复数的几何意义--教案
《复数的加法和减法运算及其几何意义》教案设计

《复数的加法和减法运算及其几何意义》教案设计一、教学目标:1. 让学生理解复数的加法和减法运算规则。
2. 让学生掌握复数加法和减法运算的几何意义。
3. 培养学生运用复数解决实际问题的能力。
二、教学内容:1. 复数的加法运算:两个复数相加,实部相加,虚部相加。
2. 复数的减法运算:两个复数相减,实部相减,虚部相减。
3. 复数加法和减法运算的几何意义:在复平面上表示复数的加法和减法。
三、教学重点与难点:1. 教学重点:复数的加法和减法运算规则,复数加法和减法运算的几何意义。
2. 教学难点:复数加法和减法运算在实际问题中的应用。
四、教学方法:1. 采用讲解法,讲解复数的加法和减法运算规则。
2. 采用直观演示法,利用复平面演示复数的加法和减法运算的几何意义。
3. 采用案例分析法,分析实际问题中的复数加法和减法运算。
五、教学过程:1. 导入:引导学生回顾实数加法和减法运算,引出复数的加法和减法运算。
2. 讲解:讲解复数的加法和减法运算规则,实部相加,虚部相加(减)。
3. 演示:利用复平面演示复数的加法和减法运算的几何意义。
4. 练习:让学生进行复数加法和减法运算的练习,巩固所学知识。
5. 案例分析:分析实际问题中的复数加法和减法运算,培养学生运用复数解决实际问题的能力。
6. 总结:对本节课的内容进行总结,复数的加法和减法运算及其几何意义。
7. 作业布置:布置有关复数加法和减法运算的练习题,巩固所学知识。
六、教学评价:1. 评价学生对复数加法和减法运算规则的理解程度。
2. 评价学生对复数加法和减法运算几何意义的掌握程度。
3. 评价学生运用复数解决实际问题的能力。
七、教学反馈:1. 课堂讲解过程中,注意观察学生的反应,及时解答学生的疑问。
2. 练习环节,及时批改学生的作业,给予反馈,指出错误并指导改正。
3. 案例分析环节,鼓励学生积极参与讨论,提出自己的观点和看法。
八、教学拓展:1. 引导学生思考复数加法和减法运算在实际生活中的应用。
复数的几何意义教案

3.1.3 复数的几何意义1.复数的几何意义(1)复平面的定义建立了直角坐标系来表示复数的平面叫做复平面 ,x 轴叫做实轴 ,y 轴叫做 虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.(2)复数与点、向量间的对应①复数z =a +bi(a ,b∈R) 复平面内的点 Z(a ,b) ;②复数z =a +bi(a ,b∈R)平面向量____OZ →=(a ,b)_____. 2.复数的模复数z =a +bi(a ,b∈R)对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z|,且|z|=_a 2+b 2_____.3.共轭复数当两个复数实部 相等 ,虚部互为相反数 时,这两个复数叫做互为共轭复数,复数z 的共轭复数用z 表示,即z =a +bi ,那么z =a -bi ,当复数z =a +bi 的虚部b =0时,有__ z =z __,也就是说,任一实数的共轭复数仍是 它本身 .小结 建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.问题2 怎样定义复数z 的模?它有什么意义?答 复数z =a +bi(a ,b∈R)的模就是向量OZ →=(a ,b)的模,记作|z|或|a +bi|.|z|=|a +bi|=a 2+b 2可以表示点Z(a ,b)到原点的距离.例2 已知复数z =3+ai ,且|z|<4,求实数a 的取值范围.解 方法一 ∵z=3+ai(a∈R), ∴|z|=32+a 2,由已知得32+a 2<42,∴a 2<7,∴a∈(-7,7).方法二 利用复数的几何意义,由|z|<4知,z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+ai 知z 对应的点在直线x =3上,所以线段AB(除去端点)为动点Z 的集合. 