抗生素污水处理

抗生素污水处理
抗生素污水处理

抗生素生产废水治理技术

抗生素生产废水是一类成分复杂、色度高、生物毒性大、含多种抑制物质的难降解高浓度有机废水。

生物制药行业的废水处理后必须满足以下要求:CO住300mg/L, BOD侈

150mg/L, NH3-N K 25mg/L, SSc 200mg/L

抗生素废水的处理方法:物化处理、厌氧处理和好氧处理

1物化处理

目前用于抗生素废水处理的物化方法主要有以下几种:混凝-沉淀、吸附、

气浮、焚烧法和反渗透等,各种方法的处理效果见表1。

物化方法的选择应根据各类抗生素废水特点及试验结果而定。

表1物化方法处埠讥半秦废术效果

生物处理工艺主要有好氧生物处理、厌氧生物处理及厌氧-好氧组合处理工

-f-p

乙。

2.1 好氧生物处理工艺

表2汇总了国内外部分抗生素生产废水好氧生物处理工艺及其主要运行参数。由表2可知,抗生素生产废水的好氧生物处理工艺主要是早期传统活性污泥法和70年代开发的革新替代工艺。但是,由于抗生素生产废水属于高浓度

有机废水,常规好氧工艺活性污泥法难以承受COD浓度1Og/L以上的废水,

需对原废水进行大量稀释,因此,清水、动力消耗很大,导致处理成本很高。

2.2 厌氧生物处理工艺

与好氧处理相比,厌氧法在处理高浓度有机废水方面通常具有以下优点:

(1)有机物负荷高;(2)污泥产率低,产生的生物污泥易于脱水;(3)

营养物需要量少;(4)不需曝气,能耗低;(5)可以产生沼气、回收能源;(6)对水温的适宜范围较广。

抗生素废水厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化

床、厌氧折流板反应器等,处理负荷及效果见表3。

厌氧生物工艺处理抗生素工业废水的试验研究较多而实际工程应用较少。

高浓度的抗生素有机废水经厌氧处理后,出水COD仍达1000?4000mg/L,不能直接外排,需要再经好氧处理,以保证出水达标排放。但由于厌氧段采用甲

烷化,对操作和运行条件要求严格,而且原水中大量易于降解的物质(如有机酸等)在厌氧生物处理系统中被甲烷化,剩余的主要是难降解或厌氧消化的剩余产物,因此,后需的好氧处理尽管负荷较低,但是处理效率也很低。

2.3 厌氧-好氧组合工艺

厌氧处理利用高效厌氧工艺容积负荷高、CODfc除效率高、耐冲击负荷的优点,减少稀释水量并且能较大幅度地削减COD以降低基建、设备投资和运行费用,并回收沼气。厌氧段还有脱色作用,这对于高色度抗生素废水的处理意义较大。

好氧处理目的是保证厌氧出水经处理后达标排放。从工程应用角度应优

先采用生物接触氧化和SBR工艺(序批式活性污泥法)。

表4汇总了国内外部分抗生素生产废水厌氧-好氧生物处理工艺及其主要运行参数。

衣4抗生索工业厦朮肮氧如氧生物处理工艺及运仃礬敷

2.2.4 水解酸化-好氧工艺

由于抗生素废水中高SO42-、高浓度氨氮对产甲烷菌的抑制以及沼气产量低、利用价值不高等原因,近年来研究者们开始尝试以厌氧水解(酸化)取代厌

氧发酵。经过水解酸化,废水的COD降解虽不明显,但废水中大量难降解有机物转化为易降解有机物,提高了废水的可生化性,利于后续好氧生物降解。而且产酸菌的世代周期短、对温度以及有机负荷的适应性都强于产甲烷菌,保证了水解反应的高效率稳定运行。厌氧水解工艺是考虑到产甲烷菌与水解产酸菌

生长速率不同,在反应器中利用水流动的淘洗作用造成甲烷菌在反应器中难于繁殖,将厌氧处理控制在反应时间短的厌氧处理第一阶段。厌氧水解处理可以作为各种生化处理的预处理,由于不需曝气而大大降低了生产运行成本,可提高污水的可生化性,降低后续生物处理的负荷,大量削减后续好氧处理工艺的曝气量,而广泛的应用于难生物降解的制药、化工、造纸等高浓度有机废水的处理中。

表5顷生索生产废水水解酸化■好氧生物处理工艺及运彳了参数

表5汇总了国内外部分抗生素生产废水水解酸化-好氧生物处理工艺及其主要运行参数。

此外,水解酸化反应器不需设气体分离和收集系统,无需圭寸闭,无需搅拌设备,因此造价低,且便于维修;反应器可在常温条件下运行,不需外界提供

热源和供氧,出水无不良气体,节约能耗,降低了运行费用;此外还有耐冲击

负荷,污泥产率低,占地少等优点,在工程中有推广的价值。

从表5 看出,好氧工艺基本采用生物接触氧化工艺,该工艺具有生物量大、处理效率高、占地面积小、运行管理方便、污泥产量低、耐冲击负荷等优点。该技术目前被广泛应用于工业废水处理中,并且在制药废水处理方面已有成功的经验。

