2021年全国高考理科数学试题分类汇编:不等式选讲

合集下载

2021年高考数学分项汇编 专题07 不等式(含解析)文

2021年高考数学分项汇编 专题07 不等式(含解析)文

2021年高考数学分项汇编专题07 不等式(含解析)文一.基础题组1. 【xx课标全国Ⅱ,文3】设x,y满足约束条件则z=2x-3y的最小值是( ).A.-7 B.-6 C.-5 D.-3【答案】:B2. 【xx全国新课标,文5】已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(,2) B.(0,2)C.(,2) D.(0,)【答案】A3. 【xx全国2,文2】不等式<0的解集为( )A.{x|-2<x<3} B.{x|x<-2}C.{x|x<-2或x>3} D.{x|x>3}【答案】:A【解析】原不等式等价于(x-3)(x+2)<0,解得-2<x<3.4. 【xx全国2,文5】若变量x,y满足约束条件则z=2x+y的最大值为( )A.1 B.2 C.3 D.4【答案】:C5. 【xx全国2,文5】不等式>0的解集是( )(A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞)【答案】:C【解析】 .二.能力题组1. 【xx全国2,文9】设,满足约束条件则的最大值为()(A)(B)(C)(D)【答案】B【解析】画出可行域,如图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故只需将直线经过可行域,尽可能平移到过A点时,取到最大值.,得,所以.xyx-3y+3=0x+y-1=0x-y-1=0–1–2–3–41234–1–2–3–41234AO2. 【xx全国新课标,文9】设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}【答案】:B3. 【xx全国3,文16】已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是AB上的点,则点P到AC、BC的距离乘积的最大值是【答案】12三.拔高题组1. 【xx全国新课标,文11】当0<x≤时,4x<log a x,则a的取值范围是( )A.(0,) B.(,1)C.(1,) D.(,2)【答案】 B2. 【xx全国新课标,文11】已知ABCD的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在ABCD的内部,则z=2x-5y的取值范围是( )A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 【答案】:B-`;35306 89EA 觪-31372 7A8C 窌 q^] 38346 95CA 闊。

2021年全国高考数学人教新版特色专题:不等式选讲-(讲义教师版)

2021年全国高考数学人教新版特色专题:不等式选讲-(讲义教师版)

不等式选讲知识集结知识元绝对值不等式的解法不等式的证明知识讲解1.不等式的证明【知识点的知识】证明不等式的基本方法:1、比较法:(1)作差比较法①理论依据:a>b⇔a﹣b>0;a<b⇔a﹣b<0.②证明步骤:作差→变形→判断符号→得出结论.注:作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.(2)作商比较法①理论依据:b>0,>1⇒a>b;b<0,<1⇒a<b;②证明步骤:作商→变形→判断与1的大小关系→得出结论.2、综合法(1)定义:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得到命题成立,这种证明方法叫做综合法.综合法又叫做推证法或由因导果法.(2)思路:综合法的思索路线是“由因导果”,也就是从一个(组)已知的不等式出发,不断地用必要条件代替前面的不等式,直至推导出要求证明的不等式.3、分析法(1)定义:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.(2)思路:分析法的思索路线是“执果索因”,即从要证的不等式出发,不断地用充分条件来代替前面的不等式,直到打到已知不等式为止.注:综合法和分析法的内在联系是综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证明的思路,用综合法叙述、表达整个证明过程.4、放缩法(1)定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种证明方法称为放缩法.(2)思路:分析证明式的形式特点,适当放大或缩小是证题关键.常用的放缩技巧有:例题精讲不等式的证明例1.(2021春∙中山市期末)求证:【答案】详见解析【解析】题干解析:证明:,即证明,左右两边同时平方,左边=,右边=,则左边>右边即所以。

近五年(2017-2021)高考数学真题分类汇编14 不等式选讲【含答案】

近五年(2017-2021)高考数学真题分类汇编14 不等式选讲【含答案】
所以 的解集包含 ,等价于当 时 .
又 在 的最小值必为 与 之一,所以 且 ,得 .
所以 的取值范围为 .
小结:形如 (或 )型的不等式主要有两种解法:
(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为 , , (此处设 )三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.
(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max ,从而可得m的取值范围.
【解析】
解:(1)∵f(x)=|x+1|﹣|x﹣2| ,f(x)≥1,
∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;
当x>2时,3≥1恒成立,故x>2;
【解析】
(1)当 时, .
当 时, ,解得: ;
当 时, ,无解;
当 时, ,解得: ;
综上所述: 的解集为 或 .
(2) (当且仅当 时取等号),
,解得: 或 ,
的取值范围为 .
【小结】
本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.
4.(1)解析解析;(2) .
【分析】
【解析】
(1)
当且仅当 时取等号
,即:
(2) ,当且仅当 时取等号
又 , , (当且仅当 时等号同时成立)

【小结】
本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.
9.4
【解析】
分析:根据柯西不等式 可得结果.
(2)若不等 的解集包含[–1,1],求 的取值范围.

