数,∴x的最小整数解为15,∴至少购进A种礼品盒15盒.23. 如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【小问1解析】证明:∵为的角平分线,∴,由作图可得,在和中,,∴;【小问2解析】∵,为的角平分线,∴由作图可得,∴,∵,为的角平分线,∴,∴24. 在中,,交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作垂足为E.此时请你通过观察、测量DE,DF与CG的长度,猜想并写出DE、DF 与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)【答案】(1)证明见解析;(2)DE+DF=CG,证明见解析;(3)成立.解析:(1)∵,∴∠ABC=∠ACB,在△BFC和△CGB中,∴△BFC≌△CGB,∴(2)DE+DF=CG,如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,∵,∴∠ABC=∠ACB,在△BMC和△CGB中,∴△BMC≌△CGB,∴BM=CG,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF为矩形,∴MH=DF,DH∥MF,∴∠HDB=∠MCB,∴∠HDB=∠ABC,在△BDH和△DBE中,∴△BDH≌△DBE,∴BH=DE,∵BM=CG,BM=BH+HM,∴DE+DF=CG,(3)成立,如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,同(2)中的方法∵,∴∠ABC=∠ACB,在△BMC和△CGB中,∴△BMC≌△CGB,∴BM=CG,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF为矩形,∴MH=DF,DH∥MF,∴∠HDB=∠MCB,∴∠HDB=∠ABC,在△BDH和△DBE中,∴△BDH≌△DBE,∴BH=DE,∵BM=CG,BM=BH+HM,∴DE+DF=CG.25. 如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.【答案】(1)100°(2)∠BAE=∠CEF,理由见解析(3)∠AEF与∠BAE的数量关系是互余或2∠AEF与∠BAE的数量关系是互余.【小问1解析】解:∵在△ABC中,∠ABC=∠ACB,∠ABC=40°,∴∠ACB=40°,∴∠BAC=180°﹣40°﹣40°=100°,故答案为:100°.【小问2解析】∠BAE=∠CEF;理由如下:∵∠B+∠BAE=∠AEC,∠AEF=∠B,∴∠BAE=∠CEF;小问3解析】如图1,当∠AFE=90°时,∵∠B+∠BAE=∠AEF+∠CEF,∠B=∠AEF=∠C,∴∠BAE=∠CEF,∵∠C+∠CEF=90°,∴∠BAE+∠AEF=90°,即∠AEF与∠BAE的数量关系是互余;如图2,当∠EAF=90°时,∵∠B+∠BAE=∠AEF+∠1,∠B=∠AEF=∠C,∴∠BAE=∠1,∵∠C+∠1+∠AEF=90°,∴2∠AEF+∠1=90°,∴2∠AEF+∠BAE=90°即2∠AEF与∠BAE的数量关系是互余.。

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

2022-2023学年八年级下学期期中数学试卷及答案解析

2022-2023学年八年级下学期期中数学试卷及答案解析

到达点 B 时,点 Q 恰好到达点 D. (1)当点 P 到达点 A 时,△CPQ 的面积为 3cm2,求 CD 的长; (2)在(1)的条件下,设点 P 运动时间为 t(s),运动过程中△BPQ 的面积为 S(cm2), 请用含 t(s)的式子表示面积 S(cm2),并直接写出 t 的取值范围.
22.(10 分)已知,如图,等腰△ABC 的底边 BC=10cm,D 是腰 AB 上一点,且 CD=8cm, BD=6cm,求 AB 的长.
23.(10 分)如图所示,在菱形 ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,
第 4 页 共 23 页
点 E、F 分别在菱形的边 BC、CD 上滑动,且 E、F 不与 B、C、D 重合. (1)证明:不论 E、F 在 BC、CD 上如何滑动,总有 BE=CF; (2)当点 E、F 在 BC、CD 上滑动时,探讨四边形 AECF 的面积是否发生变化?如果不 变,求出这个定值;如果变化,求出最大(或最小)值.
17.(8 分)计算:2 齈t ៼6 齈 t5 ៼
18.(8
分)先化简,再求值:(x﹣2៼
t斠 斠t