动物源性食品中青霉素类抗生素残留检测的研究进展

本版编辑: 四川畜牧兽医 2007年第12期 综述 直接的影响。其中RS-2与RS-4菌株具有较广的耐药性,在研制微生态制剂或与抗菌药物联合应用上有更好的使用价值,能达到较好的互补效应。3.3微生态制剂的作用机制是运用有益的活菌制剂来调节机体的微生态平衡,活菌的数量直接影响益生菌剂的使用效果。本试验发现一些抗菌药物如环丙沙星、左氟沙星、氨苄青霉素、阿莫西林等对乳酸杆菌大部分菌株和芽孢杆菌都敏感。因此,当用猪源乳酸杆菌及植物源乳酸杆菌等菌株研制微生态制剂时,在生产和使用过程中应避免接触这些抗菌药物,以免杀死活菌使制剂失去效用。4结论本试验以6株猪源乳酸杆菌、1株植物源乳酸杆 菌以及4株芽孢菌对32种抗菌药物进行了药物敏感性试验。结果表明,猪源乳酸菌对抗菌药物的耐受性达31.25%~53.13%。所有猪源乳酸菌对复达欣、头孢他啶、头孢氨苄、苯唑青霉素、复方新诺明、痢特灵、头孢噻肟、青霉素、杆菌肽等不敏感;其中对RS-2和RS-4株菌不敏感的药物达17种之多,可以作为本项目的新型益生素进行深入研究。植物源乳酸杆菌仅对10种药物有耐受性,对大多数抗菌药物表现极敏,与猪源乳酸菌存在明显差异,不适合作为新型益生素应 用,但可用于后续课题的优化组合对比试验。芽孢杆菌对多种抗生素敏感,只有杆菌肽抑菌圈为零,可用于后续课题的对比及优化组合试验。■参考文献(略) 目前国内外已对青霉素类抗生素的残留进行了多方面研究,为更深入、更全面地了解各种新型研究技术以及相关法律法规,并为我国开展进一步的残留监测提供参考,现将国内外有关的残留检测方法综述如下。1残留标准和休药期 为了避免消费者受到抗生素残留的危害,各国都制定有各种抗生素最高残留限量(MRL)标准。我国对 牛乳中的抗生素残留问题一向非常重视,早在1982 年,卫生部颁布的《乳与乳制品卫生管理办法》中就明确说明:应用抗生素期间和停药后5d的乳汁不得食用。2001年9月,农业部发布《无公害食品生鲜牛乳》的行业标准,并于10月正式实施,该标准也要求鲜牛乳中“抗生素不得检出”。早在1973年欧共体就规定:禁止使用青霉素、氨苄青霉素作为饲料添加剂。我国《关于出口动物性食品中农药、兽药残留量和生物毒素检验方法标准摘要》中规定:青霉素的残留按SN0539-1996标准应小于0.025IU/g。对无公害肉产品有害物质限量应符合《无公害畜禽肉产品安全要求》(GB18406.3-2001)中的规定:青霉素在牛羊猪的肌肉、肝、肾中的残留应≤0.05mg/kg。 因此,在中华人民共和国农业部公告第278号中,根据各青霉素类抗生素的吸收转化效率和半衰期的差异以及不同食品动物的代谢速度,对休药期作了具体的规定: 注射用青霉素G(钾、钠):弃奶期3d;注射用苄星青霉素(注射用苄星青霉素G):兽药规范78版,牛、羊 收稿日期:2007-09-10 作者简介:秦川(1982-),男,在读研究生,研究方向:预防兽医学。 动物源性食品中青霉素类 抗生素残留检测的研究进展 秦 川,田晋红 (西南大学药学院,重庆北碚400716) 中图分类号:S859.84 文献标识码:A 文章编号:1001-8964(2007)12-0024-03 摘要:青霉素类抗生素的广泛应用给畜牧业带来巨 大经济效益的同时,其残留也带来了一系列的负面影响。本文综述了青霉素类抗生素在动物源性食品中残留检测的研究进展,包括两方面内容:青霉素类抗生素在动物性食品中的残留和休药期;国内外关于青霉素类抗生素残留的检测方法,如:微生物法、高效液相色谱法、酶联免疫法等。 关键词:青霉素;动物源性食品;残留;休药期;检测方法 ###############################################曾宪春24

牛奶中的抗生素残留检测方法研究进展

牛奶中的抗生素残留检测方法研究进展 3.1微生物检测法 微生物检测法是应用较广泛的方法,其测定原理是根据抗生素对微生物的生理机能、代谢的抑制作用,来定性或定量确定样品中抗微生物药物残留,如纸片法(PD)、TTC法、拭子法(STOP)等。采用传统的微生物检测方法,缺点是:(1)时间长;(2)显色状态判断通过肉眼辨别,易产生误差,对微红色者无法做出准确判断;(3)操作复杂。优点是费用低,一般实验室都能操作。其中,纸片法和TTC法是牛奶中药物残留检测的两种常用的微生物检测法。 3.1.1纸片法 纸片法,即PD法(Paper Disc)。常用的纸片法有枯草杆菌纸片法和嗜热脂肪杆菌纸片检测法。这两种方法主要用来检测牛奶中的β-内酰胺类抗生素,其操作过程基本相同,而选用的菌种不同。枯草杆菌纸片法检测的结果易出现假阳性,为了确定阳性物质是否为青霉素(或β-内酰胺类),对加热后的乳样用青霉素酶处理,以灭活乳样中的青霉素。然后再行检测,检测限可达0.01 IU/mL。而嗜热脂肪杆菌纸片检测法不仅用于检测奶样中β-内酰胺类抗生素,并能暗示是否还存在其它抑菌物质,检测限可达0.008 IU/mL以下。一般在4h 内即可获得结果。因此,在实践中嗜热脂肪杆菌纸片法比枯草杆菌纸片法应用更为广泛。此外,神保胜彦(1991)对纸片法作了进一步研究和改进。改进后的纸片法不仅能够确定抗生素的种类,而且提高了检出率和准确性,氯霉素最低检出量0.01mg/kg,土霉素0.05mg/kg,链霉素1mg/kg,红霉素0.05mg/kg,青霉素0.0025mg/kg。 3.1.2 TTC法 TTC法,即氯化三苯基四氮唑法( tripheye tetrazolium chloride),是目前我国食品卫生标准中规定的检查牛乳中抗生素残留的检测方法(GB5409—85)。该法简便、快速,无需特殊设备,3~4h可见报告,很适合牧场、乳品厂及食品卫生检测部门采用。检测各种抗生素所用的TTC法试验的灵敏度(最低检出量)分别为:青霉素0.004 U/mL,链霉素0.5 U/mL,庆大霉素0.4 U/mL,卡那霉素5 U/mL。 目前趋向研究更为灵敏、准确、简便、快速的微生物检测方法。如美国和加拿大,使用拭子法和牛的抗生素和磺胺实验法(CAST)。此外,美国近年来补充的一个新的实验方法-快速抗生素筛选法(FAST)。尽管这些快速微生物检测法有时会产生一些假阳性,但在某种程度上是允许的;如产生这类情况,可进一步做确证实验。 3.2理化检测法 理化检测方法是利用抗生素分子中的基团所具有的特殊反应或性质来测定其含量,如高效液相色谱法、气相色谱法、质谱法、联用技术等等,能进行定性、定量和药物鉴定,敏感性较高,但有的检测程序较复杂,有的检测费用较高。在牛奶中抗生素残留检测方面,最常用的理化检测方法是高效液相色谱和联用技术。 3.2.1高效液相色谱 高效液相色谱(HPLC)是目前广泛应用的一种理化检测方法,它引入了气相色谱理论,在技术上采用了高压泵,高效固定相和高灵敏度检测器,实现了分离速度快、效率高和操作自动化。几乎所有的化合物包括高极性/离子型待测物和大分子物质,均可用HPLC进行测定。HPLC的分离机制与常规柱色谱相同,但填料更加精细(ф 5~10μm),需高压泵推动,柱效高(105塔板/m),速度快,灵敏度与GC相近。与GC相比,HPLC流动相参与分离机制,其组成、比例和pH值等可灵活调节,如离子对色谱、胶束色谱、手性分离色谱等,使许多极难分离的待测物得以分析。反相HPLC发展最快,目前已成为大多数抗生素残留的常规分析方法。主要原因是:(1)化学键合固定相(C18或C8)性质稳定,不淋失;(2)使用水、甲醇或乙腈等水溶性有机溶剂作流动相,不干扰紫外检测,成本低;(3)样品中极性杂质先

