二维离散型随机变量

合集下载

3.2二维离散型随机变量

3.2二维离散型随机变量
j
ξ
Pi•
证明: 证明
x1 p1•
x2 p2•
… …
xi pi •
… …
pi• = P{ξ = xi } = P{ξ = xi , −∞ < η < +∞} = ∑ P{ξ = xi ,η = y j } = ∑ pij
j j
信息系刘康泽
边缘分布: 2、 (ξ ,η ) 关于 η 的边缘分布:
p• j = ∑ pij
η ( ξ = 0时)
p
另外两个同理可得。 另外两个同理可得。
1 1/2
2 1/2
信息系刘康泽 的两点分布, 例 5、已知 ξ 服从参数 2 / 3 的两点分布,又 、 η (ξ = 0) 1 2 3 1/2 1/4 1/4 P
η (ξ = 1)
的概率分布. 求 (ξ ,η ) 的概率分布.
1 1/3
证明: 证明
pij p• j
,
p• j ≠ 0 , i = 1, 2,⋯ .
pij p• j
P{ξ = xi | η = y j } =
P{ξ = xi ,η = y j } P{η = y j }
=
.
分布: 2、在 ξ = xi 的条件下 η 的分布:
P{η = y j | ξ = xi } =
pij pi •
信息系刘康泽
联合分布律也可用表格的形式来表示。 联合分布律也可用表格的形式来表示。
ξ
η
x1 x2 ⋮ xi ⋮
y1 p11 p 21 ⋮ p i1 ⋮
y2 p12 p 22 ⋮ pi 2 ⋮
… … … …
yj p1 j p2 j ⋮ pij ⋮
… … … …

二维离散随机变量及其分布(3.2)

二维离散随机变量及其分布(3.2)

yj p1 j p2 j pij
x2
… … …

pi
p1 p2
pi
xi
p j pi1源自p1 pi 2
p2





p j

第三章 二维随机变量及其分布
§2 二维离散随机变量
例 3 从 1 ,2 ,3 ,4 这4个数中随机取出一个,记为 X,
再从 1 到 X 中随机地取出一个数,记为 Y, 试求 X , Y 的联合分布律与X 及 Y 各自的边缘 分布律.
PX 1, Y 1
1 PX 2, Y 0 9
PX 2, Y 1 P 0
2 9
PX 2, Y 2 P 0
第三章
二维随机变量及其分布
§2 二维离散随机变量
由此得 X, Y 的联合分布律为
Y X
0 1 2
0
1
2
1 9 2 9 1 9
j 1,2,
X, Y 的联合分布律也可以由 下表表示
Y X x1
y1
y2
… … …
yj p1 j p2 j
pij
… … … …
p11 p21
pi1
p12 p22
x2

xi

第三章 二维随机变量及其分布
§2 二维离散随机变量
3)二维离散型随机变量联合分布律的性质
性质 1 :非负性
i, j , i,j 1, 2, 对任意的
解:
0, 1, 2. X 的可能取值为 0, 1, 2;Y 的可能取值为
1 1 PX 0, Y 0 2 9 3
第三章
二维随机变量及其分布

第三节二维随机变量的独立性

第三节二维随机变量的独立性
或随机变量X与Y的联合分布律. 注: 二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.

二维离散型随机变量及其分布

二维离散型随机变量及其分布

[例1] 1个口袋中装有大小形状相同的6个球, 其中2个红球、4个白球,现从袋中不放回地取两 次球,每次取一个。设随机变量
0, 表示第一次取红球 0, 表示第二次取红球 X 1, 表示第一次取白球 Y 1, 表示第二次取白球
求(X,Y)的联合分布律。
二、 边缘分布律(Marginal distribution regularity)
2007年12月
三、随机变量的独立性(Independence of random
variable)
定理1 设(X,Y)是二维离散型随机变量,则 X,Y相互独立的充要条件是:对所有的i,j,均有
pij=pi..p.j
[例3] 见例1,判断X,Y是否相互独立?
例4 已知随机变量(X,Y)的分布律为
x\y 1 0
1 1/10 3/10
0 3/10 3/10 解:
求X、Y的边缘分布律。
x\y 1 0 pi. 1 1/10 3/10 2/5 0 3/10 3/10 3/5
p.j 2/5 3/5
故关于X和Y的分布律分别为:
X0 1
Y/5 2/5
小结
联合分布律 边缘分布律
思考
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为
“有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立?
2、上述我们解决了:已知二维离散型随机变
量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
1、定义 设(X,Y)是二维离散型随机变量, 称分量X的分布律为(X,Y)关于X的边缘分布律; 分量Y的分布律为(X,Y)关于Y的边缘分布律。

