知识点3.2-二维离散型随机变量
3.2二维离散型随机变量

ξ
Pi•
证明: 证明
x1 p1•
x2 p2•
… …
xi pi •
… …
pi• = P{ξ = xi } = P{ξ = xi , −∞ < η < +∞} = ∑ P{ξ = xi ,η = y j } = ∑ pij
j j
信息系刘康泽
边缘分布: 2、 (ξ ,η ) 关于 η 的边缘分布:
p• j = ∑ pij
η ( ξ = 0时)
p
另外两个同理可得。 另外两个同理可得。
1 1/2
2 1/2
信息系刘康泽 的两点分布, 例 5、已知 ξ 服从参数 2 / 3 的两点分布,又 、 η (ξ = 0) 1 2 3 1/2 1/4 1/4 P
η (ξ = 1)
的概率分布. 求 (ξ ,η ) 的概率分布.
1 1/3
证明: 证明
pij p• j
,
p• j ≠ 0 , i = 1, 2,⋯ .
pij p• j
P{ξ = xi | η = y j } =
P{ξ = xi ,η = y j } P{η = y j }
=
.
分布: 2、在 ξ = xi 的条件下 η 的分布:
P{η = y j | ξ = xi } =
pij pi •
信息系刘康泽
联合分布律也可用表格的形式来表示。 联合分布律也可用表格的形式来表示。
ξ
η
x1 x2 ⋮ xi ⋮
y1 p11 p 21 ⋮ p i1 ⋮
y2 p12 p 22 ⋮ pi 2 ⋮
… … … …
yj p1 j p2 j ⋮ pij ⋮
… … … …
32二维离散型随机变量的分布律及性质

易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
3.2(二维随机变量的边缘分布)

作业:解答题 2 4 5 6
3.2.3
二维连续型随机变量的边缘概率密度
设二维连续型随机变量(X,Y)的分布函数为 F(x,y),概率密度为f(x,y). 因为 FX ( x ) F ( x,) ( f ( x, y)dy)dx
由分布函数定义知, X 是一个连续型随机变量, 且其概率密度为 f X ( x ) f ( x, y )dy
设 随 机 变 量X 和 Y 具 有 联 合 概 率 密 度 【补充例】 6, x 2 y x , f ( x, y) 0, 其 他. 求关于 X的 边 缘 概 率 密 度 fX ( x) 和 边 缘 分 布 函 数 FX ( x ).
解:
f X ( x)
f ( x , y)
1 2 1 2
1 ( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 exp{ [ 2 ]} 2 2 2 2 2(1 ) 1 1 2 2 1
且
( y 2 ) 2
2 2
2
3.2.2
二维离散型随机变量的边缘分布律
于是(X,Y)的分布律和边缘分布律如下:
Y X 0 1 P{Y = yj}
0
9/25 6/25 3/5
1
6/25 4/25 2/5
P{X = xi}
3/5 2/5 1
3.2.2
二维离散型随机变量的边缘分布律
(2) (X,Y)所有可能取值仍然为:(0,0)、(0,1)、 (1,0)、(1,1)则
☺课堂练习
一 整 数N 等 可 能 地 在 1, 2, 3, ,10 十 个 值 中 取 一个值 . 设 D D( N ) 是 能 整 除N 的 正 整 数 的 个 数 , F F(N )是 能 整 除 N的素数的个数 .试 写 出D 和 F 的联合分布律 , 并求边缘分布律 . 解 样本点 1 2 3 4 5 6 7 8 9 10
二维离散型随机变量及其分布

j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
二维离散随机变量及其分布(3.2)

yj p1 j p2 j pij
x2
… … …
pi
p1 p2
pi
xi
p j pi1源自p1 pi 2
p2
…
…
…
p j
…
第三章 二维随机变量及其分布
§2 二维离散随机变量
例 3 从 1 ,2 ,3 ,4 这4个数中随机取出一个,记为 X,
再从 1 到 X 中随机地取出一个数,记为 Y, 试求 X , Y 的联合分布律与X 及 Y 各自的边缘 分布律.
PX 1, Y 1
1 PX 2, Y 0 9
PX 2, Y 1 P 0
2 9
PX 2, Y 2 P 0
第三章
二维随机变量及其分布
§2 二维离散随机变量
由此得 X, Y 的联合分布律为
Y X
0 1 2
0
1
2
1 9 2 9 1 9
j 1,2,
X, Y 的联合分布律也可以由 下表表示
Y X x1
y1
y2
… … …
yj p1 j p2 j
pij
… … … …
p11 p21
pi1
p12 p22
x2
xi
第三章 二维随机变量及其分布
§2 二维离散随机变量
3)二维离散型随机变量联合分布律的性质
性质 1 :非负性
i, j , i,j 1, 2, 对任意的
解:
0, 1, 2. X 的可能取值为 0, 1, 2;Y 的可能取值为
1 1 PX 0, Y 0 2 9 3
第三章
二维随机变量及其分布
二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得
记
pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.
《概率论与数理统计》课件3-2 二维离散型随机变量

++
(2)规范性
pij = 1
i =1 j =1
边缘分布律
+
P X = xi } = P X = xi ,Y < + } = P{X = xi , Y = yj }
j= 1
+
= pij = pi •
j= 1
(i = 1,2, )
+
} } P Y = yj = P X < + ,Y = yj = P{X = xi , Y = yj } i= 1
+
}=
j=1 P{X = xi , Y = yj } =
pij = pi • (i = 1,2,)
j= 1
+
+
P Y = yi } = P X + ,Y = yi } =
P{X = xi , Y = yj }=
pij =
p •j
(j
=
1,2, )
i =1
i =1
3.2- P63— 1 2 3
A
C
B
D
提交
P
XY
( X, Y)X xi }=P{X xi Y
},
j1
pj
pij P{Y yj } P{X
i1
i 1, 2, ,
j 1, 2, ,
Y yi },
pi p j (X,Y)
X
Y
.
Y X
y1
y2
yj
x1
p 11 p 12
x2
p 21 p 22
p1j
p2 j
xi
pp
i1
且满足P{X1X2 = 0} = 1,则 P X1 = X2 } = ( )。