斠៼ 斠t
,其中 x
t 齈.
19.(8 分)如图,在▱ ABCD 中,E、F 是对角线 AC 上的两点,AE=CF.
(1)求证:四边形 BEDF 是平行四边形;
(2)连接 BD 交 EF 于点 O,当 BE⊥EF 时,BE=8,BF=10,求 BD 的长.
;②EF
A.1 个
B.2 个
C.3 个
D.4 个
二.填空题(共 6 小题,满分 18 分,每小题 3 分)
11.若 x<2,化简 斠 t t|4﹣x|的结果是

八年级数学下期中考试试卷

八年级数学下期中考试试卷

一. 填空题:(每题2分,共30分)1.请写出命题“对顶角相等”的逆命题:____________________________.2. 小玲手里拿着长分别为30cm ,40cm 的两根木棒,现她让你帮她找出第三根木棒,使得三根木棒构成一个直角三角形,则你帮她找到第三根木棒长应为 _______cm.3.如图1-1所示,在长方形纸片ABCD 中,AB=12,BC=5,点E 在AB 上,将△DAE 沿DE 折叠,使点A落在对角线BD 上的点A ˊ处,则AE 的长为 ______________.4.如图1-2,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE=4cm,则点P 到边BC 的距离为 _____cm. 5.用不等式表示:(1)是非负数可以表示为: ;(2)x 的2倍减3的差不大于1可以表示为: .6.一次函数 与 的函数图形的交点坐标是________ ,当 _______时,7.不等式3x+4 4(x-1)的解集是__________________.8.不等式组⎪⎩⎪⎨⎧〉≥03-x -501-23-x )(,的解集是 .9.若关于x 的不等式的解集为x ,则m 的值为 . 10.在△ABC 中,∠C= ,AD 平分∠BAC ,交BC 于点D ,若DC=7,则D 到AB 的距离是 . 11.小芳准备去买苹果和梨,她带了15元钱,已知一斤苹果2元,一斤梨y 元,如果她买3斤苹果和4斤梨,那么应满足的不等关系是 . 12.不等式2x+9 3(x+2)的正整数解是 . 13.若不等式是一元一次不等式,则 .14.若|2a-6|>6-2a,则实数a 的取值范围是 .15.2x-1 5的最大整数解为______________.二.选择题:(每小题3分,共30分)1.点A 的坐标为(4 ,3 ),将点A 先向左2个单位长度,再向下平移2个单位长度得到点A ˊ那么点A ˊ的坐标是( )A.(3 ,1)B.(2 ,1)C.(4 ,3)D.(1 ,2) 2.若a 且 为实数,则下列 正确的是( ). A.ac B.ac bc C. D. 3.不等式的正整数解有( )个.A.1个B.2个C.3个D.4个4.将不等式组⎩⎨⎧≤+≥932x 01-x ,的解集在数轴上表示出来,应是 ( ).5.已知不等式a+ 与 的解集相同,则a 的值是( )。