2021年高考数学分项汇编 专题7 不等式(含解析)理

2021年高考数学分项汇编 专题7 不等式(含解析)理

2021年高考数学分项汇编专题7 不等式(含解析)理一.基础题组1. 【xx全国卷Ⅰ,理3】不等式||<1的解集为…()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|-1<x<0}D.{x|x<0}【答案】:D2. 【xx全国,理14】设x,y满足约束条件130,x yx yxy≥⎧⎪≤⎪⎨≥⎪⎪≥⎩--,+,,,则z=x-2y的取值范围为__________.【答案】:[-3,3]3. 【xx全国1,理13】若满足约束条件则的最大值为.【答案】:9.4. 【xx全国,理14】设,式中变量x、y满足下列条件则z的最大值为。

【答案】115. 【xx 全国1,理13】若正整数m 满足)3010.02.(lg ________,102105121≈=<<-m mm 则【答案】155二.能力题组1. 【xx 课标Ⅰ,理9】不等式组的解集为D,有下面四个命题:, ,,其中的真命题是( )A .B . C. D .【答案】B x y–1–2–3–41234–1–2–3–41234O A2. 【xx 全国1,理9】在坐标平面上,不等式组所表示的平面区域的面积为( )A.B.C.D.【答案】B3. 【xx高考新课标1,理15】若满足约束条件,则的最大值为 .【答案】3【考点定位】线性规划解法三.拔高题组1. 【2011全国新课标,理13】若变量x,y满足约束条件则z=x+2y的最小值为__________.【答案】-634017 84E1 蓡36611 8F03 較22408 5788 垈25533 63BD 掽32762 7FFA 翺21068 524C 剌L]L26426 673A 机 36249 8D99 趙:31784 7C28 簨31869 7C7D 籽。

高考真题分类汇编:不等式详解 试题

高考真题分类汇编:不等式详解 试题

智才艺州攀枝花市创界学校2021年普通高等招生全国统一考试数学分类汇编第六章不等式一、选择题〔一共15题〕1.〔卷〕不等式112x<的解集是〔〕A.(,2)-∞B.(2,)+∞C.(0,2)D.(,2)-∞⋃(2,)+∞解:由112x<得:11222xx x--=<,即(2)0x x-<,应选D。

2.〔卷〕设a、b、c是互不相等的正数,那么以下等式中不恒成立的是〔A〕||||||cbcaba-+-≤-〔B〕aaaa1122+≥+〔C〕21||≥-+-baba〔D〕aaaa-+≤+-+213【思路点拨】此题主要考察.不等式恒成立的条件,由于给出的是不完全提干,必须结合选择支,才能得出正确的结论。

【正确解答】运用排除法,C选项21≥-+-baba,当a-b<0时不成立。

【解后反思】运用公式一定要注意公式成立的条件假设)""(2R,,22号时取当且仅当那么==≥+∈baabbaba假设a,b是正数,那么).""(2号时取当且仅当==≥+baabba3.〔卷〕假设a0,b0,那么不等式-b 1x a等价于〔〕A .1b-x 0或者0x1a B.-1ax1b-1a 或者x 1b1b -或者x 1a解:应选D 4.〔卷〕设f(x)=1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩那么不等式f(x)>2的解集为(A)〔1,2〕⋃〔3,+∞〕(B)〔10,+∞〕(C)〔1,2〕⋃〔10,+∞〕(D)〔1,2〕解:令12x e-2〔x 2〕,解得1x2。

令23log (1)x -2〔x 2〕解得x 〔10,+∞〕选C5.(卷)不等式(x+y)(+)≥9对任意正实数x,y 恒成立,那么正实数a 的最小值为() A.2B.4 C.6解析:不等式(x+y)(1a x y +)≥9对任意正实数x ,y 恒成立,那么1y axa x y +++≥21a a ++≥9,a 2a ≤-4(舍去),所以正实数a 的最小值为4,选B .6.(卷)函数f(x)=ax2+2ax+4(0<a<3),假设x1<x2,x1+x2=1-a,那么() A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定 解析:函数f(x)=ax2+2ax+4(0<a<3),二次函数的图象开口向上,对称轴为1x=-,0<a<3,∴x1+x2=1-a ∈(-2,1),x1与x2的中点在(-1,21)之间,x1<x2,∴x2到对称轴的间隔大于x1到对称轴的间隔,∴f(x1)<f(x2),选A .7.(卷)函数f(x)=ax2+2ax+4(a>0),假设x1<x2,x1+x2=0,那么()11bxb 001xx ba 11ax xa 0x x 1x 0x x bx 1011bx xx 1ax 01baxx 0a⎧⎧⎪⎪⎪⎪⇔⇔⎨⎨⎪⎪⎪⎪⎩⎩⎧⎪⎧⎪⇔⇔⇒⎨⎨⎩⎪⎪⎩++---或-(+)-或(-)或A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定解析:函数f(x)=ax2+2ax+4(a>0),二次函数的图象开口向上,对称轴为1x=-,a>0,∴x1+x2=0,x1与x2的中点为0,x1<x2,∴x2到对称轴的间隔大于x1到对称轴的间隔,∴f(x1)<f(x2),选A.8.(卷)设x,y为正数,那么(x+y)(+)的最小值为()A.6B.9C.12解析:x,y为正数,(x+y)(14x y+)≥414y xx y+++≥9,选B.9.(卷)假设关于x的不等式xk)1(2+≤4k+4的解集是M,那么对任意实常数k,总有〔〕〔A〕2∈M,0∈M;〔B〕2∉M,0∉M;〔C〕2∈M,0∉M;〔D〕2∉M,0∈M.解:选〔A〕方法1:代入判断法,将2,0x x==分别代入不等式中,判断关于k的不等式解集是否为R;方法2:求出不等式的解集:xk)1(2+≤4k+4422min222455(1)2[(1)2]2111kx k x kk k k+⇒≤=++-⇒≤++-=+++;10.(卷)假设0,0a b<>,那么,以下不等式中正确的选项是〔〕〔A〕11a b<〔B<〔C〕22a b<〔D〕||||a b>解:假设0,0a b<>,那么110,0a b<>,∴11a b<,选A.11.〔卷〕“a>b>c〞是“ab<222ba+〞的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不允分也不必要条件【考点分析】此题考察平方不等式和充要条件,根底题。