由图可知:-7<a<7.小结 利用模的定义将复数模的条件转化为其实虚部满足的条件,是一种复数问题实数化思想;根据复数模的意义,结合图形,可利用平面几何知识解答本题.跟踪训练3 设z∈C,满足下列条件的点Z 的集合是什么图形?(1)|z|=2;(2)|z|≤3.解 方法一 (1)复数z 的模等于2,这表明向量OZ →的长度等于2,即点Z 到原点的距离等于2,因此满足条件|z|=2的点Z 的集合是以原点O 为圆心,以2为半径的圆.(2)满足条件|z|≤3的点Z 的集合是以原点O 为圆心,以3为半径的圆及其内部.方法二 设z =x +yi(x ,y∈R).(1)|z|=2,∴x 2+y 2=4,∴点Z 的集合是以原点为圆心,以2为半径的圆.(2)|z|≤3,∴x 2+y 2≤9.∴点Z 的集合是以原点为圆心,以3为半径的圆及其内部.1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应;2.研究复数的问题可利用复数问题实数化思想转化为复数的实虚部的问题,也可以结合图形利用几何关系考虑. 例2 如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0,3+2i ,-2+4i.求:(1)AO →表示的复数;(2)对角线CA →表示的复数;(3)对角线OB →表示的复数.解 (1)因为AO →=-OA →,所以AO →表示的复数为-3-2i.(2)因为CA →=OA →-OC →,所以对角线CA →表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB →=OA →+OC →,所以对角线OB →表示的复数为(3+2i)+(-2+4i)=1+6i.小结 复数的加减法可以转化为向量的加减法.跟踪训练2 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.解 设复数z 1,z 2,z 3在复平面内所对应的点分别为A ,B ,C ,正方形的第四个顶点D 对应的复数为x +yi(x ,y∈R),如图.则AD →=OD →-OA →=(x +yi)-(1+2i)=(x -1)+(y -2)i ,BC →=OC →-OB →=(-1-2i)-(-2+i)=1-3i.∵AD →=BC →,∴(x-1)+(y -2)i =1-3i.∴⎩⎪⎨⎪⎧ x -1=1y -2=-3,解得⎩⎪⎨⎪⎧ x =2y =-1, 故点D 对应的复数为2-i.探究点三 复数加减法的综合应用例3 已知|z 1|=|z 2|=|z 1-z 2|=1,求|z 1+z 2|.解 方法一 设z 1=a +bi ,z 2=c +di(a ,b ,c ,d∈R),∵|z 1|=|z 2|=|z 1-z 2|=1,∴a 2+b 2=c 2+d 2=1, (a -c)2+(b -d)2=1 由①②得2ac +2bd =1, ∴|z 1+z 2|=a +c 2+b +d 2=a 2+c 2+b 2+d 2+2ac +2bd = 3.方法二 设O 为坐标原点,z 1,z 2,z 1+z 2对应的点分别为A ,B ,C.∵|z 1|=|z 2|=|z 1-z 2|=1,∴△OAB 是边长为1的正三角形,∴四边形OACB 是一个内角为60°,边长为1的菱形,且|z 1+z 2|是菱形的较长的对角线OC 的长,∴|z 1+z 2|=|OC →|=|OA →|2+|AC →|2-2|OA →||AC →|cos 120°= 3.小结 (1)设出复数z =x +yi(x ,y∈R),利用复数相等或模的概念,可把条件转化为x ,y 满足的关系式,利用方程思想求解,这是本章“复数问题实数化”思想的应用.