抗生素废水特点及处理研究

摘要:分析了抗生素制药废水的来源及特点,对目前抗生素制药废水处理中应用的各种物化处理、生物处理及多种方法组合的生化处理技术进行了综述,并对各种处理方法的应用特点进行了分析,为该类废水的治理工艺选择提供参考。 关键词:抗生素制药废水物化处理、生物处理、组合生化技术。 抗生素自被人类发现以来,就一直广泛被用于临床医学中,是人类控制感染性疾病,保障身体健康及防治动植物病害的重要化学药物。随着制药行业的发展,抗生素的种类也不断增加,至今已逾百种。我国的抗生素生产业发展迅猛,现已有300多家企业生产占世界原料药产量的20%-30%的70多个品种的抗生素,成为世界上主要的抗生素制剂生产国之一。但是,由于生产工艺及技术的原因,抗生素生产中仍然存在着原料利用率低、提炼纯度低、废水中残留抗菌素含量高等问题势必造成对环境的严重污染,从而制约制药企业的发展。因此,研究各种有效的处理方式显得十分重要。 1 抗生素制药废水的来源和特点 国内生产抗生素主要以粮食、糖蜜等为主要原料,生产工艺包括微生物发酵、过滤、萃取结晶、化学方法提取、精制等过程,产生的废水主要包括提取和精制过程中的发酵废水;溶剂回收过程中的浓废水;生产设备洗涤和地板冲洗用水;废冷却水;发酵罐排放的废发酵母液。废水中污染物的主要成分为:发酵残余营养物(如葡萄糖、蛋白质和无机盐之类)、发酵代谢物、酸、碱、有机溶剂和其它化工原料等。 其特点为: a、难降解有机物浓度高; b、废水水量、水质变化幅度大、规律性差; c、废水中含有抗生素药物和大量胶体物质,DH变化大,带有颜色和气味。 2 抗生素废水的处理方法 与一般工业废水相似,抗生素废水的处理方法也可归纳为以下几种:物化处理方法、生化处理方法以及多种方法的组合生化处理等。 2.1物化处理方法 物化法包括混凝沉淀、吸附法、光降解、焚烧、电解和萃取等等 2 .1.1混凝沉淀法 由于抗生素生产废水成分复杂,有机物含量高,同时还含有少量的残留抗生素,在采用生化处理时,残留抗生素对微生物的强烈抑制作用造成废水处理过程复杂、成本高、效果不稳定。吴敦虎等人采用自制的聚合氯化硫酸铝( P A C S ) 和聚合氯化硫酸铝铁( P A F C S ) 处理大连制药厂废水,一次混凝处理与二次混凝处理CO Dc 去除率在8 0%以上,p H、C O Dc 、S S均可达到国家排放标准。此外,采用含钙离子复合絮凝剂对抗生素制药废水进行混凝处理,C O Dc r 去除率可达71%-77%,s s去除率达87%-89%,可大幅度地削减废水中残留抗生素的抑菌效力。 2.1.2 吸附法 吸附法可作为高浓度有机废水经生物处理后的深度处理。张满生等利用两级炉渣吸附和三级活性炭吸附对青海制药集团原料药生产废水进行深度处理,当进水CODcr为1145 mg/L 时,三级吸附后CODcr可降至300 mg/L以下。该方法投资小,工艺简单操作方便,易管理。 2.1.3光降解法 李灵芝,李建渠等以TiOSO4为原料,采取SAS工艺制备了TiO2和掺铁的光催化剂,对某制药废水( CODcr=1309mg/L)进行了降解实验。研究了光源、煅烧温度、掺铁比例、p H值、附加条件对废水降解率的影响。结果表明:700℃制备的Ti02 )在紫外光和太阳光下的降解率分别77%和70%。掺铁比例为0.5%的TiO2对废水的降解率为81%。p H=2的废水降解

牛奶中抗生素残留及其检测

牛奶中抗生素残留及其检测 徐州市畜禽水产品检测中心 摘要:抗生素在畜牧业中广泛应用,这造成了牛奶中大量残留抗生素。本文论述了牛奶中残留抗生素的原因及其危害性,并列举了目前较为流行的牛奶中抗生素残留的检测方法,介绍了其检测原理。为了了解徐州市牛奶中抗生素的残留情况,随机抽取样品40份,分别采用TTC法和纸片法对样品进行抗生素残留的检测,以农业部2001年发布的无公害食品牛奶中“抗生素不得检出”为判断标准。调查结果显示徐州市牛奶中有部分牛奶存在抗生素的残留。 关键词:牛奶,抗生素残留,国标TTC,微生物法 Assay on Residue of Antibiotics in Milk Abstracts: Antibiotics are used in stockbreeding abroad, and It is the reason why there is residue of antibiotics in milk. The reason and hazard of antibiotics residue are discussed in this paper. Several kinds of popular antibiotics screening test are listed and their principle is introduce simultaneously. In order to know the situation of antibiotics residue in milk from Xuzhou, we selected 40 samples at random. And detected the residue of antibiotics in milk by TTC and paper disc. Antibiotics should not be detected from milk according to the standard issued by the department of agriculture in 2001, but the test results showed that the residue of antibiotics in milk from Xuzhou is higher. Key words: milk, antibiotics residue, TTC, microbial test 抗生素是治疗动物疾病的常用药物,并作为饲料成分被广泛使用。但抗生素容易在动物体内及其产品中残留,经过食用后进入人体,给人类的健康造成危害。目前人们对牛奶的消费量越来越大,牛奶中残留的抗生素会对饮用者的身体健康造成危害,也会对牛奶发酵过程的发酵剂产生抑制作用,从而使牛奶变质造成经济损失。牛奶中抗生素残留的问题日益受到社会的重视。 一牛奶中抗生素残留情况的简介 1抗生素的种类介绍 抗生素类是主要的兽药添加剂和兽药残留物质,约占药物添加剂的60%,在世界及我国的农产品或食品进出口贸易中,常需检测的抗生素残留主要有以下六类: ⑴内酰胺类:内酰胺类抗生素主要用于抗革兰氏阳性细菌感染,也能有效抑制抗革兰氏阴性细