2021年普通高等学校招生全国统一考试数学(理科)试题(附答案详解)

2021年普通高等学校招生全国统一考试数学(理科)试题(附答案详解)

2021年普通高等学校招生全国统一考试数学(理科)试题一、单选题(本大题共12小题,共60.0分)1.设集合M={x|0<x<4},,则M∩N=()A. B. {x|13⩽x<4} C. D. {x|0<x⩽5} 2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知,则A. −1−32i B. C. D. −32−i4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(√1010≈1.259)()A. 1.5B. 1.2C. 0.8D. 0.65.已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60∘,|PF1|=3|PF2|,则C的离心率为( )A. √72B. √132C. √7D. √136.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A−EFG后,所得多面体的三视图中,正视图如右图所示,则相应的侧视图是( )A. B. C. D.7.等比数列{a n}的公比为q,前n项和为S n设甲:q>0,乙:{S n}是递增数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8.2020年12月8日,中国和尼泊尔联合公布珠程朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程则量方法之一.右图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影A′,B′,C′满足∠A′C′B′=45∘,∠A′B′C′=60∘.由C点测得B点的仰角为15∘,BB′与CC′的差为100;由B 点测得A点的仰角为45∘,则A,C两点到水平面A′B′C′的高度差AA′−CC′约为(√3≈1.732)( )A. 346B. 373C. 446D. 4739.若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( )A. √1515B. √55C. √53D. √15310.将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A. 13B. 25C. 23D. 4511.已知A,B,C是半径为1的球О的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O−ABC的体积为( )A. √212B. √312C. √24D. √3412.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f(92)=( )A. −94B. −32C. 74D. 52二、单空题(本大题共4小题,共20.0分)13.曲线y=2x−1x+2在点(−1,−3)处的切线方程为_______________.14.已知向量a⃗=(3,1),b⃗ =(1,0),若a⃗⊥c⃗,则k=______.15.已知F1,F2为椭圆C:x216+y24=1两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为______.16.已知函数f(x)=2cos(ωx+φ)的部分图像如图所示,则满足条件(f(x)−f(−7π4))(f(x)−f(4π3))>0的最小正整数x为______.三、解答题(本大题共7小题,共84.0分)17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),0.0500.0100.001k 3.841 6.63510.82818.已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.19.已知直三棱柱ABC−A1B1C1中,侧面AA1B1B为正方形.AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?20.抛物线C的顶点为坐标原点O,焦点在x轴上,直线L:x=1交C于P,Q两点,且已知点,且⊙M与L相切.(1)求C,⊙M的方程;(2)设是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.21.已知且a≠1,函数.(1)当时,求f(x)的单调区间;(2)若曲线与直线有且仅有两个交点,求a的取值范围.22. [选修4−4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cosθ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP ⃗⃗⃗⃗⃗ =√2 AM ⃗⃗⃗⃗⃗⃗ ,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.23. [选修4−5:不等式选讲]23、已知函数f(x)=|x −2|,g(x)=|2x +3|−|2x −1|. (1)画出y =f(x)和y =g(x)的图象; (2)若f(x +a)≥g(x),求a 的取值范围.