(2)在复平面内,z 1,z 2对应的点为A ,B ,z 1+z 2对应的点为C ,O 为坐标原点,则四边形OACB①为平行四边形;②若|z 1+z 2|=|z 1-z 2|,则四边形OACB 为矩形;③若|z 1|=|z 2|,则四边形OACB 为菱形;④若|z 1|=|z 2|且|z 1+z 2|=|z 1-z 2|,则四边形OACB 为正方形.跟踪训练3 本例中,若条件变成|z 1|=|z 2|=1,|z 1+z 2|= 2.求|z 1-z 2|.解 由|z 1|=|z 2|=1,|z 1+z 2|=2,知z 1,z 2,z 1+z 2对应的点是一个边长为1的正方形的三个顶点,所求|z 1-z 2|是这个正方形的一条对角线长,所以|z 1-z 2|= 2.1.复数的乘法法则设z 1=a +bi ,z 2=c +di(a ,b ,c ,d∈R),则z 1·z 2=(a +bi)(c +di)=____(ac -bd)+(ad +bc)i ____________.2.复数乘法的运算律3设z 1=a +bi ,z 2=c +di(c +di≠0),则z 1z 2=a +bi c +di =__ac +bd c 2+d 2+bc -ad c 2+d2i _______________.探究点二 共轭复数及其应用问题 共轭复数有哪些性质,这些性质有什么作用?答 (1)在复平面上,两个共轭复数对应的点关于实轴对称.(2)实数的共轭复数是它本身,即z =z ⇔z∈R,利用这个性质可证明一个复数为实数.(3)若z≠0且z +z =0,则z 为纯虚数,利用这个性质,可证明一个复数为纯虚数.(4)①z·z =|z|2=|z |2;②z 2=z 2;③z 1·z 2=z 1·z 2.例2 已知复数z 满足|z|=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .解 设z =a +bi(a ,b∈R),则z =a -bi 且|z|=a 2+b 2=1,即a 2+b 2=1. ①因为(3+4i)z =(3+4i)(a +bi)=(3a -4b)+(3b +4a)i ,而(3+4i)z 是纯虚数,所以3a -4b =0,且3b +4a≠0. ② 由①②联立,解得⎩⎪⎨⎪⎧ a =45,b =35,或⎩⎪⎨⎪⎧ a =-45,b =-35.所以z =45-35i ,或z =-45+35i. 小结 本题使用了复数问题实数化思想,运用待定系数法,化解了问题的难点.1.复数代数形式的乘除运算(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.2.共轭复数的性质可以用来解决一些复数问题.3.复数问题实数化思想.复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z =a +bi(a ,b∈R),利用复数相等的充要条件转化.。
复数的几何意义教案

复数的几何意义教案【最新精选】一、教学目标:1. 让学生理解复数的概念,掌握复数的代数表示方法。
2. 引导学生了解复数的几何意义,能够将复数与复平面上的点对应起来。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点:1. 重点:复数的概念,复数的代数表示方法,复数的几何意义。
2. 难点:复数与复平面上的点的对应关系,复数的运算规则。
三、教学方法:1. 采用讲授法,讲解复数的基本概念和运算规则。
2. 运用直观演示法,通过示例让学生了解复数的几何意义。
3. 采用练习法,让学生在实践中掌握复数的运算方法和几何意义。
四、教学准备:1. 教师准备PPT,展示复数的相关概念和图形。
2. 准备黑板,用于板书关键知识点。
3. 准备练习题,巩固学生对复数的理解和运用。
五、教学过程:1. 导入新课:通过复习实数的概念,引入复数的概念。
2. 讲解复数的基本概念:讲解复数的定义,阐述复数的代数表示方法。
3. 展示复数的几何意义:介绍复平面,讲解复数与复平面上的点的对应关系。