抗生素污水处理

抗生素生产废水治理技术 抗生素生产废水是一类成分复杂、色度高、生物毒性大、含多种抑制物质的难降解高浓度有机废水。 生物制药行业的废水处理后必须满足以下要求:CO住300mg/L, BOD侈 150mg/L, NH3-N K 25mg/L, SSc 200mg/L 抗生素废水的处理方法:物化处理、厌氧处理和好氧处理 1物化处理 目前用于抗生素废水处理的物化方法主要有以下几种:混凝-沉淀、吸附、 气浮、焚烧法和反渗透等,各种方法的处理效果见表1。 物化方法的选择应根据各类抗生素废水特点及试验结果而定。 表1物化方法处埠讥半秦废术效果 生物处理工艺主要有好氧生物处理、厌氧生物处理及厌氧-好氧组合处理工 -f-p 乙。 2.1 好氧生物处理工艺 表2汇总了国内外部分抗生素生产废水好氧生物处理工艺及其主要运行参数。由表2可知,抗生素生产废水的好氧生物处理工艺主要是早期传统活性污泥法和70年代开发的革新替代工艺。但是,由于抗生素生产废水属于高浓度

有机废水,常规好氧工艺活性污泥法难以承受COD浓度1Og/L以上的废水, 需对原废水进行大量稀释,因此,清水、动力消耗很大,导致处理成本很高。 2.2 厌氧生物处理工艺 与好氧处理相比,厌氧法在处理高浓度有机废水方面通常具有以下优点: (1)有机物负荷高;(2)污泥产率低,产生的生物污泥易于脱水;(3) 营养物需要量少;(4)不需曝气,能耗低;(5)可以产生沼气、回收能源;(6)对水温的适宜范围较广。 抗生素废水厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化 床、厌氧折流板反应器等,处理负荷及效果见表3。 厌氧生物工艺处理抗生素工业废水的试验研究较多而实际工程应用较少。 高浓度的抗生素有机废水经厌氧处理后,出水COD仍达1000?4000mg/L,不能直接外排,需要再经好氧处理,以保证出水达标排放。但由于厌氧段采用甲 烷化,对操作和运行条件要求严格,而且原水中大量易于降解的物质(如有机酸等)在厌氧生物处理系统中被甲烷化,剩余的主要是难降解或厌氧消化的剩余产物,因此,后需的好氧处理尽管负荷较低,但是处理效率也很低。 2.3 厌氧-好氧组合工艺 厌氧处理利用高效厌氧工艺容积负荷高、CODfc除效率高、耐冲击负荷的优点,减少稀释水量并且能较大幅度地削减COD以降低基建、设备投资和运行费用,并回收沼气。厌氧段还有脱色作用,这对于高色度抗生素废水的处理意义较大。 好氧处理目的是保证厌氧出水经处理后达标排放。从工程应用角度应优 先采用生物接触氧化和SBR工艺(序批式活性污泥法)。 表4汇总了国内外部分抗生素生产废水厌氧-好氧生物处理工艺及其主要运行参数。

抗生素类废水处理方法的研究

抗生素类废水处理方法的研究 摘要:近年来,随着我国经济的持续高速发展,环境污染问题日益成为了国民聚焦的热点问题。在我国诸多环境污染问题当中,最为凸显的是水污染问题。抗生素类废水有着成分复杂、COD浓度高、难生物降解、污染性强等特点。抗生素进入环境会对生物造成深远的影响,如何去除抗生素的残留引起许多国家的关注。抗生素在环境中主要发生物理化学降解和生物降解,生物降解过程具有抗性的微生物菌株发挥主要的功效,因此近些年利用微生物技术处理抗生素残留污染成为研究热点。本文对抗生素废水的处理方法尤其是对具有抗生素降解功能的微生物资源和利用复合菌系处理抗生素残留的生物技术进行概括总结,并对微生物处理抗生素技术的不足和发展方向进行展望。 关键词:抗生素;来源;危害;处理方法;微生物 前言 抗生素是一类能杀死或抑制微生物生长的药物,通常是指由细菌、真菌和放线菌等微生物在新陈代谢活动中形成的,兼备抗病原体和活性组分的物质[1-3]。数十年来已被大量应用。抗生素主要包括β-内酰胺类、大环内酯类、四环素类、链霉素和氯霉素等五大类,能在不同程度上起到抑菌、抗菌和杀菌作用,以用途来分,还可分为人用和兽用两种[4]。当前常用的抗生素大多是从微生物培养液中提取出来的,也有部分是利用化学手段进行人工合成的。 抗生素类药物主要用于治疗人和动物的各种疾病,同时也长期添加于动物饲料中以预防疾病和促进动物生长,投加在农业产品中催熟农产品,此类抗生素药物大部分经由人类和动物排泄物,农业和污水排放以原药或者代谢产物的形式进入环境[5,6]。由于排泄物中大多数残留抗生素的半衰期比较长,部分被吸附在底泥等固相环境中,而小易被固相吸附的部分,则容易富集在水生动物体内,对生物体产生慢性毒性效应[7]。抗生素在国内外的水环境中均有检出,甚至在部分生物体内也有检出,其对生态环境以及对人类健康的潜在危害,已经成为人们日益关注的环境污染问题。

