混床的结构及工艺原理

合集下载

混床的结构及工艺原理(PPT46页)

混床的结构及工艺原理(PPT46页)
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺 基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能 离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子 吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将 溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如 pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
相关分类
离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸 系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。 首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中 的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸 性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸 和中强碱性类)。
混床的结构及工艺原理
汽机分场:
混床的定义:
混床是混合离子交换柱的简称,是针对离子交换技术所设计的设备


壹 混床的结构 贰 混床的优点
叁 混床的工艺原理 肆 混床的运行操作
现在做离子水的工艺大致可分为三种:
第一种:采用阳阴离子交换树脂取得的去离子水,一般 通过之后, 出水电导率可降到10us/cm以下,再经过混床就可以达到1us/cm以 下了。但是这种方法做出来的水成本极高,而且颗粒杂质太多,达 不到理想的要求。目前已较少采用了。
第二种:预处理(即砂碳过滤器+精密过滤器)+反渗透+混床工艺, 这种方法是目前采用最多的,因为反渗透投资成本也不算高,可以 去除90%已上的水中离子,剩下的离子再通过混床交换除去,这样 可使出水电导率:0.06左右。这样是目前最流行的方法。
第三种:前处理与第二种方法一样使用反渗透,只是后面使用的混 床采用EDI连续除盐膜块代替,这样就不用酸碱再生树脂,而是用电 再生。这就彻底使整个过程无污染了,经过处理后的水质可达到: 15M以上。但这这种方法的前期投资比较多,运行成本低。根据各 公司的情况做适当的投资。最好不过了。

混床的结构及工艺原理分解

混床的结构及工艺原理分解


OH->柠檬酸根3->SO42->酒石酸根2->;草酸根2->PO43- >NO2->Cl->;醋酸根->HCO3-
离子交换设备

离子交换设备[1]是指离子交换过程常在离子交换器中进行。离子交 换器类似压力 滤池,外壳为一钢罐;离子交换通常采用过滤方式, 滤床由交换剂构成,底部为附有滤头的管系。 以离子交换剂上的可交换离子与液相中离子间发生交换为基础的分 离方法。广泛采用人工合成的离子交换树脂作为离子交换剂,它是 具有网状结构和可电离的活性基团的难溶性高分子电解质。根据树 脂骨架上的活性基团的不同,可分为阳离子交换树脂、阴离子交换 树脂、两性离子交换树脂、螯合树脂和氧化还原树脂等。用于离子 交换分离的树脂要求具有不溶性、一定的交联度和溶胀作用,而且 交换容量和稳定性要高。[2]
混床的结构及工艺原理
汽机分场:王振海
混床的定义:

混床是混合离子交换柱的简称,是针对离子交换技术所设计的设备

混床的结构


混床的优点



混床的工艺原理
混床的运行操作
现在做离子水的工艺大致可分为三种:

第一种:采用阳阴离子交换树脂取得的去离子水,一般 通过之后, 出水电导率可降到10us/cm以下,再经过混床就可以达到1us/cm以 下了。但是这种方法做出来的水成本极高,而且颗粒杂质太多,达 不到理想的要求。目前已较少采用了。

第二种:预处理(即砂碳过滤器+精密过滤器)+反渗透+混床工艺, 这种方法是目前采用最多的,因为反渗透投资成本也不算高,可以 去除90%已上的水中离子,剩下的离子再通过混床交换除去,这样 可使出水电导率:0.06左右。这样是目前最流行的方法。 第三种:前处理与第二种方法一样使用反渗透,只是后面使用的混 床采用EDI连续除盐膜块代替,这样就不用酸碱再生树脂,而是用电 再生。这就彻底使整个过程无污染了,经过处理后的水质可达到: 15M以上。但这这种方法的前期投资比较多,运行成本低。根据各 公司的情况做适当的投资。最好不过了。