答案和解析1.【答案】B【解析】【分析】简单的集合交并补运算,直接求解即可.【解析】由已知,结合交集的概念,可得M∩N={x|13⩽x<4};故选.2.【答案】C【解析】【分析】考查统计模块中的频率分布直方图,学生掌握频率分布直方图的相关概念和知识点,此题不难求解.【解析】对于答案A,由频率分布直方图,可得0.02+0.04= 0.06= 6%,故A正确;对于答案B,由频率分布直方图,可得0.02×3+0.04=0.10=10%,故B正确;对于答案D,由频率分布直方图,可得0.10+0.14+0.20×2=0.64=64%,故D正确;故选C.3.【答案】B【解析】【分析】复数模块,两边同除以(1−i)2后,再根据共轭复数定义,直接化简计算,难度不大.【解析】由(1−i)2z=3+2i,得z=3+2i(1−i)2=3+2i−2i=−1+32i,.4.【答案】C【解析】【分析】题干新颖,但考查的并不难,考查了指数和对数之间的互化,属于基础题.【解析】将L=4.9代入L=5+lg V,可得lg V=−0.1=−110.故V=10−110=√1010≈11.529≈0.8.故选.5.【答案】A【解析】【分析】本题考查双曲线离心率的求法,求解过程中用到了余弦定理,综合性较强,属于中等偏难一点题,在前6题中出现,是一个不小的挑战.【解析】因为|PF 1⃗⃗⃗⃗⃗⃗⃗ |=3|PF 2⃗⃗⃗⃗⃗⃗⃗ |, |PF 1⃗⃗⃗⃗⃗⃗⃗ |−|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a ,所以|PF 1⃗⃗⃗⃗⃗⃗⃗ |=3a , |PF 2⃗⃗⃗⃗⃗⃗⃗ |=a . 在ΔF 1PF 2中,. 可得(2c)2=(3a)2+a 2−2×3a ×a ×cos60∘,即e =c =√7. 故选A.6.【答案】D【解析】【分析】本题考查了三视图,但不是由三视图还原几何体,相对而言难度不是特别大,只要做出几何体直观图,便可直接画出侧视图.【解析】正视图与侧视图的高相等,能看见的用实线. 故选D .7.【答案】B【解析】【分析】本题是一道综合题,考查了数列和简易逻辑,简易逻辑考查的是充分必要条件,数列考查的是等比数列的单调性,考查点都不难.【解析】a =−1,q =2时,{ S n }是递减数列,所以甲不是乙的充分条件;若{ S n }是递增数列,则a n = S n − S n−1>0,可以推出q >0,故甲是乙的必要条件. 故选 B .8.【答案】B【解析】【分析】本题属于解三角形的范畴,题干复杂,做题时需要能提炼出有用信息,结合图去求解即可,整体上不失为一道好题,近年来大量的高考题和生活和文化相结合,是高考的命题方向,这道题很好的切合了最近几年的命题方向.【解析】过点C 作BB′垂线,交BB′于点M ,过点B 作AA′垂线,交AA′于点N ,设B′C′=CM =m,A′B′=BN =n.在ΔA′B′C′中,msin75=nsin45,在ΔCBM 中,msin75∘=100sin15∘, 联立两式求得n =√3−1≈273.可得A 、C 两点到水平面的高度差AA′−CC′约为273+100=373.故选B.9.【答案】A【解析】【分析】本题考查三角函数,做这道题需要用到弦切互化的技巧,以及同角三角函数关系的知识点,有一定的综合性,难度中等.【解析】由tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα.化简可得,sinα=14,tanα=√1515. 故选A.10.【答案】C【解析】【分析】本题考查的排列组合和概率,排列组合考察的是插空法,插空法是排列组合问题的基础求解方法,作为高考题非常合适,考察了学生的基本功.【解析】由将4个1和2个0随机排成一行共有C 62种,先将4个1全排列,再将2个0用插空法共有C 52种,则题目所求的概率为P =C 52C 62=23.故选C.11.【答案】A【解析】【分析】这道题考查了球体几何和三棱锥体积的求解,求出球心到平面的距离,此题迎刃而解.【解析】记▵ABC 的外接圆的圆心为O 1.由于AC⊥ BC,又球的半径为1,且AB=√2,OC=√22;所以OA=OB=OC=1,所以OA2+OB2=AB2,OO1=√22.于是OO12+O1C2=OC2,所以OO1⊥O1C,OO1⊥AB.进而OO1⊥平面ABC.所以V O−ABC=13×S ABC×OO1=13×12×1×1×√22=√212.故选A.12.【答案】A【解析】【分析】作为选择压轴题,这道题考查的是函数奇偶性和对称性、周期性的综合应用,有一定的难度,但求出的周期后,此题做的就基本差不多了,但整体而言,作为选择压轴题,还是很不错的.【解析】因为f(x+1)为奇函数,所以f(1)=0,即a+ b=0,所以b=− a.又f(0)= f(−1+1)=− f(1+1)=− f(2)=−4 a− b=−3 a.f(3)= f(1+2)= f(−1+2)=f(1)=0,由f(0)+ f(3)=6,得a=−2.f(92)=f(2+52)=f(2−52)=f(−12)=f(−32+1)=−f(32+1)=−f(12+2)=−f(−12+2)=−f(32)=−94a−b=−54a=52.故选A.13.【答案】【答案】y=2x+1.【解析】【分析】本题考查了利用导数研究函数的切线方程,是基础题.先根据函数解析式,得到导函数,再得到切线的斜率,即可得到结果.