几种常见抗生素的相关性质和检测方法

四环素 四环素类抗生素是由放线菌产生的一类广谱抗生素及半合成抗生素,具有菲烷的基本骨架。 四环素类抗生素在赶早状态下比较稳定,但遇日光可变色。在酸及碱性条件下都不够稳定,易发生水解。四环素类药物主要有以下化学性质: 1.酸性条件下不稳定:C-6羟基和C-5α上的氢正好处于反式构型易发生消除反应,生成无活 性橙黄色脱水物。 在pH2~6条件下C-4位二甲氨基很易发生可逆反应的差向异构化。医学|教育网搜集整理土霉素由于存在C-5羟基与C-4二甲氨基之间形成氢键,4位的差向异构化比四环素难。 而金霉素由于C-7氯原子的空间排斥作用,使4位异构化反应比四环素更容易发生。 2.碱性条件下不稳定:在碱性条件下生成具有内酯结构的异构体。 3.和金属离子的反应:在近中性条件下能与多种金属离子形成不溶性螯合物。 四环素化学结构 本品为黄色结晶形粉末,无臭,空气中稳定,微溶于水,易溶于稀硫酸及氢氧化钠,略溶于乙醇,不溶于氯仿及乙醚,pH2以下溶液不稳定,碱性溶液中很快破坏。 土霉素 子式C22H24N2O9,分子量460.45。又称地霉素、氧四环素。是一种广谱抗菌素,黄色结晶性粉末,无嗅微苦。有二个分子结晶水。熔点181~182℃(分解)。微溶于水,溶于乙醇、丙酮和乙二醇,不溶于氯仿和乙醚。在空气中稳定,遇强光颜色变深。在碱性溶液中容易破坏失效。 化学结构 金霉素 子式C22H23ClN2O8,分子量478.87。又称氯四环素,是一种广谱抗菌素,金黄色结晶。无臭

味苦。熔点168~169℃。一般医药上用其盐酸盐。熔点210℃(分解)。微溶于水和乙醇,不溶于乙醚、丙酮和氯仿。见光颜色变深。在空气中和弱酸性溶液中较稳定,在碱性溶液中易分解。 化学结构 强力霉素 强力霉素是抗生素类药,四环素类药物,可以治疗衣原体支原体感染。其性状为淡黄色或黄色结晶性粉末,臭,味苦。在水中或甲醇中易溶,在乙醇或丙酮中微溶,在氯仿中不溶。 氯霉素 性状:白色针状或微带黄绿色的针状、长片状结晶或结晶性粉末;味苦。在甲醇、乙醇、丙酮、丙二醇中易溶。在干燥时稳定,在弱酸性和中性溶液中较安定,煮沸也不见分解,遇碱类易失效。 化学结构 妥布霉素 硫酸卡那霉素

牛奶中抗生素残留的几种常用检测方法

牛奶中抗生素残留的几种常用检测方法 随着奶牛饲养业的发展,抗生素在预防和治疗奶牛疾病方面得到广泛的应用。生鲜牛奶中抗生素的来源主要是:第一,治疗泌乳期病牛时使用的抗生素会从奶牛体内移行到乳腺残留进入牛奶中,资料表明治疗后的奶牛,其挤出的牛奶5天内都有抗生素残留;其二,为了预防奶牛疾病并提高产量,在奶牛饲料中添加抗生素也会造成牛奶中抗生素的残留;第三,由于牧场管理不善,挤奶、储奶没有严格的卫生制度和配套的设施,人为添加或造成牛奶抗生素的污染。 牛奶中含有抗生素,不仅对人的健康造成很大的危害,而且对乳品加工企业带来经济损失(因无法生成酸奶和奶酪)。因此必须严格控制牛奶中抗生素残留,除了要做好科学饲养、精心管理;正确挤奶和预防疾病外,还要规范抗生素的使用,按国标中有关规定,用药后的奶牛5天后所产的牛奶才可作为原料乳,并且要检测其残留。世界粮农组织(FAO)、世界卫生组织(WHO)、欧盟(EC)及美国的食品和药品管理局(FDA)等对食品中抗生素最大残留量都有明确的规定,我国也有鲜奶中抗生素残留量检验标准(—94)。 目前,鲜奶中抗生素残留的检测方法大致分为三类:生物测定法(微生物测定法、放射受体测定法)、免疫法(放射免疫法、荧光免疫法、酶联免疫法)、理化分析法(波谱法、色谱及联用技术)。下面介绍几种常用的牛奶中抗生素残留检测方法。 TTC法 TTC法是我国鲜奶中抗生素残留量检验标准(—94)的检测法,属生物检测法。其测定原理基于抗生素对微生物的抑制作用。如果牛奶中含有抗生素,则加入菌种(嗜热链球菌)经培育~3小时后,加入TTC指示剂(三苯基四氮唑)不发生还原反应,所以样品呈无色状态;如果牛奶中不含抗生素,则样品呈红色.这样实验后样品颜色不变的为阳性,样品染成红色的为阴性。 TTC法的具体操作步骤: 1.菌液制备:将单菌种(嗜热链球菌)以脱脂乳为培养基,在36±1℃培养箱中培 养15小时后,再以脱脂乳以至于1:1稀释待用; 2.取待检样液9mL,在80℃水浴加热5分钟后冷却到37℃以下,加活菌液1mL,在36℃±1℃水浴2小时,加入4%的TTC指示剂, 36℃±1℃水浴培养30分钟; 3.若样液颜色不变为阳性,呈红色为阴性;若阳性的样液,再置于水浴中培养30 分钟,不显色的为阳性,呈红色为阴性. TTC法测定各种抗生素的灵敏度为:青霉素:4ppb,链霉素:500ppb,庆大霉 素:400ppb,卡那霉素:5000ppb.它具有费用低,易开展的优点;缺点是耗时长,要求操作人员需有一定专业知识且实验过程中菌液的制备、水浴过程控制都要求严格遵守操作规程,否则易出现假阳性,以致出现检验结果的不稳定性。Delvotest sp法(戴尔沃检测法) 该法最早在香港传到广东的,其使用是基于20世纪80年代初香港要求广东出口的生奶必须“无抗”且要求采用Delvotest法检测。该方法也是生物测定法,其试剂是由荷兰DSM公司生产并由AOAC认证。原理是利用微生物—嗜热芽胞菌在64℃条件下培养~3小时后会产酸,酸引起指示剂BCP(溴甲酚紫)变为黄色;若牛奶样品中不含抗生素,培养后样品呈黄色,如样品中含有抗生素, 嗜热芽胞菌生长受到抑制而无法产酸,指示剂将不变色.