第二学期八年级数学期中试题

第二学期八年级数学期中试题

第⼆学期⼋年级数学期中试题 数学是⼈类进步的见证,所以⼤家⼀定要多学习数学哦,今天⼩编就给⼤家分享⼀下⼋年级数学,仅供阅读 ⼋年级数学下册期中试题 ⼀、选择题(共10⼩题,每⼩题3分,共30分) 1. 有意义,a的取值范围是( )A.a≥3B.a>3C.a≤3D.a<3 2.下列计算错误的是( ) A. B. C. D. 3.以下列长度的线段为边,能构成直⾓三⾓形的是( )A.2、3、4B.1、1、C.5、8、11D.5、13、23 4.在□ABCD中,∠A∶∠B∶∠C∶∠D的度数⽐值可能是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶1 5.下列条件不能判定四边形ABCD为平⾏四边形的是( )A.AB=CD,AD=BCB.AB∥CD,AB=CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC 6.顺次连接矩形四边中点得到的四边形是( )A.平⾏四边形B.矩形C.菱形D.正⽅形 7.如图,⼀根长25 m的梯⼦,斜⽴在⼀竖直的墙上,这时梯⾜距离底端7 m.如果梯⼦的顶端下滑4 m,那么梯⾜将滑动( )A.7 mB.8 mC.9 mD.10 m 7题图 8题图 9题图 10题图 8.在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH.当 =( )时,四边形BHDG为菱形 A. B. C. D. 9.如图,菱形ABCD中,对⾓线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的⼀个动点,则PM+PN的最⼩值是( ) A. B. C. D. 10.如图,等边△ABC内⼀点,EB=4,AE= ,∠AEC=150°时,则CE长为( )A.2B.2.5C.3D.3.5 题号 1 2 3 4 5 6 7 8 9 10 答案 ⼆、填空题(本⼤题共6个⼩题,每⼩题3分,共18分) 11.计算: =__________, =__________, =__________ 12.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,则斜边AB上的⾼为__________ 13.计算: =__________ 14.如图,在□ABCD中,E为CD上⼀点,将△ADE沿AE折叠⾄△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的度数为__________ 14题图 15题图 16题图 15.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最⼩值是__________ 16.如图,矩形ABCD中,AB=12,点E是AD上的⼀点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是__________ 三、解答题(共8题,共72分) 17.(本题8分)计算:(1) (2) 18.(本题8分)先化简,再求值:,其中x=4 19.(本题8分)如图,□ABCD中,E、F为AC上的两点,AE=CF,求证:DE=BF 20.(本题8分)在△ABC中,∠A=30°,∠B=45°,BC= ,求AB的长 21.(本题8分)如图,正⽅形⽹格中,每个⼩⽅格的边长为1,请完成: (1) 从A点出发画线段AB、AC并连接BC,使AB= ,AC= ,BC= ,且使B、C两点也在格点上 (2) ⽐较两个数和的⼤⼩ (3) 请求出图中△ABC的⾯积 22.(本题10分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1 (1) 判断△BEC的形状,并说明理由 (2) 求证:四边形EFPH是矩形 23.(本题10分)已知:如图,四边形ABCD中,AD∥BC,∠ABC=90° (1) 如图1,若AC⊥BD,且AC=5,BD=3,求S四边形ABCD (2) 如图2,若DE⊥BC于E,BD=BC,F是CD的中点,求证:∠BAF=∠BCD (3) 在(2)的条件下,若AD=EC,则 =____________ 24.(本题12分)在平⾯直⾓坐标系xOy中,四边形OABC为矩形,OA在x轴正半轴上,OC在y轴正半轴上,且A(10,0)、C(0,8) (1) 如图1,在矩形OABC的边AB上取⼀点E,连接OE,将△AOE沿OE折叠,使点A恰好落在BC边上的F处,求AE的长 (2) 将矩形OABC的AB边沿x轴负⽅向平移⾄MN(其它边保持不变),M、N分别在边OA、CB上且满⾜CN=OM=OC=MN.如图2,P、Q分别为OM、MN上⼀点.若∠PCQ=45°,求证:PQ=OP+NQ (3) 如图3,S、G、R、H分别为OC、OM、MN、NC上⼀点,SR、HG交于点D.若∠SDG=135°,HG= ,求RS的长 参考答案 ⼀、选择题(共10⼩题,每⼩题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C D B D C C B A D A ⼆、填空题(共6⼩题,每⼩题3分,共18分) 11.3、2、 12. 13. 14. 36° 15.1.2 16. 15.提⽰:⽹站有⼏何画板的动图说明最值,需要的⽼师可以联系⽹站 16.提⽰:过点B作BM⊥EF于M 三、解答题(共8题,共72分) 17.解:(1) ;(2) 18.解: 19.解:略 20.解: 21.解:(2) (3) 3 22.解:(1) △BEC是以∠BEC为直⾓的直⾓三⾓形 (2) 略 23.解:(1) S四边形ABCD= (2) 连接BF、EF 可证:△ADF≌△BEF(SAS) ∴FA=FB ∴∠FAB=∠FBA ∵BD=BC,F是CD的中点 ∴BF⊥CD ∴∠AFE=∠DFB=90° 在四边形ABFD中,∠ABF+∠ADF=180° ⼜∠BCD+∠ADF=180° ∴∠ABF=∠BCD=∠BAF (3) 3(利⽤相似最好解释) 24.解:(1) AE=5 (2) 略 (3) ⼋年级数学下学期考试试卷题 ⼀、选择题,下列各题中只有⼀个选项是正确的,请将正确答案的番号选填在答卷相应题号内。