4. 复数的运算规则:讲解复数的加减乘除运算方法,并通过示例进行演示。
5. 练习与巩固:让学生在课堂上完成练习题,检验对复数的理解和运用。
6. 课堂小结:对本节课的主要内容进行总结,强调重点知识点。
7. 布置作业:布置课后练习题,让学生巩固所学知识。
8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。
六、教学拓展:1. 引导学生了解复数的分类,包括实数、虚数、纯虚数和零数。
2. 讲解复数在实际应用中的例子,如电子电路中的信号处理、物理学中的振动分析等。
七、课堂互动:1. 设置小组讨论环节,让学生探讨复数在实际问题中的应用。
2. 组织学生进行复数运算竞赛,提高学生的运算速度和准确性。
八、教学评估:1. 课后收集学生的练习作业,评估学生对复数的掌握程度。
2. 在下一节课开始时,进行简短的复数知识测试,了解学生的学习效果。
九、教学反馈与调整:1. 根据学生的作业和测试情况,及时给予反馈,指出学生的错误和不足。
《复数的加法和减法运算及其几何意义》教案设计

《复数的加法和减法运算及其几何意义》教案设计一、教学目标1. 让学生理解复数的概念,掌握复数的加法和减法运算方法。
2. 让学生了解复数几何意义的内涵,能够将复数的加法和减法运算与几何图形相结合。
3. 培养学生的逻辑思维能力和数学运算能力,提高学生解决实际问题的能力。
二、教学内容1. 复数的概念及表示方法。
2. 复数的加法运算:同号相加、异号相加。
3. 复数的减法运算:减去一个复数等于加上它的相反数。
4. 复数几何意义的介绍:复平面、复数轴、象限。
5. 复数加法和减法运算在几何意义上的应用。
三、教学方法1. 采用讲解法,讲解复数的概念、加法和减法运算方法及其几何意义。
2. 利用多媒体课件,展示复数的几何意义,增强学生的直观感受。
3. 运用例题,引导学生运用复数的加法和减法运算解决实际问题。
4. 组织小组讨论,让学生分享自己的理解和心得。
四、教学步骤1. 导入新课,复习复数的基本概念。
2. 讲解复数的加法运算,引导学生掌握加法法则。
3. 讲解复数的减法运算,引导学生掌握减法法则。
4. 介绍复数几何意义,引导学生理解复数与几何图形的关系。
5. 运用例题,让学生体会复数加法和减法运算在实际问题中的应用。
五、课后作业1. 复习本节课所学的复数加法和减法运算方法及其几何意义。
2. 完成课后练习题,巩固所学知识。
3. 思考如何将复数的加法和减法运算应用到实际问题中。
4. 预习下一节课内容,为学习复数的乘法和除法运算做准备。
六、教学评估1. 课堂讲解过程中,关注学生的学习反应,及时调整教学节奏和难度。
2. 通过课后作业和练习题,检查学生对复数加法和减法运算及其几何意义的掌握程度。
3. 组织课堂讨论,鼓励学生提问和分享,评估学生对知识点的理解和运用能力。
七、教学资源1. 多媒体课件:用于展示复数的几何意义,增强学生的直观感受。
2. 练习题:用于巩固学生对复数加法和减法运算的理解和运用。
3. 参考资料:为学生提供更多的学习资源,拓展知识视野。
3.1.2复数的几何意义

【教学设计】3.1.2《复数的几何意义》福建省福清华侨中学王莺教学目标:1.知识与技能:了解复数的几何意义和复数模的几何意义,并能适当应用。
2.过程与方法:通过类比实数的几何意义来学习复数的几何意义,类比向量求模来学习求复数的模,培养学生的逻辑思维能力。
3.情感态度与价值观:通过复数几何意义的学习,培养学生数形结合的数学思想,从而激发学生学习数学的兴趣。
教学重点:复数的几何意义以及复数的模。
教学难点:复数的几何意义及模的综合应用。
教学方法:主要让学生类比实数的几何意义,探究出复数的几何意义;类比向量的模探究出复数的模。
教学过程:一、复习引入上节课引入了复数,学习了复数的定义,从而把数系由实数系扩充到了复数系,请同学们回忆:(1)复数是如何定义的?把形如z=a+bi的数叫做复数,其中a,b都是实数。