高浓度抗生素化学制药废水的处理

高浓度抗生素化学制药废水的处理* 卓世孔1程汉林白明超 (广州环发经贸发展公司,广州510180) 摘要采用微电解-厌氧水解-生物铁法-混凝串联工艺处理头孢类抗生素化学制药高浓度有机废水,结果表明,当微电解、厌氧水解和生物铁法水力停留时间分别为4、24和6 h,进水COD Cr 4000~4500 mg/L,BOD5 800~1200 mg/L,出水可达地方排放标准。 关键词抗生素微电解厌氧水解生物铁混凝 Treatment of high concentration organic wastewater from antibiotic pharmacy industry Zhuo Shikong, Cheng Hanlin, Bai Mingchao. Guangzhou Huanfa Economy Trade Development Company, Guangdong, 510180 Abstract: High concentration organic wastewater from cephalosporin antibiotic pharmacy industry was treated by the “micro electrolysis-anaerobic hydrolysis-biological iron-coagulating” technology. The result indicates that the effluent COD Cr and BOD5are below the first grade standards of the local wastewater drainage in the second period, when the COD Cr and BOD5 load is kept at 4000~4500 mg/L and 800~1200 mg/L, and the HRT of micro-electrolysis, anaerobic hydrolysis and biological iron is 4 h, 24 h and 6 h, respectively. Keywords: Antibiotic Micro-electrolysis Anaerobic hydrolysis Biological iron Coagulating 抗生素化学制药废水是一类浓度高、色度高、含难生物降解物和微生物生长抑制剂的高浓度有机废水,是制药废水中最难处理的废水之一,是我国制药行业废水治理的重点。目前国内外抗生素工业废水处理技术研究时有报导,但实际应用的治理技术不多且不成熟[1],而专门针对头孢类抗生素化学制药废水的处理研究未见报导。本文采用微电解-厌氧水解-生物铁法-混凝工艺, 对某制药厂头孢类抗生素化学制药高浓度有机废水进行了试验研究。 1 材料与方法 1.1 废水来源与水质特性 试验用废水取自某化学制药厂集水池,该厂生产头孢类抗生素原料药,如头孢硫脒、头孢曲松钠、头孢哌酮钠、头孢噻肟钠、头孢他啶等,每日废水排放量数百吨。废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应的原料外,还含有少量合成过程中使用的有机溶剂,如乙醇、丙酮、二氯甲烷、吡啶、噻吩等。废水水质情况如表1所示。 表1 废水水质情况 1第一作者:卓世孔,男,1956年出生,工程师,主要从事环境污染治理和研究。 * 广州市重点污染源防治项目(穗环计[2002]126号)

环境中抗生素残留潜在风险及其研究进展_王冰

第30卷第3期2007年3月 环境科学与技术 环境中抗生素残留潜在风险及其研究进展 王冰1,孙成1*,胡冠九2 (1.南京大学环境学院污染控制与资源化研究国家重点实验室,南京210093;2.江苏省环境监测中心,南京210036)摘要:抗生素是一类目前在各国广泛应用的药物,主要通过粪便散布于环境中。在一些国家的河流和湖泊已经检测到了不同种类的抗生素,其在环境中的残留引起了研究者的关注。文章就抗生素的生产和使用、环境中抗生素的暴露途径以及其生态影响进行了综合归纳,并对目前国内外的研究进展进行了分析和讨论,提出了今后的研究重点和方向。 关键词:抗生素;暴露途径;环境风险 中图分类号:X701文献标识码:A文章编号:1003-6504(2007)03-00108-04 近年来,抗生素的滥用、大量耐药性致病菌的出现引起了人们对抗生素的广泛关注,并且,人们不仅关心抗生素的生产、投放市场和使用情况,抗生素在环境中的残留、归趋以及对环境的影响亦成为焦点。目前国内相关研究工作开展较少,国外的研究已取得一定成果。因此,本文根据近年的文献综合分析了抗生素的使用、环境中抗生素残留以及其潜在的环境风险,并提出了今后的研究重点和方向。 1抗生素的使用与性质 1.1抗生素的使用及生物体内代谢转化 抗生素是由微生物产生的在低浓度下能抑制其他微生物生长的小分子天然有机化合物[1]。目前被广泛使用的抗生素,按照化学结构分类,可分为β-内酰胺类、喹诺酮类、四环素类、氨基葡糖苷类、大环内酯类、多肽类等。 自从1929年青霉素被发现并临床应用,抗生素作为一种重要的药物广泛用于医药、畜牧业和水产养殖业,并且近年来种类和数量快速增长。在抗生素的多种用途中,医用和兽用的用量各占一半左右。据统计,澳大利亚每年抗生素36%用于人类,8%用于兽药,56%混入饲料当中[2]。 我国是抗生素的生产和使用大国。1997年德国青霉素产量为900t[3],1998年丹麦抗生素总产量为87t[4]。而我国,2003年仅青霉素产量就为28000t,占世界总产量的60%;土霉素产量10000t,占世界总产量的65%;多西环素产量也为世界第一[2]。并且我国抗生素的使用量非常大,数据显示我国药物处方中抗生素占70%,与西方国家30%比例相比,反映了我国抗生素滥用情况严重[2]。 抗生素被机体吸收后,少部分经过羟基化、裂解和葡萄糖苷酸化等代谢反应生成无活性的产物,而很大一部分的以原形通过粪便和尿液配出体外[3,5-6]。在环境中,一些代谢物甚至能重新转变为最初的活性药物。曾有文献报导在液体肥料中氯霉素糖苷酸可转变为氯霉素,N-4-乙酰基磺胺甲嘧啶转变为磺胺甲嘧啶[7]。1.2环境中抗生素的来源及归趋 抗生素的污染为点源和面源排放相结合,其进入环境的途径可归纳为图1。抗生素由于其挥发性差,在环境中的主要迁移途径为水体和食物链[2,7]。 抗生素制药主要包括发酵、 化学合成、提取和成药四个阶段,其成药过程所产生的废水含有多种难降解的生物毒性物质和较高浓度的活性抗生素,它们对废水生化处理中微生物的生长有很强的抑制作用,加之生产过程中废水排放的不连续性及浓度波动较大等特点,使抗生素生产废水很难降解[6,8]。但从排放量来看,环境中抗生素的主要来源是医药和畜牧养殖业的使用和排泄而不是生产工厂的工业废水。 残留于人畜粪便的抗生素,一部分可通过肥料的施用、径流等进入水体,而大部分作为废水进入污水处理厂,再随污水处理厂流出的水进入水体。目前污水处理厂对抗生素不能彻底去除,故大量的抗生素及其代谢产物最终进入水体。 另一方面,水产养殖业也广泛使用抗生素,通过 作者简介:王冰(1982-),女,硕士,主要从事环境中抗生素检测和生态影响研究;*通讯作者:教授,(电子信箱)envidean@nju.edu.cn。 108 ??