概率论公式大全二维随机变量多项分布与独立同分布

概率论公式大全二维随机变量多项分布与独立同分布

概率论公式大全二维随机变量多项分布与独立同分布概率论是数学中的一个重要分支,它研究随机事件以及其概率性质。

其中,随机变量是概率论中的一个基本概念,它可以用来描述随机现象和随机试验的结果。

本文将介绍概率论中与二维随机变量、多项分布以及独立同分布相关的公式。

一、二维随机变量在概率论中,随机变量可以分为一维和多维两种情况。

一维随机变量描述的是具有一个取值的随机事件,而二维随机变量则描述的是具有两个取值的随机事件。

常见的二维随机变量包括离散型和连续型两种。

1. 离散型二维随机变量离散型二维随机变量的概率分布可以通过联合概率质量函数(Joint Probability Mass Function,简称JPMS)来描述。

对于二维离散型随机变量(X, Y),其概率分布可以用如下公式表示:P(X = x, Y = y) = P(X, Y)其中,P(X = x, Y = y)表示随机变量X取值为x,随机变量Y取值为y的概率,P(X, Y)表示联合概率质量函数。

2. 连续型二维随机变量对于连续型二维随机变量,其概率分布则可以通过联合概率密度函数(Joint Probability Density Function,简称JPDS)来描述。

对于二维连续型随机变量(X, Y),其概率分布可以用如下公式表示:P(a ≤ X ≤ b, c ≤ Y ≤ d) = ∬f(x, y)dxdy其中,f(x, y)表示联合概率密度函数,∬表示对整个平面积分,a、b、c、d为常数。

二、多项分布多项分布是二项分布的推广,它适用于具有多个离散可能结果的试验。

假设有n个独立的试验,每个试验有k种可能的结果,且每种结果出现的概率是固定的。

那么多项分布描述了试验结果中每种可能出现的次数的概率分布。

多项分布的概率质量函数可以表示为:P(X₁ = x₁, X₂ = x₂, ..., Xk = xk) = (n! / (x₁! * x₂! * ... * xk!)) *(p₁^x₁ * p₂^x₂ * ... * pk^xk)其中,n为试验次数,xi表示结果i出现的次数,pi表示结果i出现的概率。

2.2 概率论——二维离散型随机变量及其分布

2.2 概率论——二维离散型随机变量及其分布
1,
x 0或y 0, 0 x 1, y 0或0 y 1, x 0 x 1, y 1
P(X1=1, X2=1) = P(|Y|<1, |Y|<2)= P(|Y|<1) = 0.6826
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
例5:设二维d.r.v.(X,Y)服从二元两点分布:
Y X
0
1
0
q
0
1
0
p
试求(X,Y)的分布函数。
0, F ( x, y) q,
2.2 二维d.r.v.及其分布
定义 如果随机向量 ( X,Y ) 的全部取值 (向量或点 ) 为有限多个或至多可列个,则称 ( X,Y )为离散型随机向量。
( X,Y )为离散型随机向量
X与Y均为离散型随机变量
记( X ,Y )的取值集合为 E {( xi , y j ), i, j 1,2, } P{ X xi ,Y y j } pij , i, j 1,2,
(1) 确定随机变量 (X, Y) 的所有取值数对. (2) 计算取每个数值对的概率. (3) 列出表格.
对任意的A E
P{( X ,Y ) A} pij
ij
( xi , y j ) A
( X ,Y )的联合分布函数
F(x, y) P{X x,Y y}
pij
xi x y j y
解 (1) X 可能的取值为 1,2,3,Y 可能的取值为2,3,4,
但 ( X ,Y )的取值为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。
由古典概型公式
P{ X
1,Y
2}

二维离散型随机变量

二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得

pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.