a叫实部,b叫虚部,i叫虚部单位。
i又是什么特点?(2)复数z=a+bi (a,b∈R )表示实数的条件是?表示虚数的条件是?表示纯虚数的条件是?(3)两个复数相等的充要条件是什么?我们上节课知道了,对于一般的两个复数是不能比较大小的,那么为什么不能比较大小?复数的本质是什么?又有什么意义呢?这节课我们从形的角度研究复数,学习复数的几何意义。
二、新课讲解1.复数的几何意义(1)师:在几何上,我们可以用什么来表示实数呢?------数轴上的点!师:实数与数轴上的点有着怎样的对应关系?-------一一对应!师:也就是说实数与数轴上的点,在数与形上是一一对应的,因此,在几何上,我们可以用数轴上的点来表示实数。
类比实数的表示,在几何上,我们可以用什么来表示复数呢?师:一个复数是由哪两部分唯一确定的?------由实部a与虚部b共同唯一确定的!师:若将实部a与虚部b构成一个有序实数对(a,b),那么复数z=a+bi (a,b∈R )与有序实数对(a,b)之间有怎样的对应关系呢?------一一对应!师:而有序实数对(a,b)又与直角坐标系中的点(a,b)是一一对应的。
复数的几何意义(公开课)

复数的几何意义(公开课)一、教学内容本节课的教学内容来自于人教版数学九年级下册第21章复数的第一节,复数及其几何意义。
这部分内容主要包括复数的概念、复数的代数表示法、复数的几何意义以及复数的运算规则。
二、教学目标1. 让学生理解复数的概念,掌握复数的代数表示法。
2. 通过实例,让学生了解复数的几何意义,能利用复数的几何意义解决一些实际问题。
3. 培养学生运用数学知识解决实际问题的能力。
三、教学难点与重点重点:复数的概念,复数的几何意义。
难点:复数的运算规则,复数在几何意义上的应用。
四、教具与学具准备教具:多媒体教学设备,黑板,粉笔。
学具:每人一本数学课本,一本笔记本,一支笔。
五、教学过程1. 实践情景引入:教师通过多媒体展示一些实际问题,如在平面直角坐标系中,如何表示一个点的位置,引导学生思考如何用数学工具来解决这个问题。
2. 知识讲解:教师在黑板上板书复数的概念,解释复数的代数表示法,通过示例让学生理解复数的几何意义。
3. 例题讲解:教师选取一些典型的例题,讲解如何利用复数的几何意义来解决问题,让学生通过实例体会复数的几何意义。
4. 随堂练习:教师给出一些随堂练习题,让学生运用所学的知识解决实际问题,及时巩固所学内容。
5. 作业布置:教师布置一些作业,让学生进一步巩固所学知识,提高解题能力。
六、板书设计板书设计如下:复数的几何意义1. 复数的概念2. 复数的代数表示法3. 复数的几何意义4. 复数的运算规则七、作业设计(1)在平面直角坐标系中,点P(2,3)对应的复数是多少?(2)在平面直角坐标系中,复数2+3i对应的点P的位置在哪里?已知复数z=1+2i,求复数z的平方。
八、课后反思及拓展延伸课后,教师应反思本节课的教学效果,观察学生对复数及其几何意义的掌握程度,对教学方法进行调整,以提高教学效果。
同时,教师还可以引导学生拓展学习,如研究复数的的其他性质,复数的应用等。
重点和难点解析一、教学内容本节课的教学内容主要涉及复数的概念、复数的代数表示法、复数的几何意义以及复数的运算规则。
中职数学教案:复数的几何意义及三角形式(全2课时)

江苏省XY中等专业学校2021-2022-2教案编号:教学环节教学活动内容及组织过程个案补充教学内容我们把横轴和纵轴分表叫做实轴和虚轴,这样的平面直角坐标系叫做复平面。
用复平面内的点来表示复数,叫做复数的几何表示法。
三、例题选讲解:这些复数分别用点坐标Z1=(0,4),Z2=(4,0),Z3=(2,1),Z4=(-2,2),Z5=(2,-3),Z6=(-2,-2)来表示。
教学环节教学活动内容及组织过程个案补充教学内容例 2 指出如图所示复平面内个点所表示的复数。
练习:P70练习2.复数的模与辐角一般的,复平面内表示复数z=a+bi的点Z (a,b)到原点的距离叫做复数的模,记作z,即:22z a b=+,以x轴正半轴为始边,OZ为终边的角α叫做复数z的辐角。
