3.4不等式的实际应用
最新高中数学人教B版必修五3.4《不等式的实际应用》ppt课件

3.解不等式应用题,一般可按以下四个步骤进行: (1)阅读理解,认真审题,把握问题中的关键量,找准不 等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.
比较法在实际问题中的应用
甲、乙两人同时同地沿同一路线去同一地点, 甲有一半的时间以速度 m 行走,另一半时间以速度 n 行走; 乙有一半路程以速度 m 行走,另一半路以速度 n 行走.如果 m≠n,问甲、乙两人谁先到达指定地点?
●重点难点 重点:不等式的实际应用. 难点:实际问题的数学建模.
●教学建议 由于本节内容与实际生活联系比较密切,而实际问题的 数学建模是学生的薄弱环节,因此建议教师采用启发、引导、 归纳总结与探究相结合的方法,组织教学活动,按照由特殊 到一般的认识规律,引导学生分析、归纳如何抽象不等式模 型及解不等式应用题的一般步骤.
均值不等式的实际应用
某厂有一面长 14 m 的旧墙,现在准备用这面墙 的一段为一面,建造平面图形为矩形且面积为 126 m2 的厂房 (不考虑墙高),修 1 m 旧墙的费用是建 1 m 新墙费用的 25%; 用拆去旧墙所得材料建 1 m 新墙的费用是建 1 m 新墙费用的 50%(拆旧墙的材料损失忽略不计).问:如何利用旧墙才能使 建墙费用最省?(建门窗的费用与建新墙的费用相同,可以不 考虑)
为保证在该时段内车流量至少为 10 千辆/小时,则汽车 的平均速度应控制在什么范围内?
【解】 由题意得v2+39v2+0v1 600≥10,即 v2-89v+1 600≤0,即(v-25)(v-64)≤0,
解得 25≤v≤64. 所以为保证在该时段内车流量至少为 10 千辆/时, 汽车的平均速度应控制在 25~64 km/h 的范围内.
高二数学基本不等式的实际应用

?“你要买水果,不要在外头买,贵参参地给人唬不知,去给巷子底那个查甫人买,伊爱饮烧酒,不
时一个面红光光,臭酒现,若是到十二点,日头一下晒,伊就人晕头壳痛,伊就轻彩卖,外头的红肉木瓜一斤三十,伊喊三斤五十。” 持家的学位在此吧!要不然,苦日子怎么捱得过?如果战争、灾荒、病乱的年岁让我碰上了,为着存活,也许还捏得更紧更狠?
? “莫
彩钱!哼(不屑的声调),买那个花干啥?看没三天就谢去,你拢免呷饭静静坐住看,就会饱啊?你买那把花的钱,我买一甲地的菠宁菜还有剩!” “看‘水’呀,瘄内插一盆花‘水’呀!” “‘水’去壁!人说‘猪仔牵去唐山还是猪’,你这已经讲不变了!”
?
阿嬷的老磨功,我是及不上的。她能够把市场的每一条曲巷壁缝都探摸得如视掌纹,找出卖价最便宜的摊贩,使自己永远不在钱字上吃闷亏,这些技巧很顶有心理学修养的,她说:
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找
例析不等式在实际生活中的应用

不等式在实际生活中有广泛的应用,下面列举几个常见的例子:
1.金融:不等式可以用来分析金融市场的风险和收益。
例如,可以使用不等式来估算
投资的最大损失,或者计算最小投资回报率。
2.公平竞赛:不等式可以用来保证公平竞赛的公正性。
例如,在体育竞赛中,可以使
用不等式来确定最多能够获得的奖励,以确保所有参赛者有同等的机会获胜。
3.保险:不等式可以用来分析保险公司的风险和收益,并确定保险费用。
例如,可以
使用不等式来估算保险公司的最大赔偿金额,或者计算最小保费收益率。
4.工程设计:不等式可以用来分析工程设计的安全性和可靠性。
例如,在建造高楼大
厦时,可以使用不等式来确定楼房的最大承载能力,以确保安全。
5.统计学:不等式可以用来分析数据的统计特征,例如求出数据的平均值和方差。
人教课标版(B版)高中数学必修5导学案-不等式的实际应用

3.4不等式的实际应用学习目标:1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤,2、让学生经历从实际情景中抽象出不等式模型的过程。
3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。
学习重点和难点:重点:不等式的实际应用难点:数学建模【预习达标】1.实际问题中,有许多不等式模型,必须在首先领悟问题的实际背景,确定问题中量与量之间的关系,然后适当设 ,将量与量间的关系变成 或不等式组.2.实际问题中的每一个量都有其 ,必须充分注意定义域的变化.3.探究:一个正的真分数的分子与分母同时增加同一个数,分数值变 。
若一个假分数呢?试证明之。
【典例解析】例1.某工厂有一面14m 的旧墙,现准备利用这面旧墙建造平面图形为矩形,面积为126m 2的厂房。
工程条件是:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a 元;③用拆去1m 旧墙所得的材料建1m 新墙的费用为2a 元。
现在有两种建设方案:(Ⅰ)利用旧墙的一段Xm(x<14)为矩形厂房的一个边长;(Ⅱ)利用旧墙的矩形厂房的一个边长为Xm(x≥14)。
问如何利用这堵旧墙,才使建墙费用最低?(Ⅰ)(Ⅱ)两个方案哪个更好?例2.有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?分析:若桶的容积为x, 倒前纯农药为x 升第一次 :倒出纯农药8升,纯农药还剩(x-8)升,桶内溶液浓度xx 8- 第二次 :倒出溶液4升,纯农药还剩[(x-8)—(x x 8-)4], 中本题的不等关系是:桶中的农药不超过容积的28%解答:学生完成。
例3.某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上一年减少51,本年度当地旅游业收入估计万400万元,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度万第一年)总投入万a n 万元,旅游业总收入万b n 万元,写出a n 、b n 的表达式。
【优化方案】2012高中数学 第3章3.4不等式的实际应用课件 新人教B版必修5