混床工作原理

混床工作原理

混床工作原理混床是一种用于水处理的工艺,主要用于去除水中的溶解性固体、有机物和重金属等杂质。

混床通常由阳离子交换树脂床和阴离子交换树脂床组成,通过交换树脂对水中的离子进行吸附和交换,从而实现水质的净化。

混床的工作原理基于离子交换的原理。

阳离子交换树脂具有对阴离子具有选择性吸附的特性,而阴离子交换树脂则对阳离子具有选择性吸附的特性。

混床中的阳离子交换树脂床和阴离子交换树脂床相互混合,形成了一个复合床。

当水通过混床时,首先进入阳离子交换树脂床。

在阳离子交换树脂床中,阳离子会被树脂吸附,并与树脂上的H+离子进行交换。

这样,水中的阳离子被去除,而H+离子则被释放到水中。

接下来,水进入阴离子交换树脂床。

在阴离子交换树脂床中,阴离子会被树脂吸附,并与树脂上的OH-离子进行交换。

这样,水中的阴离子被去除,而OH-离子则被释放到水中。

最后,经过混床处理后的水中的阳离子和阴离子都被去除,而H+离子和OH-离子则结合形成水分子,从而实现水的净化。

混床的工作过程中需要定期进行再生。

再生过程中,通常使用酸和碱溶液对交换树脂进行清洗和再生。

酸溶液可以去除阳离子交换树脂上的吸附物,而碱溶液则可以去除阴离子交换树脂上的吸附物。

混床工艺在水处理中具有广泛的应用。

它可以有效去除水中的溶解性固体、有机物和重金属等污染物,提高水质。

同时,混床还可以用于水软化和去除硬度离子。

总结起来,混床工作原理是通过阳离子交换树脂床和阴离子交换树脂床的交替作用,将水中的阳离子和阴离子吸附并交换,从而实现水质的净化。

混床工艺在水处理中具有重要的应用价值,可以提高水质,满足人们对清洁水资源的需求。

混床的结构及工艺原理

混床的结构及工艺原理

混床的定义:
混床是混合离子交换柱的简称,是针对离子交换技术所设计的 下面先了解离子交换的相关知识。
离子交换
借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达 到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的 单元操作。离子交换是可逆的等当量交换反应。
以离子交换剂上的可交换离子与液相中离子间发生交换为基础的分 离方法。广泛采用人工合成的离子交换树脂作为离子交换剂,它是 具有网状结构和可电离的活性基团的难溶性高分子电解质。
离子交换反应是可逆的,而且等当量地进行
离子交换树脂可以再生。将交换耗竭的离子交换树脂和适当的酸、 碱或盐溶液发生交换,使树脂转化为所需要的型式,叫做再生。这 类酸、碱或盐就叫再生剂。
设备 离子交换过程常在离子交换器中进行。离子交换器类似压力滤 池,外壳为一钢罐;离子交换通常采用过滤方式,滤床由交换剂构 成,底部为附有滤头的管系 。
离子交换设备特性
离子交换[3]反应是可逆的,而且等当量地进行。由实验得 知,常温 下稀溶液中阳离子交换势随离子电荷的增高,半径的增大而增大; 高分子量的有机离子及金属络合阴离子具有很高的交换势。高极化 度的离子如Ag+、Tl+等也有高的交换势。离子交换速度随树脂交联 度的增大而降低,随颗粒的减小而增大。温度增高,浓度增大,交 换反应速率也增快。离子交换树脂可以再生。将交换耗竭的离子交 换树脂和适当的酸、碱或盐溶液发生交换,使树脂转化为所需要的 型式,叫做再生。这类酸、碱或盐就叫再生剂。[4]
离子树脂的转型
以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为 其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂 与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与 溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没 有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和 设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用 强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而 吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可 转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变 为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些 树脂的其他典型性能,如离解性强和工作的pH范围宽广等。