复数的辐角不是唯一的,事实上,若α是复数z的辐角,那么2kπ+α也是辐角,所以,我们把复数z在(-π,π】内的辐角叫做辐角的主值,记作arg z,以后所说的辐角一般指的是他的主值。
规定:复数0的辐角是任意值。
江苏省XY中等专业学校2021-2022-2教案编号:备课组别数学上课日期主备教师授课教师课题:17.3.1复数的几何意义及三角形式教学目标1.理解掌握复数的三角形式2.会进行复数代数形式和三角形式间的互化重点理解掌握复数的三角形式难点会进行复数代数形式和三角形式间的互化教法讲练结合数形结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一引入有了复数的模和辐角后,可以用另一种方式来表示复数。
二新授若设复数z=a+bi,其模z,rθ=辐角为,如图所示,试用r,θ表示复数z的实部和虚部。
若复数z的模为r,辐角为θ,则z=r(cosθ+isinθ)一般的,将z=r(cosθ+isinθ)叫做复数的三i+6(cos60sin60)。
人教版高二数学必修第四册《复数的几何意义》说课稿

人教版高二数学必修第四册《复数的几何意义》说课稿一、引言在高中数学中,复数是一个非常重要的概念。
复数的引入不仅拓宽了数的域,使得我们可以解决更多的数学问题,同时也具有深刻的几何意义。
本课程旨在通过学习《复数的几何意义》,让学生了解并体会复数的几何意义,从而帮助他们更好地理解复数及其在数学中的应用。
二、教学目标通过本节课的学习,学生将达到以下教学目标: 1. 理解复数的几何意义及其在平面内表示; 2. 能够用向量表示复数,并进行复数相加、相减、相乘的运算; 3. 能够解决与复数相关的几何问题。
三、教学内容1. 复数的引入及定义首先,我们将回顾复数的引入,描述复数的定义及其表示方法。
复数是由实部和虚部组成的,可以用a+bi来表示,其中a为实部,b为虚部,i为虚数单位。
2. 复数的几何意义接下来,我们将讲解复数的几何意义。
复数可以用向量表示,实部对应向量在实轴上的投影,虚部对应向量在虚轴上的投影。
我们可以直观地理解复数在平面内的表示,并通过几个例子演示。
3. 复数的运算然后,我们将学习关于复数的运算。
复数的加法减法可以通过向量的相加减来完成。
复数的乘法可以通过向量乘法和极坐标形式来理解。
我们将通过具体的例题进行讲解和练习,帮助学生掌握复数的运算规则。
4. 解决几何问题最后,我们将应用所学的复数知识解决几何问题。
例如,平面上的旋转、缩放等问题都可以通过复数的运算来表示和解决。
我们将带领学生分析和解决一些实际问题,培养他们运用复数解决几何问题的能力。
四、教学方法1.探究方法:通过引导学生提出问题,思考并探索复数的几何意义和运算规律,培养他们的自主学习和解决问题的能力。
2.演示法:通过具体的几何图形演示复数的表示和运算,帮助学生直观地理解和记忆。
3.实践方法:通过解决实际问题,培养学生应用复数解决几何问题的能力。
五、教学步骤步骤一:复习导入1.复习上节课所学的复数的引入和定义。
2.引导学生思考:复数在平面内的几何意义是什么?步骤二:讲解复数的几何意义1.通过一些例子,让学生感受复数在平面内的表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的几何意义
教学目标
1. 了解复数的几何意义,会用复平面内的点和向量来表示复数。
2. 了解复数加、减法的几何意义,进一步体会数形结合的思想。
教学重点
复数的几何意义与复数的加、减法的几何意义。
教学过程
前面我们是从“数”的角度研究了复数的概念及其四则运算,本节课我们将从“形”的角度来研究复数的几何表示和复数加减法的几何意义。
一、 问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示,那么,复数是否也能用点来表示呢?