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。

(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。

(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。

12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。

八年级数学下学期期中测试卷(含答案)

八年级数学下学期期中测试卷(含答案)

八年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 使得式子有意义的x的取值范围是( )√4−xA. x≥4B. x>4C. x≤4D. x<42. 下列根式中属于最简二次根式的是( )C. √8D. √27x3A. √a2+2B. √1123. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A.√2B. 2B.C. √3 D. 34. 如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )A. 1B. 2C. 2.5D. 35. 如下图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判定四边形ABCD 是平行四边形的是( )A. AB//DC,AD//BCB. AB=DC,AD=BCC. AB//DC,AD=BCD. OA=OC,OB=OD6. 下列各式计算正确的是( )A. √2+√3=√5B. 2+√2=2√2C. 3√2−√2=2√2D. √12−√10=√6−√527. 已知√a−13+√13−a=b+10,则√2a−b的值为( )A. 6B. ±6C. 4D. ±48. 如图,小巷左、右两侧是竖直的墙壁,一架梯子斜靠在左墙上时,梯子底端到左墙角的距离为1米,梯子顶端距离地面3米,若梯子底端位置保持不动,将梯子斜靠在右墙上,此时梯子顶端距离地面2米,则小巷的宽度为( )A. (√6+1)米B. 3米C. 5米 D. 2米2二、填空题(本大题共8小题,共24.0分)9. 在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.10. 计算√28的结果是.√711. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为cm2.12. 如图,四边形ABCD是平行四边形,若S □ ABCD=12,则S阴影=.13. 如图,在四边形ABCD中,∠C=∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________.(写出一个条件即可).14. 如图,▱ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且OP=2,则BC的长为.15. 如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为______.16. 观察下列等式:x 1=√1+112+122=32=1+11×2;x 2=√1+122+132=76=1+12×3;x 3=√1+132+142=1312=1 +13×4;⋯;根据以上规律,计算x 1+x 2+x 3+⋯+x 2022−2023= .三、解答题(本大题共7小题,共52.0分)17. 计算:√18−√32+√2(√2+1).(本小题6.0分)18. 计算:(12)−1+(π−3)0−√12×√33.(本小题6.0分)19. (本小题8.0分)如图,已知AD =4,CD =3,∠ADC =90°,AB =13,∠ACB =90°,求图形中阴影部分的面积.20. (本小题8.0分)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC 的延长线交于F . (1)求证:四边形ABFC 是平行四边形;(2)若AF 平分∠BAD ,∠D =60°,AD =8,求▱ABCD 的面积.21. (本小题8.0分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF .(2)求证:四边形EBFD 是平行四边形.22. (本小题8.0分)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD 中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,若EP平分∠AEC,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.23. (本小题8.0分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“√”去掉于是二次根式除法可以这样解:如√3=√3√3√3=√33,√22−√2=√2)2(2−√2)(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3用“>”、“<”或“=”填空);(2)已知x=√5+2√5−2y=√5−2√5+2,求x−yx2y+xy2的值;(3)计算:3+√35√3+3√57√5+5√7⋯+99√97+97√99答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】A9.【答案】310.【答案】011.【答案】4912.【答案】313.【答案】∠A=90°(答案不唯一)14.【答案】415.【答案】1016.【答案】−1202317.【答案】解:原式=3√2−4√2+2+√2=2.18.【答案】解:原式=2+1−√12×33=3−√363=3−63=3−2=1.19.【答案】解:在Rt△ABC中,AD=4,CD=3,∴AC=√AD2+CD2=5.在△ABC中,AB=13,AC=5,∠ACB=90°.∴BC=√AB2−AC2=12..20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠ABE=∠FCE,∵点E是BC边的中点,∴BE=CE,在△ABE和△FCE中,{∠ABE=∠FCE BE=CE∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF,又∵AB//CF,∴四边形ABFC是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,BC=AD=8,AD//BC,∴∠BEA=∠DAE,∵AF平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BA=BE=12BC=CE=4,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,∵AE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC⊥AB,AC=√BC2−AB2=√82−42=4√3,∴▱ABCD的面积=AB⋅AC=4×4√3=16√3.21.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2,∴∠5=∠6,∵在△ADE与△CBF中,{∠3=∠4 AD=BC ∠5=∠6,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE//BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.22.【答案】解:(1)当t=3时,DE=3,而CD=4,由勾股定理得,CE=5,∵四边形ABCD是长方形,∴AB=CD,AD=BC,AD//BC,∴∠AEP=∠CPE,∵EP平分∠AEC,∴∠AEP=∠CEP,∴∠CPE=∠CEP,∴CP=CE=5,CP=BC−BP,即9−3a=5,∴a=43;(2)当a=1时,由运动过程可知,DE=t,BP=t,∴CP=9−t,在Rt△CDE中,CE2=CD2+DE2=16+t2,△CEP是以CE为腰的等腰三角形,分情况讨论:∴①CE=CP,∴16+t2=(9−t)2,∴t=65,18②CE=PE,CP=DE,由等腰三角形的性质,得12于是,9−t=2t,∴t=3,;即:t的值为3或6518(3)如图,由运动过程知,BP=at,DE=t,∴CP=BC−BP=9−at,∵点C与点E关于DP对称,∴DE=CD,PE=PC,∴t=4,∴BP=4a,CP=9−4a,DE=4,过点P作PF⊥AD于F,∴四边形CDFP是长方形,∴PF=CD=4,DF=CP,在Rt△PEF中,PF=4,EF=DF−DE=9−4a−4=5−4a,根据勾股定理得,PE2=EF2+PF2=(5−4a)2+16,PE2=PC2∴(5−4a)2+16=(9−4a)2,∴a=54.23.