混床工作原理

混床工作原理

混床工作原理混床是一种常用的水处理工艺,主要用于去除水中的悬浮物、胶体物质和溶解有机物。

混床通常由砂滤层和活性炭滤层组成,其工作原理是通过物理和化学的作用,将水中的污染物质吸附和过滤掉,从而达到净化水质的目的。

1. 砂滤层砂滤层是混床的第一层,主要用于去除水中的悬浮物和胶体物质。

砂滤层由不同粒径的石英砂组成,粗砂层位于上部,细砂层位于下部。

当水通过砂滤层时,较大的颗粒会被砂层拦截下来,而较小的颗粒会通过砂层。

同时,砂滤层表面的微生物和氧化铁等也会起到一定的吸附作用,进一步净化水质。

2. 活性炭滤层活性炭滤层是混床的第二层,主要用于去除水中的溶解有机物和部分重金属离子。

活性炭是一种多孔性的吸附剂,具有很大的比表面积和吸附能力。

当水通过活性炭滤层时,有机物和重金属离子会被活性炭吸附到其表面,从而被去除。

活性炭滤层还可以去除水中的异色、异味和部分有害物质,提高水的口感和安全性。

3. 混床效果混床的工作原理是砂滤层和活性炭滤层的联合作用,能够有效去除水中的悬浮物、胶体物质、溶解有机物和部分重金属离子。

砂滤层主要去除较大的颗粒物质,而活性炭滤层主要去除溶解性物质和有机物。

两者的结合能够达到更好的净化效果,提高水质的清澈度和安全性。

4. 维护和更换混床在长时间使用后,砂滤层和活性炭滤层会逐渐饱和和污染,需要进行维护和更换。

维护包括定期清洗滤层和检修滤池设备,以保持滤层的吸附和过滤性能。

更换则是根据滤层的使用寿命和水质情况,定期更换砂滤层和活性炭滤层,以确保混床的正常运行和净化效果。

总结:混床工作原理是通过砂滤层和活性炭滤层的联合作用,去除水中的悬浮物、胶体物质、溶解有机物和部分重金属离子。

砂滤层主要去除较大的颗粒物质,而活性炭滤层主要去除溶解性物质和有机物。

混床能够提高水质的清澈度和安全性,但需要定期维护和更换滤层,以保持其净化效果。

混床工作原理

混床工作原理

混床工作原理混床工作原理是指在水处理工艺中,通过将两种或者多种不同粒径的过滤介质混合在一起,以增加过滤效果和处理水质的能力。

混床工作原理主要应用于水处理领域,例如给水处理、工业废水处理、污水处理等。

混床工作原理的基本思想是利用不同粒径的过滤介质,形成多个层次的过滤层,以增加过滤面积和截留能力。

这样可以更有效地去除水中的悬浮物、颗粒物、有机物、重金属等污染物质。

混床通常由粗颗粒的过滤介质和细颗粒的过滤介质组成,如砂石、活性炭、树脂等。

混床工作原理的具体过程如下:1. 水进入混床:水经过预处理后,进入混床系统。

预处理可以包括物理处理(如沉淀、过滤)和化学处理(如调节pH值、添加凝结剂)等。

2. 水通过粗颗粒过滤介质:水首先通过粗颗粒的过滤介质层,如砂石层。

这一层主要起到初步过滤的作用,去除较大的悬浮物和颗粒物。

3. 水通过细颗粒过滤介质:水从粗颗粒过滤介质层进入细颗粒过滤介质层,如活性炭层和树脂层。

这一层主要起到进一步过滤和吸附的作用,去除较小的悬浮物、有机物和重金属等。

4. 净化后的水出口:经过混床处理后,水中的污染物质被有效去除,净化后的水从混床系统的出口流出,用于后续的用途。

混床工作原理的优点包括:1. 高效过滤:通过混合不同粒径的过滤介质,可以增加过滤面积和截留能力,提高过滤效果。

2. 处理水质广泛:混床可用于处理各种类型的水,包括自来水、地下水、工业废水、污水等。

3. 适应性强:混床可以根据不同的水质和处理要求进行调整和优化,提高处理效果。

4. 维护方便:混床系统相对简单,维护和清洗比较方便。

然而,混床工作原理也存在一些限制和挑战:1. 成本较高:由于混床系统需要使用多种不同的过滤介质,造价相对较高。

2. 运行压力较大:由于混床系统需要通过过滤介质进行过滤,因此需要一定的运行压力,增加了能耗和设备成本。

3. 过滤介质的寿命有限:随着使用时间的增加,过滤介质会逐渐饱和和磨损,需要定期更换。

总之,混床工作原理是一种常用的水处理工艺,通过混合不同粒径的过滤介质,可以提高过滤效果和处理水质的能力。

混床的结构和工艺原理PPT培训课件

混床的结构和工艺原理PPT培训课件

树脂
树脂
树脂
强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中 离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如 SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的 H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸 性或碱性溶液中均能离解和产生离子交换作用。

相关分类
离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸 系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。 首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中 的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸 性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸 和中强碱性类)。
强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R 为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电 基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如 NaOH)进行再生。
弱碱性阴离子。在实际使用上,常将这些树脂转变为 其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂 与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与 溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没 有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和 设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用 强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而 吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可 转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变 为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些 树脂的其他典型性能,如离解性强和工作的pH范围宽广等。