【解析】因为y=1−2x+2=xx+2,所以y′=x+2−x(x+2)2=2(x+2)2,所以曲线在点(−1,−1)处的切线斜率为2,所以所求切线方程为y+1=2(x+1),即y=2x+1.14.【答案】【答案】−32.【解析】【分析】本题考查向量的数量积的应用,向量的垂直,考查计算能力.利用已知向量表示c⃗=k a⃗+b⃗ ,通过a⃗⊥c⃗,向量的数量积为0,求解即可.【解析】a⃗=(1,1),b⃗ =(1,2),c⃗=k a⃗+b⃗ =(k+1,k+2),a⃗⊥c⃗,则k+1+k+2=0,解得k=−32.故答案为−32.15.【答案】【答案】16.【解析】【分析】本题考查椭圆方程应用,考查椭圆的性质,属基础题【解析】根据题意,可得|OP|=3,设P(x1,y1),所以x12+y12=9.又P在椭圆上,联立两方程,可求得|y1|=163,代入面积公式,即可求得答案解:因为P,Q是椭圆上关于原点对称的两个点,且|PQ|=6,所以|OP|=3,设P(x1,y1),所以x12+y12=9,又P在椭圆上,所以x1225+y1216=1,联立方程{x12+y12=9x1225+y1216,可得y12=2569,即|y1|=163,所以▵PF1F2的面积S=12⋅|F1F2|⋅|y1|=12×6×163=16.故答案为16.16.【答案】【答案】2.【解析】【分析】本题考查正弦型函数的图像和性质以及相关应用,需要由图求出正弦型函数的解析式,然后解一个一元二次不等式,得到的范围,最后求解的范围.【解析】34T=13π12−π3=34π,可得T=π,φ=2.将x=π3代入f(x)=cos(2x+φ),得cos(2π3+φ)=0.故2π3+φ=π2,即φ=−π6.所以f(x)=cos(2x−π6).保存编辑所以题目条件可转化为(f(x)−1)(f(x)+√3)>0.等价于f(x)>1,f(x)<−√3.从图像可以看出:x∈(π2,3π4).故答案为x=2.17.【答案】【答案】(1)P1=150200=0.75,P2=120200=0.6;(2)没有.【解析】【分析】统计和概率作为第一道大题,难度不大,第一问由表格数据和频率计算公式可以直接得到,非常简单,送分题,第二问考查卡方分布,也是直接套公式,这套卷子的第一道大题可以说是非常简单了.【解析】(1)设甲机床、乙机床生产的产品中一级品的频率分P1、P2;则有P1=150200=0.75,P2=120200=0.6.(2)根据列联表中数据,可得K²的观测值;K2=400(150×80−120×50)2200×200×270×130=40039≈10.256.因为10.256<10.828,所以没有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.18.【答案】【答案】▵.选择条件①和③.▵.选择条件①和②.▵.选择条件②和③.【解析】【解析】Ⅰ.选择条件①和③.数列{a n}是等差数列,a2=3a1,设公差为d.则a2=3a1=a1+d,即d=2a1.因为S n=na1+n(n−1)2d=n2a1,所以√n=n√a1(a1>0).故{√S n}是等差数列.Ⅱ.选择条件①和②.已知数列{a n}是等差数列,数列{√S n}是等差数列;则a n=a1+(n−1)d,S n=na1+n(n−1)2d=12n2d+(a1−d2)n.因为数列{√S n}是等差数列,则a1=d2,所以a2=a1+d=3a1.Ⅲ.选择条件②和③.已知数列{√S n}是等差数列,a2=3a1.因为s2=a1+a2=4a1,所以√s2−√s1=√4a1−√a1=√a1(a1>0).即{√S n}的公差d等于√a1,所以√s n=√a1+(n−1)d=n√a1.所以S n=n2a1,即数列{a n}是等差数列.19.【答案】【答案】(1)见解析;(2)√33.【解析】【分析】立体几何这道大题,以直三棱柱作为载体,第一问考查了线线垂直的证明,由线面垂直可以轻松得到线线垂直,第二问考查了二面角,建立空间直角坐标系,用空间向量去求解,求解的时候注意证明才能建立坐标系,整体而言,立体几何这道题比较常规.【解析】(1)因为E,F 是直三棱柱ABC −A 1B 1C 1中AC 和CC 1的中点,且AB =BC =2;所以CF =l,BF =√5.,,于是AF =3,所以AC =2√2,由AB 2+BC 2=AC 2,;于是,A(2,0,0),B(0,0,0),C(0,2,2),E(1,1,0),F(0,2,1). 设B 1D =m,则D(m,0,2).于是,BF =(0,2,1),DE =(1−m,1,−2).由BF⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =0,;(2)易知平面BB 1C 1C 的法向量为n ⃗ 1=(1,0,0),而DE =(1−m,1,−2),EF =(−1,1,1). 于是,平面DFE 的法向量n 2⃗⃗⃗⃗ =(3,m +1,2−m).于是cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ > =3√2(m−12)2+272. 当m =12时,面BB 1C 1C 与面DFE 所成的二面角的余弦值最大值为,故正弦值最小为.20.【答案】【答案】(1)C 的方程为y 2=x ,⊙M 的方程为(x −2)2+y 2=1;.