养殖废水处理方案

养殖场废水处理方案养殖场废水如何处理 养殖废水主要包括动物尿液、部分粪便和养殖栏冲洗水,水中富含氮、磷、有机物、高悬浮物,是一种高浓度有机废水。养殖场污染物的污染成分极为复杂,见表2-2。主要包括:氮、磷等水体富营养化物质;氨气、硫化氢、甲烷、甲醇、甲胺、二甲基硫醚等恶臭气体;铁、锌、锰、钴、碘等矿物元素;铜、砷、汞、硒等重金属物质;抗生素、抗氧化剂、激素等兽药残留物;大肠杆菌、炭疽、禽流感、五号病、布氏杆菌病、结核病等人畜共患传染病病菌。下面由台江环保为你推荐养殖场废水处理方案,了解下养殖场废水该如何处理。 养殖场污水处理的模式演变 第一代处理工艺:厌氧-还田模式 粪便污水还田作肥料是一种传统的、最经济有效的处置方法,可以使粪尿污水不排向外界环境,达到零排放。分散户养方式的粪污处理均是采用这种方法。这种模式适用于远离城市,经济比较落后,土地宽广的规模化猪场。养殖场周围必须要有足够的农田消纳粪便污水。要求养殖规模不大,当地劳动力价格低,大量使用人工清粪,冲洗水量少。 在美国,粪污还田前一般不经过专门的厌氧消化装置进行沼气发酵,而是贮存一定时间后直接灌田。由于担心传播畜禽疾病和人畜共患病,畜禽粪便废水经过生物处理之后再适度地应用于农田已成为新趋势。德国、丹麦、奥地利等欧洲国家则是将粪便污水经过中温或高温厌氧消化后再进行还田利用,这样可以达到寄生虫卵和病原菌的无害化。 国内一般采用厌氧消化后再还田利用,这样可以避免有机物浓度过高引起烂根和烧苗,同时,经过厌氧发酵,可以回收能源—甲烷,并且能杀灭部分寄生虫卵和病原微生物。 第二代处理工艺:厌氧-还田模式 养殖废水经过厌氧消化处理后,再采用氧化塘、土地处理系统或人工湿地等自然处理系统对厌氧消化液进行后处理。适用于离城市较远,经济欠发达,气温较高,土地宽广,地价较低、有滩涂、荒地、林地或低洼地可作废水自然处理系统的地区。规模化猪场规模一般不能太大,对于猪场而言,一般年出栏在5万头以下为宜,以人工清粪为主,水冲为辅,冲洗水量中等。 第三代处理工艺:厌氧-好氧处理模式(工业化处理模式) 厌氧-好氧处理模式的养殖场水处理系统由预处理、厌氧处理、好氧处理、后处理、污泥处理及沼气净化、贮存与利用等部分组成。需要较为复杂的机械设备和要求较高的构筑物,其设计、运转均需要受过较高教育的技术人员来执行。 厌氧-好氧处理模式适用于地处大城市近郊,经济发达,土地紧张,没有足够的农田消纳规模化猪场粪污的地区。采用这种模式的养殖场规模较大,一般出栏在5万头规模以上,当地劳动力价格昂贵,主要使用水冲清粪,冲洗水量大。 第四代处理工艺:厌氧-好氧-膜生物反应器工艺

制药厂抗生素废水处理工艺设计

制药厂抗生素废水处理工艺设计 摘要 本次毕业设计以制药厂抗生素废水为主要水源,设计抗生素废水的主要处理工艺。该废水生物化学需氧量高,而且有高浓度的BOD和COD,有机物,以及悬浮固体(SS)。在资料分析基础上,比较了现在的多种抗生素废水处理,最终确定以水解酸化+两级生物处理(AB法)处理抗生素废水。该设计工艺中包括了相关处理构筑物设计计算,通过设计,使该厂废水处理水达到国家排放标准。 关键词:抗生素废水、水解酸化、AB法、COD、BOD

Pharmaceutical antibiotic wastewater treatment process design Abstract The graduation design with pharmaceutical factory antibiotic wastewater as the main source of antibiotic wastewater, design the main treatment process. The wastewater biological chemical oxygen demand (COD) high, and have high levels of BOD and COD, organic matter, and suspended solids (SS). Based on the data analysis, compares the variety of antibiotic wastewater treatment now, and finally determined that two levels by hydrolysis acidification + biological treatment (AB method) deal with antibiotic wastewater. This design process includes correlation processing structures design calculation, through the design, make the factory wastewater treatment water reach national emission standard. Key words:pharmary sewage, sewage treatment,difflunce-acidificatio, Adsorption-Biodegratio n、BOD、COD