【答案】解:(1)>;(2)∵x=√5+2√5−2=(√5+22(√5+2)(√5−2)=5+4√5+4=9+4√5,y=√5−2√5+2=(√5−22(√5+2)(√5−2)=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=(9+4√5)(9−4√5)=81−80=1,∴x−y x2y+xy2=x−yxy(x+y)=8√51×18=4√59;3+√35√3+3√57√5+5√7+⋯99√97+97√99=√3)(3+√3)(3−√3)+√3√5)(5√3+3√5)(5√3−3√5)√97√99(7√5+5√7)(7√5−5√7)+⋯+√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√1133.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第13题图)八年级第二学期期中考试数学试卷一、填空题(本大题共12题,每题2分,满分24分) 1. 直线7-=x y 在y 轴上的截距是 . 2. 已知一次函数221)(+=x x f ,则=-)2(f . 3. 将直线42--=x y 向上平移5个单位,所得直线的表达式是 . 4. 一次函数15-=x y 的图像不经过第 象限.5. 已知:点),1(a A -、),1(b B 在函数m x y +-=2的图像上,则a b (在横线上填写“>”或“=”或“<”).6. 如果关于x 的方程3)1(=-x a 有解,那么字母a 的取值范围是 .7. 二项方程016215=-x 的实数根是 . 8. 用换元法解分式方程23202x x x x ---=-时,如果设2x y x-=,则原方程可化为关于y 的整式方程是_________________________.9. 方程2)1(-⋅+x x =0的根是 .10.把方程组⎪⎩⎪⎨⎧=+-=+065,52222y xy x y x 化成两个二元二次方程组是 . 11.如果3=x 是方程xkx x --=-323的增根,那么k 的值为___________. 12.某商品原价为180元,连续两次提价x %后售价为300元,依题意可列方程: .二、选择题:(本大题共6题,每题3分,满分18分) 13.一次函数b kx y +=的图像如图所示,当3>y 时,x 的取值范围是( (A )0<x ; (B )0>x ; (C )2<x ; (D )2>x . 14.下列关于x 的方程中,有实数根的是( ) (A )0322=++x x ;(B )023=+x ;(C )111-=-x x x ;(D )032=++x . 15.下列方程组中,属于二元二次方程组的为( )(A )⎩⎨⎧=-=+20y x y x ; (B )⎪⎪⎩⎪⎪⎨⎧-=-=+432321yxy x ; (C )⎪⎩⎪⎨⎧=+=+11y x y x ; (D )⎩⎨⎧==423xy x .16.一个多边形的内角和是外角和的2倍,则这个多边形是( )(A )四边形; (B )五边形; (C )六边形; (D )八边形.17.方程组⎩⎨⎧=-=-ky x y x 2,22有实数解,则k 的取值范围是( )(A )3≥k ; (B )3=k ; (C )3<k ; (D )3≤k .18.一次函数1+=x y 的图像交x 轴于点A ,交y 轴于点B .点C 在x 轴上,且使得△ABC 是等腰三角形,符合题意的点C 有( )个(A )2; (B )3; (C )4; (D )5. 三、简答题(本大题共4题,每题8分,满分32分)19.已知一次函数的图像经过点)2,3(-M ,且平行于直线14-=x y . (1)求这个函数图像的解析式;(2)所求得的一次函数的图像与坐标轴围成的三角形的面积. 解:20.解方程:11211-+=-x x . 21.解方程:x x =--326. 解: 解:22.解方程组:⎩⎨⎧=-=-.53,15922y x y x解:四、解答题(本大题共3题,满分26分)23.(本题满分9分)某校青年老师准备捐款3600元为敬老院的老年人购买一台电脑,这笔钱大家平均承担.实际捐款时又多了2名教师,因为购买电脑所需的总费用不变,于是每人少捐90元.问共有多少人参加捐款?原计划每人捐款多少元?. 解:24.(本题满分9分)一个水槽有进水管和出水管各一个,进水管每分钟进水a 升,出水管每分钟出水b 升.水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x (分)与水槽内的水量y (升)之间的函数关系(如图所示). (1)求a 、b 的值;(2)如果在20分钟之后只出水不进水,求这段时间内y 关于x 的函数解析式及定义域.