二、 学生活动
知识回顾:
①形如bi a +的数叫复数,通常用字母z 表示,即bi a z +=),(R b a ∈,其中a 与b 分别叫做复数的实部与虚部。
⎩⎨⎧=≠=+=时为纯虚数)当虚数 (实数 (复数0)(0)
0a b b bi a z 。
②两个复数相等的充要条件是它们的实部与虚部分别相等
即 ⎩⎨⎧==⇔+=+d
b c a di c bi a 。
问题1 复数相等的充要条件表明,任何一个复数bi a +都可以由一个有序实数对),(b a 惟一确定,而有序实数对),(b a 与平面直角坐标系中的点是一一对应的,那么,我们怎么用平面内的点来表示复数呢?
问题2 我们知道平面直角坐标系中的点A 与以原点O 为起点、A 为终点的向量OA 是一一对应的,那么复数能用平面向量来表示吗?
三、 建构数学
师生共同活动:
1. 在平面直角坐标系xOy 中,以复数bi a z +=的实部a 为横坐标、虚部b 为纵坐标就确定了点),(b a Z ,我们可以用点),(b a Z 来表示复数bi a +,这就是复数的几何意义。
2. 建立了直角坐标系来表示复数的平面叫做复平面(也称为高斯平面),x 轴叫做实轴,y 轴叫做虚轴。
实轴上的的点都表示实数,除原点外虚轴上的点都表示虚数。
3. 因为复平面内的点),(b a Z 与以原点O 为起点、Z 为终点的向量一一对应(实数0与零向量对应),所以我们也可以用向量OZ 来表示复数bi a +,这也是复数的几何意义。
4. 根据上面的讨论,我们可以得到复数bi a z +=、复平
面内的点),(b a Z 和平面向量OZ 这间的关系(如图)。
今后,
常把复数bi a z +=说成点Z 或向量(并且规定相等的
向量表示同一个复数)
5. 相对于复数的代数形式bi a z +=,我们把点),(b a Z 称为复数z 的几何形式,向量称为复数的向量形式。
四、数学运用
运用1
(1)例1 在复平面内,分别用点和向量表示下列复数
4,i +2,i -,i 31+-,i 23-
问题3 我们知道任何一个实数都有绝对值,它表示数轴与这个实数对应点到原点的距离,任何一个向量都有模(或绝对值),它表示向量的长度,相应地,我们可以给出复数的模(或绝对值)的概念吗?它又有什么几何意义呢? 向量的模叫做复数bi a z +=的模(或绝对值),记作z 或bi a +。
由模的定义可知22b a bi a z +=+=。
复数的模表示复平面内该点到原点的距离。
运用2
(1)例2 已知复数i z 431+=,i z 432-=,i z 513+-=试比较它们的模的大小
思考:
①两复数的模能比较大小,两复数能比较大小吗?
②1z 与2z 两复数有什么关系?它们的模有怎样的关系?能推广到一般情形,并找到一些性质吗?
(2)例3 设C z ∈满足下列条件的点Z 的集合是什么图形? ①2=z ; ②32<<z
问题4 既然复数可以用复平面内的向量来表示 ,那么,复数的加法有什么几何意义呢?它能像向量加法一样,用作图的方法得到吗?
学生动手用向量加法的平行四边形法则作图求解(如图3-3-6)。
这就是复数加法的意义。
问题5 你能发现复数减法的几何意义吗?两个复数的差的模有什么几何意义?
结论:复数可以用平面向量来表示,复数加减法的几何意义可由向量加减法的平行四边形法则得到。
两个复数的差的模就是复平面内与这两个复数对应的两点间的距离。
同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的。
不难验证向量的“数乘”运算与复数中“实数乘以复数”类似,但对于向量的数量积,在复数中找不到类似的运算。
五、回顾反思
1.由实数用数轴上的点来表示,类比联想得到复数可用复平面上的点来表示,进而得到复数的向量形式,这是由一维向二维的联想,同时实现了从“数”到“形”的转化。
类比平面向量的加减法,又得到了复数加减法的几何意义,从而对复数有了新的认识。
2.通过复数的几何意义与复数加减法几何意义的学习,体会数形结合的思想。
复数作为一种新数学语言,也将为我们今后用代数方法解决几何问题提供了可能。
六、课后作业
1.第69页练习4
2.第70页习题3.3的1,2。