混床工作原理

混床工作原理

混床工作原理混床是一种常见的水处理工艺,用于去除水中的溶解性离子和悬浮物,以提高水质。

混床通常由一个阳离子交换树脂床和一个阴离子交换树脂床组成,两个树脂床通过一定的装置连接在一起,形成一个混床。

混床的工作原理可以简单描述如下:1. 进水:水从进水口进入混床系统。

进水可以是自然流动的,也可以通过泵进行推动。

2. 分离:进水首先进入阳离子交换树脂床。

阳离子交换树脂具有吸附和交换功能,可以去除水中的阳离子,例如钙、镁、铁等。

当水通过阳离子交换树脂床时,阳离子会被树脂吸附,并与树脂上的交换阳离子交换位置,从而使水中的阳离子被去除。

3. 冲洗:当阳离子交换树脂床饱和时,需要进行冲洗操作以去除吸附在树脂上的阳离子。

冲洗可以使用反向流动的水来进行,也可以使用盐水溶液进行,以重新激活树脂。

4. 再分离:经过阳离子交换树脂床的处理后,水进入阴离子交换树脂床。

阴离子交换树脂具有类似的吸附和交换功能,可以去除水中的阴离子,例如硝酸盐、氯离子等。

水通过阴离子交换树脂床时,阴离子会被树脂吸附,并与树脂上的交换阴离子交换位置,从而使水中的阴离子被去除。

5. 再冲洗:当阴离子交换树脂床饱和时,需要进行冲洗操作以去除吸附在树脂上的阴离子。

冲洗方式与阳离子交换树脂床相似。

6. 出水:经过阴离子交换树脂床的处理后,水通过出水口排出。

此时,水中的大部分溶解性离子和悬浮物已被去除,水质得到改善。

混床工作原理的关键在于阳离子交换树脂和阴离子交换树脂的吸附和交换功能。

阳离子交换树脂通常是根据硫酸树脂或酚醛树脂制成,可以选择性地吸附和交换阳离子。

阴离子交换树脂通常是根据胺基树脂或聚丙烯酰胺树脂制成,可以选择性地吸附和交换阴离子。

混床工艺可以广泛应用于水处理领域,例如工业用水、饮用水、锅炉给水等。

通过混床工艺,可以有效去除水中的溶解性离子和悬浮物,提高水质,满足不同需求。

需要注意的是,混床工艺虽然能够去除水中的溶解性离子和悬浮物,但无法去除水中的溶解性有机物和微生物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


第二种:预处理(即砂碳过滤器+精密过滤器)+反渗透+混床工艺, 这种方法是目前采用最多的,因为反渗透投资成本也不算高,可以 去除90%已上的水中离子,剩下的离子再通过混床交换除去,这样 可使出水电导率:0.06左右。这样是目前最流行的方法。 第三种:前处理与第二种方法一样使用反渗透,只是后面使用的混 床采用EDI连续除盐膜块代替,这样就不用酸碱再生树脂,而是用电 再生。这就彻底使整个过程无污染了,经过处理后的水质可达到: 15M以上。但这这种方法的前期投资比较多,运行成本低。根据各 公司的情况做适当的投资。最好不过了。
混床失效

导电 度 》0.2us/cm时 含硅量 》20微克/L 时
混床再生

1 反洗分层:开混床再生泵进口门,启动再生泵,再开混床再生泵 出口门,混床反洗排水门和排空气门,反洗进水门。待排空门有水 流出后,关闭排空气门。开始反洗流速宜小,待树脂松动后,逐渐 加大流速,直至全部床层都能松动,此时流速大致达到10m/h。阴 树脂膨胀率为70%以上,阳树脂的膨胀率约为30%以上,这样经1015分钟就可使阴、阳树脂分层。(可以使用混床出水母管中的水经 出水门来加大反洗分层流量。)

预除盐与精除盐

1在第一种工艺中, 阴阳床是一级除盐,也叫预除盐。 混床是二级除盐,也叫精除盐 2在第二种工艺中, 反渗透是一级除盐,也叫预除盐。

混床是二级除盐,也叫精除盐

预除盐:水经过过滤等预处理后,进入预除盐工序,除去水中的大 部分盐类,出水电导率可降到10us/cm以下

精除盐:水经过预除盐工序后,再进入除盐工序,可使出水电导 率:0.06左右

离子交换设备特性

离子交换[3]反应是可逆的,而且等当量地进行。由实验得 知,常温 下稀溶液中阳离子交换势随离子电荷的增高,半径的增大而增大; 高分子量的有机离子及金属络合阴离子具有很高的交换势。高极化 度的离子如Ag+、Tl+等也有高的交换势。离子交换速度随树脂交联 度的增大而降低,随颗粒的减小而增大。温度增高,浓度增大,交 换反应速率也增快。离子交换树脂可以再生。将交换耗竭的离子交 换树脂和适当的酸、碱或盐溶液发生交换,使树脂转化为所需要的 型式,叫做再生。这类酸、碱或盐就叫再生剂。[4]
混床的结构及工艺原理
汽机分场:王振海
混床的定义:

混床是混合离子交换柱的简称,是针对离子交换技术所设计的设备

混床的结构


混床的优点



混床的工艺原理
混床的运行操作
现在做离子水的工艺大致可分为三种:

第一种:采用阳阴离子交换树脂取得的去离子水,一般 通过之后, 出水电导率可降到10us/cm以下,再经过混床就可以达到1us/cm以 下了。但是这种方法做出来的水成本极高,而且颗粒杂质太多,达 不到理想的要求。目前已较少采用了。
排水装置《底部进水装置》
塑料水帽
塑料水帽
塑料水帽
塑料水帽
不锈钢水帽
混床设备优点

1、出水水质优良,出水pH值接近中性。 2、出水水质稳定,短时间运行条件变化(如进水水质或组分、运 行流速等)对混床出水水质影响不大。 3、间断运行对出水水质的影响小,恢复到停运前水质所需的时间 比较短。 4、回收率达到100%



离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸 系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。 首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中 的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸 性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸 和中强碱性类)。
强碱性阴离子树脂

这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R 为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电 基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如 NaOH)进行再生。

弱碱性阴离子树脂

OH->柠檬酸根3->SO42->酒石酸根2->;草酸根2->PO43- >NO2->Cl->;醋酸根->HCO3-
离子交换设备

离子交换设备[1]是指离子交换过程常在离子交换器中进行。离子交 换器类似压力 滤池,外壳为一钢罐;离子交换通常采用过滤方式, 滤床由交换剂构成,底部为附有滤头的管系。 以离子交换剂上的可交换离子与液相中离子间发生交换为基础的分 离方法。广泛采用人工合成的离子交换树脂作为离子交换剂,它是 具有网状结构和可电离的活性基团的难溶性高分子电解质。根据树 脂骨架上的活性基团的不同,可分为阳离子交换树脂、阴离子交换 树脂、两性离子交换树脂、螯合树脂和氧化还原树脂等。用于离子 交换分离的树脂要求具有不溶性、一定的交联度和溶胀作用,而且 交换容量和稳定性要高。[2]
混床结构

混床就是里面装满了阴阳树脂的圆柱形容器,柱身有玻璃钢、不锈 钢、碳钢等材质,混床是混合离子交换柱的简称。装填方式都是上 阴下阳,最底层是排水帽。
混床内部结构

1进水装置
2排水装置《底部进水装置》 3碱液分配器 4中间排水装置
混床结构图
混床结构图2
混床结构图3
碱液分配器-中间排水装置



离子交换器
离子交换树脂

离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结 构、不溶性的高分子化合物。通常是球形颗粒物。 1基本介绍 离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名 称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称 大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加 “阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙 烯系阳离子交换树脂。 相关分类
吸附选择

对阳离子的吸附 高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类 离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序 如下: Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+ 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42->NO3->Cl->HCO3->OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
离子树脂的转型

以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为 其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂 与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与 溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没 有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和 设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用 强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而 吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可 转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变 为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些 树脂的其他典型性能,如离解性强和工作的pH范围宽广等。
离子交换设备应用

离子交换分离广泛用于:①水的软化、高纯水的制备、环境废水的 净化。②溶液和物质的纯化,如铀的提取和纯化。③金属离子的分 离、痕量离子的富集及干扰离子的除去。④抗菌素的提取和纯化等
[5
混床的定义

混床是混合离子交换柱的简称,是针对离子交换技术所设计的设备。 所谓混床,就是把一定比例的阳、阴离子交换树脂混合装填于同一 交换装置中,对流体中的离子进行交换、脱除。由于阳树脂的比重 比阴树脂大,所以在混床内阴树脂在上阳树脂在下。一般阳、阴树 脂装填的比例为1:2,也有装填比例为1:1.5的,可按不同树脂酌 情考虑
树脂
树脂
树脂
强酸性阳离子树脂

这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中 离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如 SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的 H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸 性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交 换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再 次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放 出被吸附的阳离子,再与H+结合而恢复原来的组成。

弱酸性阳离子树脂

这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈 酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团), 能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这 种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换, 只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树 脂亦是用酸进行再生(比强酸性树脂较易再生)。

这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺 基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能 离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子 吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将 溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如 pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
混床的定义:

混床是混合离子交换柱的简称,是针对离子交换技术所设计的

下面先了解离子交换的相关知识。
相关文档
最新文档