解:25.(本题满分8分,公办学校的同学只需完成前3个小题即可,第(..4.)小题为附加题,仅.........供民办学校选用.......,具体评分标准见参考..........答案..) 已知一次函数643+-=x y 的图像与坐标轴交于A 、B 点(如图),AE 平分BAO ∠,交x 轴于点E .(1)求点B 的坐标;(2)求直线AE 的表达式;(3) 过点B 作AE BF ⊥,垂足为F ,联结OF ,试判断△OFB 的形状,并求△OFB 的面积.(4)若将已知条件“AE 平分BAO ∠,交x 轴于点E ”改变为“点E 是线段OB 上的一个动点(点E 不与点O 、B 重合)”,过点B 作AE BF ⊥,垂足为F .设x OE =,y BF =,试求y 与x 之间的函数关系式,并写出函数的定义域.八年级第二学期期中考试数学试卷参考答案一、填空题(本大题共12题,每题2分,满分24分)1、7-;2、1;3、12+-=x y ;4、二;5、b a >;6、1≠a ;7、2=x ;8、0322=--y y ;9、2=x ;10、⎩⎨⎧=-=+02,522x x y x ,⎩⎨⎧=-=+03,522x x y x ;11、3;12、300%11802=+)(x . 二、选择题:(本大题共6题,每题3分,满分18分)13、A ;14、B ;15、D ;16、C ;17、D ;18、C.三、简答题(本大题共4题,每题8分,满分32分) 19、解:(1)设所求一次函数的解析式为b kx y +=.因为直线b kx y +=与直线14-=x y 平行,所以 4=k .……………………2分 因为直线b kx y +=经过点)2,3(-M ,又4=k ,所以2)3(4=+-⨯b . 解得 14=b .所以,这个函数的解析式为144+=x y .…………………………………………2分 (2)设直线144+=x y 分别与x 轴、y 轴交于A 、B 点. 令0=x ,得14=y ,)14,0(B ;令0=y ,得27-=x ,)0,27(-A .…………2分 所以24914272121=⨯-⨯=⋅⋅=∆OB OA S ABO .…………………………………2分 20、解:方程两边同时乘以)1)(1(x x +-,得 …………………………………1分)1)(1()1(21x x x x -+--=+. …………………………………1分整理,得 032=-x x . …………………………………2分 解这个整式方程,得 01=x ,32=x . …………………………………2分 经检验知01=x ,32=x 均为原方程的根. …………………………………1分 所以,原方程的根是01=x ,32=x . …………………………………1分 21、解:原方程可变形为326-=-x x .方程两边平方,得 )3(4)6(2-=-x x .…………………………………2分 整理,得 048162=+-x x . …………………………………1分解这个方程,得 41=x ,122=x . …………………………………2分检验:把4=x 分别代入原方程的两边,左边=43426=--,右边=4,左边=右边,可知4=x 是原方程的根. …………………………………1分把12=x 分别代入原方程的两边,左边=031226=--,右边=12,左边≠右边,可知12=x 是增根,应舍去. …………………………………1分所以,原方程的根是4=x . …………………………………1分22、解:⎩⎨⎧=-=-.53,15922y x y x由方程①,得 15)3)(3(=-+y x y x ③ …………………………1分 方程③÷②,得 3)3(=+y x ④ …………………………2分于是原方程组可化为⎩⎨⎧=-=+5333y x y x …………………………2分解这个二元一次方程组,得⎪⎩⎪⎨⎧-==31,4y x . …………………………2分所以,原方程组的解为⎪⎩⎪⎨⎧-==31,4y x . …………………………1分其他方法,请参照评分.四、解答题(本大题共3题,满分26分)23、解:设实际共有x 人参加捐款,那么原来有)2(-x 人参加捐款,实际每人捐款x3600(元),原计划每人捐款23600-x (元). …………………………1分 依据题意,得90360023600=--x x . 即140240=--xx . …………………………2分 两边同乘以)2(-x x ,再整理,得 08022=--x x .