【解析】【分析】圆锥曲线大题考查椭圆、双曲线、抛物线中最简单的一条抛物线;第一问求解抛物线方程和圆的方程难度不大;第二问考查设而不求的思路和韦达定理. 可以先把抛物线上的三个点(a 2,a)、(b 2,b)、(c 2,c)都设出来;根据两个相切条件,得到2=1,2=1;进一步得到b 和c 是(a 2−1)x 2+2ax −a 2+3=0的两根;接下来算出圆心到A2A3的距离为d=|2+bc|√1+(b+c)2;再由韦达定理可知b+c和bc,带入计算求出d=1,即可得到A2A3和圆相切.【解析】(1)C的方程为y2=x,⊙M的方程为(x−2)2+y2=1;(2)设A(x1,y1),B(x2,y2),C(x3,y3).当A1,A2,A3中有一个为坐标原点,另外两个点的横坐标的值均为3时,满足条件,且此时直线A2A3与⊙M也相切.当x1≠x2≠x3时,可知直线A1A2的方程为x−(y1+y2)y+y1y2=0,,即(y12−1)y22+2y1y2+3−y12=0;同理可得,(y12−1)y32+2y1y3+3−y12=0;由此可知,.依题意有,.M到直线A2A3的距离,d2=(|2+y1y2|√1+(y1+y2)2)2=(2+y1y2)21+(y1+y2)2=(2+3−y12y12−1)21+(−2y1y12−1)2=1..21.【答案】【答案】;(2)a∈(1,e)∪(e,+∞).【解析】【分析】导数作为压轴题的存在,考查了单调性和零点,第一问的单调性,难度不大,不含参数,不需要分类讨论;第二问交点问题最后转化成零点问题,构造函数后再看函数和直线相交的情况,构造出的函数不含参数,图像易得,最后求参数范围即可,这道导数压轴题和往年相比,相对难度不是特别大.【解析】(1)当a=2时,f(x)=x22x(x>0),求导f′(x)=x(2−xln2)2x(x>0),.令,即x>2ln 2,此时单调递减.单调递增区间为,单调递减区间为.(2)要使y=f(x)与y=1有2个交点,即x aa x =1有2解,故ln xx=ln aa有2解.令g(x)=ln x x,求导g′(x)=1−ln x x 2(x >0).令g ′(x)=0,解得x =e ,令g′(x)>0,即0<x <e,此时g(x)单调递增,,故g(x)max =g(e)=1e ,当x >e 时,g(x)∈(0,1e ). 因为g(1)=0,要使得条件成立.则0<ln a a<1.①当0<a <1,此时不符合条件. ②当1<a,g(x)max =g(e)=1e .故a ∈(1,e)∪(e,+∞).22.【答案】【答案】(1)曲线C 的直角坐标方程为(x −√2)2+y 2=2;(2)C 1的参数方程为{x =3+√2+2cos αy =2sin α(α为参数,且α∈[0,2π)).【解析】【分析】极坐标和参数方程这道题,作为选做题,难度不大,第一问考查极坐标方程和直角坐标方程的互化,较为基础;第二问考查了轨迹方程的求法,考查的是相关点法,求出直角坐标系下的方程后,进一步化成极坐标方程即可,由圆心距小于半径差可得两个圆为内含关系,本题整体难度不大,考查的较为基础. 【解析】(1)∵p =2√2 cos θ,∴p 2=2√2pcos θ.∵x =pcos θ,p =x 2+y 2,∴x 2+y 2=2√2x.即曲线C 的直角坐标方程为(x −√2)2+y 2=2.(2)设P 点坐标为(x,y),M 点坐标为(x ′,y′).则AP⃗⃗⃗⃗⃗ =(x −1,y),AM ⃗⃗⃗⃗⃗⃗ =(x ′−1,y′).∵AP ⃗⃗⃗⃗⃗ =√2AM ⃗⃗⃗⃗⃗⃗ ,∵M 为上的动点,∴(√2+1−√2)2+(√2)2=2.即(x −√2−3)2+y 2=4.故C 1的参数方程为{x =3+√2+2cos αy =2sin α(α为参数,且α∈[0,2π)).∴|CC 1|=3,r 1=2,r =√2. ∴r 1−r <|CC 1|<r 1+r.故C 与C 1有公共点.23.【答案】【答案】(1)见解析;.【解析】【分析】不等式选讲这道选做题,考查了绝对值函数图像的画法和含参绝对值不等式的求法,绝对值函数图像作图相对简单,含参绝对值不等式的求解,主要用到分类讨论的思想,分类讨论的时候需要注意不重不漏.(1)通过对x 分类讨论,写出分段函数的形式,画出图像即可得出. (2)由图像可得:f(6)=4,f(12)=4,若满足题意,那么就需把函数f(x)的图像向左或向右平移|a|个单位以后,f(x)的图像不在g(x)图像的下方,由图像观察可得出结论.【解析】(1)当x <−32时,2x +3<0,2x −1<0, 故g(x)=[−(2x +3)]−[−(2x −1)]=−4.当−32≤x ≤12时,2x +3≥0,2x −1≤0, 故g(x)=(2x +3)−[−(2x −1)]=4x +2.当x >12时,2x +3>0,2x −1>0, 故g(x)=(2x +3)−(2x −1)=4.综上,g(x)={4x +2,−32≤x <12−4,x<−324,x≥32 ,y=f(x)和y=g(x)的图象为:(2)由上可知,y=f(x+a)是函数y=f(x)左右平移|a|个单位得到.观察图像,不难发现函数y=f(x)向右平移不符合题意.函数y=f(x)向左平移至图像右支恰好经过点(12,4),此时为满足f(x+a)≥g(x)的临界状态.y=f(x+a)=|x−2|+a=x−2+a,代入点(12,4),可得a=112.由上可得,a的取值范围为[112,+∞).。