抗生素废水处理

抗生素废水处理 发布时间:2012-9-27 14:21:59 中国污水处理工程网 抗生素生产废水属于难降解有机废水,特别是残留的抗生素对微生物的强烈抑制作用,可造成废水处理过程复杂、成本高和效果不稳定。因此在抗生素废水的处理过程中,采用物理处理方法或作为后续生化处理的预处理方法以降低水中的悬浮物和减少废水中的生物抑制性物质。 一、抗生素废水处理物理方法 目前应用的抗生素废水处理物理方法主要包括混凝、沉淀、气浮、吸附、反渗透和过滤等。 1、抗生素废水处理混凝法是在加入凝聚剂后通过搅拌使失去电荷的颗粒相互接触而絮凝形成絮状体,便于其沉淀或过滤而达到分离的目的。采用凝聚处理后,不仅能有效地降低污染物的浓度,而且废水的生物降解性能也得到改善。在抗生素制药工业废水处理中常用的凝聚剂有:聚合硫酸铁、氯化铁、亚铁盐、聚合氯化硫酸铝、聚合氯化铝、聚合氯化硫酸铝铁、聚丙烯酰胺(PAM)等。 2、沉淀是利用重力沉淀分离将密度比水大的悬浮颗粒从水中分离或除去。 3、气浮法是利用高度分散的微小气泡作为载体吸附废水中的污染物,使其视密度小于水而上浮,实现固液或液液分离的过程。通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。 4、吸附法是指利用多孔性固体吸附废水中某种或几种污染物,以回收或去除污染物,从而使废水得到净化的方法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。该方法投资小、工艺简单、操作方便,易管理,较适宜对原有污水厂进行工艺改进。 5、反渗透法是利用半透膜将浓、稀溶液隔开,以压力差作为推动力,施加超过溶液渗透压的压力,使其改变自然渗透方向,将浓溶液中的水压渗到稀溶液一侧,可实现废水浓缩和净化目的。 6、吹脱法当氨氮浓度大大超过微生物允许的浓度时,在采用生物处理过程中,微生物受到NH3-N的抑制作用,难以取得良好的处理效果。赶氨脱氮往往是废水处理效果好坏的关键。在制药工业废水处理中,常用吹脱法来降低氨氮含量,如乙胺碘呋酮废水的赶氨脱氮。 二、抗生素废水处理化学方法 抗生素废水处理1、光催化氧化法 该技术可有效地降解制药废水中的有机物浓度,且具有性能稳定、对废水无选择性、反应条件温和、无二次污染等优点,具有很好的应用前景。以TiO2作催化剂,利用流化床光催化反应器处理制药废水,考察了在不同工艺条件下的光催化效果,结果表明:进水COD分别为596、861mg/L时,采用不同的试验条件,光照150min后光催化氧化阶段出水COD分别为113、124mg/L,去除率分别为81.0%、85.6%,且BOD5/COD值也可由0.2增至0.5,提

抗生素残留现状及检测方法

抗生素残留现状及检测方法 随着我国经济的快速发展,人们追求效益最大化,抗生素的 使用越来越普遍,如用抗生素治疗奶牛的乳腺炎;畜禽养殖户在 饲料中添加抗生素和激素,提高种畜的抗病能力和食欲;水产养 殖用户为了让大闸蟹加快脱壳过程、长得肥大生猛,给蟹喂食大 量抗生素和激素等。我国是抗生素生产和使用大国,据统计每年约有6000吨抗生素用于饲料添加剂,占全球抗生素饲料添加剂的50%。 抗生素的大量滥用已经严重威胁到人们的身体健康,专家指出,经常食用含有抗生素的食品,即使是微量的,也能使人出现荨麻疹或造成过敏性休克。时常摄入含有抗生素的食品,可使某些菌株产生耐药性,从而带来预防与治疗某些人畜疾病的困难。如果长期食用抗生素残留的食物,可造成人体中一些非致病菌的死亡,使菌群平衡失调或引起核黄素缺乏症和紫癜性损伤。特别是氯霉素的滥用,极易损害人类骨髓的造血功能,并由此导致再生障碍性贫血的发生。两年前,四川资阳地区曾暴发猪链球菌疫情,微生物专家李明远教授认为,很可能是养殖业者长期在猪饲料里滥用抗生素导致的。 常用抗生素包括β-内酰胺类、四环素类,氨基糖苷类,大环内酯类,磺胺类等,世界各国均对抗生素的使用量提出严格标准,欧盟的标准比日本和美国的标准更加严格,限量值更低,我国要想保障本国食品安全并出口产品到上述国家,就必须加强我国的自身的检测能力。 一般来说,肉类(畜禽),鱼虾(水产),蛋类,奶类,饲料、蜂蜜等产品需要进行抗生素检测,常用方法包括:液相色谱或液相色谱与质谱联用,微生物抑制法和酶联免疫方法。 色谱方法是一种理化检测方法,一般要经过样品的提取、脱蛋白、离心、层析柱净化、衍生化等步骤,能检测抗生素的具体含量,敏感性较高,但检测程序复杂,费用较高,需购买色谱仪等检测设备,不适合小型检验室。 微生物抑制法和酶联免疫方法属于筛选方法,操作简便、快速,消耗成本低,不需要购买大型仪器,但阳性结果需要其他方法进行确认。酶联免疫方法存在一定的假阳性,下面针对微生物方法进行详细介绍。

高浓度抗生素化学制药废水的处理优选稿

高浓度抗生素化学制药 废水的处理 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

高浓度抗生素化学制药废水的处理* 卓世孔1程汉林白明超 (广州环发经贸发展公司,广州510180) 摘要采用微电解-厌氧水解-生物铁法-混凝串联工艺处理头孢类抗生素化学制药高浓度有机废水,结果表明,当微电解、厌氧水解和生物铁法水力停留时 间分别为4、24和6 h,进水COD Cr 4000~4500 mg/L,BOD 5 800~1200 mg/L,出水 可达地方排放标准。 关键词抗生素微电解厌氧水解生物铁混凝 Treatment of high concentration organic wastewater from antibiotic pharmacy industry Zhuo Shikong, Cheng Hanlin, Bai Mingchao. Guangzhou Huanfa Economy Trade Development Company, Guangdong, 510180 Abstract: High concentration organic wastewater from cephalosporin antibiotic pharmacy industry was treated by the “micro electrolysis-anaerobic hydrolysis-biological iron-coagulating” technology. The result indicates that the effluent COD Cr and BOD 5 are below the first grade standards of the local wastewater drainage in the second period, when the COD Cr and BOD 5 load is kept at 4000~4500 mg/L and 800~1200 mg/L, and the HRT of micro-electrolysis, anaerobic hydrolysis and biological iron is 4 h, 24 h and 6 h, respectively. 1第一作者:卓世孔,男,1956年出生,工程师,主要从事环境污染治理和研究。 * 广州市重点污染源防治项目(穗环计[2002]126号)

相关文档
最新文档