解得 101=x ,82-=x . …………………………2分 经检验,101=x ,82-=x 都是原方程的根,但人数不能为负数,所以取10=x . …………………………1分①②当10=x 时,450210360023600=-=-x (元). …………………………1分 答:共有10人参加捐款,原计划每人捐款450元. ……………………1分备注:其他方法,请参照评分. 24、解:(1)由图像得知:水槽原有水5升,前5分钟只进水不出水,第5分钟时水槽实际存水20升.水槽每分钟进水a 升,于是可得方程:2055=+a .解得3=a .……2分.(说明:只写出了结论,也可以给2分.)按照每分钟进水3升的速度,15分钟应该进水30升,加上第20分钟时水槽内原有的35升水,水槽内应该存水65升.实际上,由图像给出的信息可以得知:第20分钟时,水槽内的实际存水只有35升,因此15分钟的时间内实际出水量为:65-35=30(升).依据题意,得方程:3015=b .解得 2=b .…………………………………………2分. (说明:只写出了结论,也可以给2分.)(2)按照每分钟出水2升的速度,将水槽内存有的35升水完全排出,需要17.5分钟.因此,在第37.5分钟时,水槽内的水可以完全排除.设第20分钟后(只出水不进水),y 关于x 的函数解析式为b kx y +=.将(20,35)、(37.5,0)代入b kx y +=,得⎩⎨⎧=+=+05.37,3520b k b k ……………………2分(说明:只写对了其中的一个方程,得1分.) 解这个方程,得⎩⎨⎧=-=752b k . ……………………1分因此,所求的函数关系式为752+-=x y ,(5.3720≤≤x )……………………2分 (说明:定义域,1分.若写成5.3720<<x 或5.3720≤<x 或5.3720<≤x ,本次考试也可以得1分,但在讲评试卷时,必须明确5.3720≤≤x 的由来.)25.(本题满分8分,第(..4.)小题为附加题,仅供民办学校选用................,具体评分标准见参考答案............) 公办学校的评分标准:第(1)小题2分,第(2)小题3分,第(3)小题3分.民办学校的评分标准:第(1)小题2分,第(2)小题2分,第(3)小题2分,第(3)小题2分.(成绩较好的学生,应该有40分钟左右的时间解答第25题) 解:(1)对于643+-=x y ,当0=x 时,6=y ;当0=y 时,8=x .易得6=OA 、8=OB 、10=AB 、)6,0(A 、)0,8(B .…………2分(2)过点E 作AB EG ⊥,垂足为G (如图所示).由AE 平分BAO ∠,易得OE EG =,AGE AOE ∆≅∆,AO AG =.设x OE =,由题意可得 x EG =,x BE -=8,4610=-=-=AG AB BG .在BEG Rt ∆中,由勾股定理得222)8(4x x -=+,解得 3=x ,58=-x .进而得 )0,3(E .……………1分设直线AE 的表达式为b kx y +=.将(0,6)、(3,0)代入b kx y +=,得⎩⎨⎧=+=03,6b k b ,解得⎩⎨⎧-==2,6k b .因此,直线AE 的表达式为62+-=x y .…………………………2分(民办学校1分) (3)延长BF 交y 轴于点K (如图2). 由AE 平分BAO ∠,AE BF ⊥易证ABK AFK ≅∆, FB FK =,BF BK OF ==21. 所以,OFB ∆为等腰三角形.………………1分 过点F 作OB FH ⊥,垂足为H (如图2)因为BF OF =,OB FH ⊥,所以4==BH OH . 由此易得F 点的横坐标为4,可设)4(y F ,,将)4(y F ,代入62+-=x y ,得 2-=y .故 2=FH ,8282121=⨯⨯=⋅⋅=∆FH OB S OBF .…………2分(民办学校1分). 本题可能还有以下方法:方法2:利用AO BE S BF AE ABE ⋅==⋅∆2121求出BF ,然后在BEF Rt ∆中利用勾股定理求出22BF BE EF -=,再利用BF EF S BE FH BEF ⋅==⋅∆2121求出FH .若有学生使用相似三角形或锐角三角比等知识给出解答,只要思路正确,也可以参照上述标准评分.(4)36222+=+=x OA OE AE ,x BE -=8.利用AO BE S BF AE ABE ⋅==⋅∆2121,易得36)8(62+-=⋅=x x AE AO BE BF .……1分 其中,80<<x .……………………………………1分.。

相关文档
最新文档