2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012-2021十年全国高考数学真题分类汇编(理科)不等式选讲(精解精析版)1.(2021年高考全国乙卷理科)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.解析:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.2.(2020年高考数学课标Ⅰ卷理科)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭.【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.3.(2020年高考数学课标Ⅱ卷理科)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .解析:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.4.(2020年高考数学课标Ⅲ卷理科)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析.解析:(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.1,,,abc a b c =∴ 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.5.(2019年高考数学课标Ⅲ卷理科)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a -≥.【答案】【答案】(1)43;(2)见详解.【官方解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤-++++⎣⎦故由已知得232(1)(1)143()x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以232(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦故由已知得2222(2)(2)(1)()3a x y z a +-+-+-,当且仅当4122,,333aa a x y z ---===时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +由题设知2(2)133a +,解得3a -≤或1a -≥.【解法2】柯西不等式法(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++-++++=+++=≥,故2224(1)(1)(1)3x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43.(2)2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当4122,,333aa a x y z ---===时等号成立.22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a -≥.【点评】本题两问思路一样,既可用基本不等式,也可用柯西不等式求解,属于中档题型.6.(2019年高考数学课标全国Ⅱ卷理科)已知函数()()2f x x a x x x a =-+--.()1当1a =时,求不等式()0f x <的解集;()2当(),1x ∈-∞时,()0f x <,求a 的取值范围.【答案】()1(),1-∞;()2[)1,+∞【官方解析】()1当1a =时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.()2因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----所以,a 的取值范围是[1,)+∞.【分析】()1根据1a =,将原不等式化为()1210x x x x -+--<,分别讨论1x <,12x <≤,2x ≥三种情况,即可求出结果;()2分别讨论1a ≥和1a <两种情况,即可得出结果.【解析】()1当1a =时,原不等式可化为()1210x x x x -+--<;当1x <时,原不等式可化为,即()210x ->,显然成立,此时解集为(),1-∞;当12x <≤时,原不等式可化为()()()1210x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为()()()1210x x x x -+--<,即()210x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(),1-∞;()2当1a ≥时,因为(),1x ∈-∞,所以由()0f x <可得()()()20a x x x x a -+--<,即()()10x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,()()()2,1()21,x a a x f x x a x x a-<⎧⎪=⎨--<⎪⎩≤,因为1a x <≤时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[)1,+∞.【点评】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.7.(2019年高考数学课标全国Ⅰ卷理科)已知a ,b ,c 为正数,且满足1abc =.证明:(1)222111a b c a b c++++≤;(2)333()()()24a b b c c a +++++≥.【答案】解:(1)因为2222222,2,2a b ab b c bc c a ac +++≥≥≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++++==++≥.所以222111a b c a b c++++≤.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥3(+)(+)(+)a b b c a c=324⨯⨯⨯=≥所以333()()()24a b b c c a +++++≥.8.(2018年高考数学课标Ⅲ卷(理))【选修4—5:不等式选讲】(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.【答案】【官方解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.【民间解析】(1)()211f x x x =++-3,112,12132x x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,可作出函数()f x的图象如下图(2)依题意可知()f x ax b ≤+在[)1,+∞上恒成立,在[)0,1上也恒成立当1x ≥时,()3f x x ax b =≤+恒成立即()30a x b -+≥在[)1,+∞上恒成立所以30a -≥,且30a b -+≥,此时3a ≥,3a b +≥当01x ≤<时,()2f x x ax b =+≤+即()120a x b -+-≥恒成立结合3a ≥,可知20b -≥即2b ≥综上可知32a b ≥⎧⎨≥⎩,所以当3a =,2b =时,a b +取得最小值5.9.(2018年高考数学课标Ⅱ卷(理))[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】解析:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +-⎧⎪=-<⎨⎪-+>⎩≤ ≤可得()0≥f x 的解集为{}|23≤≤x x -.(2)()1f x ≤等价于|||2|4≥x a x ++-.而|||2||2|≥x a x a ++-+,且当2x =时等号成立,故()1f x ≤等价于|2|4≥a +.由|2|4≥a +可得6≤a -或2≥a ,所以a 的取值范围是(][),62,-∞-+∞ .10.(2018年高考数学课标卷Ⅰ(理))[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【答案】解析:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].11.(2017年高考数学新课标Ⅰ卷理科)[选修4—5:不等式选讲]已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围2017年高考数学新课标Ⅰ卷理科【答案】(1)112x x ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭;(2)[]1,1-.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[]1,1x ∈-时,()2f x ≥,则()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤,所以a的取值范围为[]1,1-.【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--<①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤所以不等式()()f x g x ≥的解集为11712x x ⎧-+⎪-≤≤⎨⎪⎪⎩⎭(2)当[]1,1x ∈-时,()2g x =所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时,()2f x ≥又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()()1212f f -≥⎧⎪⎨≥⎪⎩,得11a -≤≤.所以a 的取值范围为[]1,1-.【考点】绝对值不等式的解法,恒成立问题【点评】零点分段法是解答绝对值不等式问题的常用方法,也可以将绝对值函数转化为分段函数,借助图像解题.12.(2017年高考数学课标Ⅲ卷理科)[选修4—5:不等式选讲](10分)已知函数()12f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(Ⅰ){}1x x ≥;(Ⅱ)5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)因为()3, 11221, 123, 2x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩所以不等式()1f x ≥等价于131x <-⎧⎨-≥⎩或12211x x -≤≤⎧⎨-≥⎩或231x >⎧⎨≥⎩由131x <-⎧⎨-≥⎩⇒x 无解;由1222x x -≤≤⎧⎨≥⎩12x ⇒≤≤;由231x >⎧⎨≥⎩2x ⇒≥综上可得不等式()1f x ≥的解集为[)1,+∞.(2)解法一:先求不等式()2f x x x m ≥-+的解集为空集时m 的取值范围不等式()2f x x x m ≥-+的解集为空集等价于不等式()2m f x x x >-+恒成立记()()2F x f x x x =-+2223, 131, 123, 2x x x x x x x x x ⎧-+-<-⎪-+-≤≤⎨⎪-++>⎩,则()maxm F x >⎡⎤⎣⎦当1x <-时,()()2211131524F x x x x F ⎛⎫=-+-=---<-=- ⎪⎝⎭当12x -≤≤时,()223535312424F x x x x F ⎛⎫⎛⎫=-+-=--+≤=⎪ ⎪⎝⎭⎝⎭当2x >时,()()2211332124F x x x x F ⎛⎫=-++=--+<= ⎪⎝⎭所以()max 3524F x F ⎛⎫==⎡⎤⎪⎣⎦⎝⎭所以不等式()2f x x x m ≥-+的解集为空集时,54m >所以不等式()2f x x x m ≥-+的解集非空时,m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.解法二:原式等价于存在x R ∈,使2()f x x x m -+≥成立,即2max [()]f x x x m-+≥设2()()g x f x x x=-+由(1)知2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-,其开口向下,对称轴112x =>-所以()()11135g x g ≤-=---=-当12x -<<时,()231g x x x =-+-,其开口向下,对称轴为32x =所以()399512424g x g ⎛⎫≤=-+-=⎪⎝⎭当2x ≥时,()23g x x x =-++,其开口向下,对称轴为12x =所以()()24231g x g ≤=-++=综上()max 54g x =⎡⎤⎣⎦所以m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.【考点】绝对值不等式的解法【点评】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.13.(2017年高考数学课标Ⅱ卷理科)[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤.【答案】【命题意图】不等式证明,柯西不等式【基本解法】(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b++=+++=+++-33233332()2()4a b a b a b ≥++-=+=解法三:()()()()()2555533553342a b a b a b a b a bab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b +-=-≥.当a b =时,等号成立.所以,()()5540a b a b++-≥,即55()()4a b ab ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2233()()()4()4a b a b a b a b ⎡⎤+≥+⋅+-⎢⎥⎣⎦+=所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤.解法三:因为332a b +=,所以:()()()3333322333843344a b a b a baa b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以:()()230a b a b -+-≤。