二维离散型随机变量及其分布律

二维离散型随机变量及其分布律

则(ξ ,η )的可能取值为(0,0),(0,1),(1,0),(1,1), 故 (ξ ,η )为二维离散型随机变量。
1
2. 联合分布律
定义: 设二维随机变量(ξ ,η )的所有可能取的值是 (xi ,yj ),i,j=1,2, ,若{ξ = xi ,η = yj }的概率 L pij = p{ξ = xi ,η = yj} (1) (2) pij ≥ 0 i,j=1,2, L i,j=1,2, L
第2-3节 二维离散型随机变量及其分布律
1.二维离散型随机变量的定义
定义: 若二维随机变量(ξ ,η )的所有可能取的值是 有限对或可列多对, (ξ ,η )=(xi ,yj ),i,j=1,2, L 则称(ξ ,η )为二维离散型随机变量。
例:抛掷两枚硬币一次,观察出现正反的情况,令
⎧0 ξ=⎨ ⎩1 ⎧0 ,η= ⎨ A币出现正面 ⎩1 A币出现反面 B币出现反面 B币出现正面
称之为随机变量η 在ξ = xi条件下的条件分布律。
4
5. 随机变量的独立性
定义: 设二维随机变量(ξ ,η )联合分布律为 pij = p{ξ = xi ,η = yj} i,j=1,2, L 若对于任意的i, j,恒有pij ≡ pi. p. j,即 p{ξ = xi ,η = yj} = p{ξ = xi} p{η = yj} 则称为随机变量ξ 与η 独立。
ij
∑∑ p
i =1 j =1


=1 L i,j=1,2, 为二维离散
则称为pij = p{ξ = xi ,η = yj}
型随机变量(ξ ,η )的联合分布律。
2
3. 边缘ห้องสมุดไป่ตู้布律
定义: 设二维随机变量(ξ ,η )的联合分布律为:pij = p{ξ = xi ,η = yj} i,j=1,2, 则称为pξ(xi ) = p{ξ = xi ,η < +∞} = pi. L 为(ξ ,η )关于分量ξ的边缘分布律。 类似,(ξ ,η )关于分量η的边缘分布律为: pη(η = yj ) = p{ξ < +∞,η = yj} = p.j j=1,2, L i,=1,2, L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1: 设二维随机变量(X,Y)具有概率密度
2e (2x y) , x 0, y 0,
f (x, y) 0
其他
(i)求分布函数F(x,y); (ii)求概率P{Y≤X}
解: (i)
F(x, y)
y
x
f ( x)dxdy
y 0
x 2e (2 x y)dxdy,
0
0
x 0, y 0, 其他
第二节 二维离散型随机变量
1.定义: 若二维随机向量(X,Y)的可能取值只有有限个或可列个,
则称(X,Y)是离散型二维随机向量.
若二维离散型随机向量(X,Y)的所有可能取值为 (Xi,Yj),i,j=1,2,…
记P{X=xi,Y=yj}=pij, i, j=1,2,… 则称下列一组等式
P{X=xi,Y=yj}=pij, i, j=1,2,…为随机向量(X,Y)的(联合) 分布律.
1
2
dxdy
r
1
drd
(1 x 2 y 2 )2
0 0 (1 r 2 )2
从而有 Aπ=1,即可得A=1/π。
(2)依题意需求概率
P{X 2 Y 2 r02}
f (x, y)dxdy
X 2 Y 2 r02
1
dxdy
X 2 Y 2 r02 (1 x 2 y 2 ) 2
yx
F(x, y)
f (u,v)dudv
则称(X,Y)是连续型二维随机向量,函数 f(x,y)称为二维 向量(X,Y)的(联合)概率密度.
2.概率密度f(x,y)的性质
(1)f ( x, y) 0.
(2)
f ( x, y)dxdy F ( , ) 1.
(3).若f(x,y)在点(x,y)连续,则有
40
0
0 1/4 *1/4
3.分布律与分布函数的关系
若(X,Y)的分布律为P{X=xi,Y=yj}=pij, i,j=1,2,… 则(X,Y)的分布函数为
F( x, y)
pij
xi x, y j y
其中和式是对一切满足xi≤x , yj≤y求和。
例 若(X,Y)的分布律如下表,求(X,Y)的分布函数。
2
d
r0
1
rdr r02
0
0 (1 r 2 )2
1 r02
五、两个最基本的二维连续型随机向量的分布
(一)均匀分布 定义: 设G是平面上的有限区域,面积为A,若二维
随机向量(X,Y)具有概率密度.
1
f
(
x,
y)
A
0
(x, y)G 其他
则称(X,Y)在G上服从均匀分布。
(二)二维正态分布
定义: 若(X,Y)具有概率密度
f (x, y)
1
2 [( x1 )2 2 ( x1 )( y2 )( y2 )]
e 2(1 2 )
2 1
2
2 2
2 1 2 1 2
x , y 其中
-∞<μ1<+∞, -∞<μ2<+∞,σ1>0,σ2>0 ,|ρ|<1,
则称(X,Y)服从参数为μ1,μ2,σ21,σ22,ρ的二维正态分布, 记为:(X,Y)N(μ1,μ2, σ21,σ22,ρ).