2021年高考数学理科试题分类汇编:不等式

2021年高考数学理科试题分类汇编:不等式

高考数学试题分类汇编
不等式
一. 选择题:
(A )[1,1]- (B )[2,2]- (C )[2,1]- (D )[1,2]-
2.(江西卷9)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是A
A .1122a b a b +
B .1212a a b b +
C .1221a b a b +
D .12 3.(陕西卷6)“18a =”是“对任意的正数x ,21a x x
+≥”的( A ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4.(浙江卷3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的D
(A )充分而不必要条件 (B )必要而不充分条件
5.(海南卷6)已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( B )
A.(0,1
1a ) B. (0,12a ) C. (0,31a ) D. (0,3
2a ) 二. 填空题:
2.(山东卷16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。

(5,7).
4.(江西卷14)不等式31122
x x -+≤的解集为 .(,3](0,1]-∞- 5.(广东卷14)(不等式选讲选做题)已知a ∈R ,若关于x 的方程2104x x a a ++-
+=
有实根,则a 的取值范围是 .10,4⎡⎤⎢⎥⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高考理科数学试题分类汇编16:不等式选讲
一、填空题
1 .(2013年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则
(am +bn )(bm +an )的最小值为_______.
【答案】2
2 .(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 【答案】[]0,4
3 .(2013年高考湖北卷(理))设
,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.
【答案】
3147
二、解答题
4 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:
(Ⅰ)13
ab bc ca ++≤; (Ⅱ)2221a b c b c a ++≥. 【答案】
5 .(2013年普通高等学校招生统一考试辽宁数学(理))选修4-5:不等式选讲
已知函数()f x x a =-,其中1a >.
(I)当=2a 时,求不等式()44f x x ≥=-的解集;
(II)已知关于x 的不等式()(){}
222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.
6 .(2013年普通高等学校招生统一考试福建数学(理))不等式选讲:设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12
A ∉. (1)求a 的值;
(2)求函数()2f x x a x =++-的最小值.
【答案】解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122
a -≥ 解得1322
a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=
当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3
7 .(2013年普通高等学校招生全国统一招生考试江苏卷)D.[选修4-5:不定式选讲]本小题满分10分.
已知b a ≥>0,求证:b a ab b a 223322-≥-
【答案】证明:∵=---b a ab b a 223322()=---)(223223b b a ab a ()
)(22222b a b b a a --- ()
)2)()(()2(22b a b a b a b a b a --+=--=
又∵b a ≥>0,∴b a +>0,0≥-b a 02≥-b a ,
∴0)2)()((≥--+b a b a b a
∴0222233≥---b a ab b a
∴b a ab b a 223322-≥-
8 .(2013年高考新课标1(理))选修4—5:不等式选讲
已知函数()f x =|21||2|x x a -++,()g x =3x +.
(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;
(Ⅱ)设a >-1,且当x ∈[
2a -,12)时,()f x ≤()g x ,求a 的取值范围. 【答案】当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,
设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩
, 其图像如图所示
从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.
(Ⅱ)当x ∈[2a -,12
)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2
a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,
43].
9.(2013年高考湖南卷(理))在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径
成为M 到N 的一条“L 路径”.如图6所示的路径1231MM M M N MN N 与路径都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上
方区域(包含x 轴)内的某一点P 处修建一个文化中心.
(I)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);
(II)若以原点O 为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度值和最小.
【答案】解: .0),,(≥y y x P 且设点
(Ⅰ) d L A P 路径”的最短距离的“到点点)20,3(,
|20 -y | + |3 -x |=+d 垂直距离,即等于水平距离,其中.,0R x y ∈≥
(Ⅱ)本问考查分析解决应用问题的能力,以及绝对值的基本知识.
点P 到A,B,C 三点的“L 路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v.且h 和v 互不影响.显然当y=1时,v = 20+1=21;时显然当]14,10[-∈x ,水平距离之和h=x – (-10) + 14 – x + |x-3| 24≥,且当x=3时, h=24.因此,当P(3,1)时,d=21+24=45.
所以,当点P(x,y)满足P(3,1)时,点P 到A,B,C 三点的“L 路径”长度之和d 的最小值为45.。

相关文档
最新文档