有F
(
x,
y)
(1
e
2
x
)(1
e
y
)
0
x 0, y 0, 其他
(ii)将(X,Y)看作是平面上随机点的坐标.即有 {Y≤X}={(X,Y)∈G}
其中G为xy平面上直线y=x下方的部分,如图,于是
P(Y X ) P{(X ,Y ) G} f (x, y)dxdy
G
2e(2x y)dxdy 1
Y X
0
1
0 1/2
0
y
10
1/2
1

0
1
F ( x,
y)
1
2
2
1
x 0 x 1, y 1
1
x
第三节 二维连续型随机变量
1.定义:设(X,Y)的分布函数为F(x,y),若存在一非负函数 f(x,y),使得对于任意的实数x,y有
pij 1
i1 j1
i1 j1
例1: 一整数X,随机地在1,2,3,4四个数中取任一值, 另一整数Y随机地在1—X中取值,求(X,Y)的分布率。
解:
X
Y
1
2
3
4
1 1/4 1/4*1/2 1/4*1/3 1/4*1/4
2 0 1/4*1/2 1/4*1/3 1/4 *1/4
30
0
1/4*1/3 1/4 *1/4
y
3
例2: 向一个无限平面靶射击,设命中点(X,Y)的有概率密 度 f(x,y)=A / (1+x2+y2)2,求:(1)常数A;(2)命中点与 靶心距离不超过r0的概率 .
解: (1)由概率密度的性质知
1
f ( x, y)dxdy
A
dxdy
(1 x 2 y 2 )2
利用极坐标计算可得
例 若(X,Y)在D1上服从均匀分布,D1为x轴、y轴及直线 y=2x+1所围。求: (X,Y)的概率密度与分布函数。
解:
y
(1)
f (x,
y)
1 D1的 面

4
0
( x, y) D1
其他
D1
-1/2 0
x
xy
(2) F(x, y)
f (u, v)dvdu
1) (x,y)∈D2 ,D2: y<0, 或x<-1/2 F(x,y)= 0 v
F ( x, y) f ( x, y) xy
因为F( x, y)
y
x
f (u, v)dudv.
(4).设G是xy平面上的一个区域,点(X,Y)落在G内的概率
为:
P{(X ,Y ) G} f ( x, y)dxdy
G
在几何上z= f(x,y)表示空间的一个曲面.由性质2 ,介 于它和 xoy平面的空间区域的体积为1,由性质4, P{(X,Y)∈G}的值等于以G为底,以曲面z= f(x,y)为顶面 的柱体体积。
常用表格表示(X,Y)的分布律:
Y X
y1
x1 p11 x2 p21 ……
xi pi1 ……
y2

p12

p22

……
pi2

……
yj

p1j … p2j … ……
pij … ……
2.分布律的性质
(1). pij≥0, i,j=1,2,…
(2) pij 1 , i1 j1
因为P() P( ( {X xi , Y y j }))
v
D3
D5
D1 u
D1
D4
u
D2
(1)
(2)
2)
(x,y)∈D1, D1 :-1/2≤x<0,
0≤y<1
F(x, y)
y
dv
0
x
1(v1) 4du
4xy
2y
y2
2
v
D4
-1/2
u
(3)
3) (x,y)∈D4 D4 : 0≤y<1, 0≤x
相关文档
最新文档