x2 -1.1x+0.3≥0, 整理得 0.55≤x≤0.75.
解此不等式,得 0.60≤x≤0.75. 所以,当电价最低定为 0.60 元/kW· 时仍可保证 h 电力部门的收益比上年至少增长 20%.
【点评】
不等式在解答生产、科研及日常生活
中的实际问题中有着广泛的应用.近些年来,随
∴类似①的分析知,这种取法也无必胜的把握. ③若先取A、D,则后取者只能取B、C. ∵(a3+b3)-(a2b+ab2)=(a+b)(a-b)2, 又a≠b,a>0,b>0,∴(a+b)(a-b)2>0. ∴a3+b3>ab2+a2b,故先取A、D是唯一必胜的
方案.
一元二次不等式模型
例2 某地区上年度电价为0.8元/kW· h,年用电量
― → ―
数学问题答案 ― → 实际问题结论 ―
课堂互动讲练
考点突破
作差法解决实际问题模型
例1 有一批货物的成本为A元,如果本月初出售,
可获利100元,然后可将本利都存入银行.已知 银行的月利息为2%,如果下月初出售,可获利 120元,但货物贮存要付5元保管费,试问是本月 初还是下月初出售好?并说明理由. 【分析】 先表示出两种情况下的获利情况.
3.4
不等式的实际应用
学习目标
1.能把一些简单的实际问题转化为不等式进行处
理.
2.重点是不等式的实际应用.
3.难点是建立不等式问题模型,解决实际问题.
3.4 不 等 式 的 实 际 应 用
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基
1.作差比较法可以比较两数(式)的大小,也 可证明不等式. a+b ≥ ab(a>0,b>0) 2 2.均值不等式:______________________. 3.一元二次不等式的解法.
3.4不等式的实际应用-王后雄学案

张喜林制3.4 不等式的实际应用教材知识检索考点知识清单1.在许多实际问题中,需要设 ,列 求解.2.解有关不等式的应用题时,首先要用 表示题中 ,然后由题中给出的 关系,列出关于未知数 ,解所列出的关于 ,写出要点核心解读1.在不等式的应用中建立不等式的主要途径(1)利用问题的几何意义;(2)利用判别式;(3)利用函数的有界性;(4)利用函数的单调性;(5)利用均值不等式等,只要建立起数学模型,问题就不难解决了.2.解答不等式应用题的一般步骤 解答不等式应用题,一般可分为如下四步:(1)阅读理解材料:应用题所用语言多为“文字语言,符号语言,图形语言”并用,我们要细心领悟商题的实际背景,分析各八量之间的关系,形成思路,想办法把实际问题抽象成数学模型。
(2)建立数学模型:根据题意,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且建立所得数学模型和已知数学模型的对应关系埘^便确立下一步的努力方向。
(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论和结论有关的不等关系,得到有关理论参数的值.(4)作出同题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论。
典例分类剖析考点1 作差法解决实际问题 命题规律(1)利用作差法原理,即b a b a >⇔>-0解决实际中的一些应用问题.(2)往往以“速度问题,提价、降价问题等”来考查运用作差法解决实际问题的能力.[例1] 现有A 、B 、C 、D 四个长方体容器,A ,B 的底面积为,2a 高分别为a 和b ,C ,D 的底面积均为 ,2b 高分别为a 和b (其中a ≠b ).现规定一种游戏规则:每人一次从四个容器中取两个.盛水多者为胜,问先取者有没有必胜的方案?若有的话有几种?[解析】 依题可知A ,B ,C ,D 四个容器的容积分别为,3a .,,322b ab b a 按照游戏规则,问题可转化为比较两两容积和的大小.[答案] (1)A ,B 与C ,D)()()()(223223b a b b a a b ab b a a +-+=+-+,))((2b a b a +-=显然,0)(2>+b a 而a 与b 的大小不能确定,2))((b a b a +-∴的正负不能确定,即b a a 23+与32b ab +的大小不定. (2)A ,C 与B ,D)()()()(22223223b a b b a a b b a ab a +-+=+-+).)((22b a b a +-=由(1)知,仍是无法比较大小. (3)A ,D 与B ,C=+-+-+=+-+)())(()()(222233b a ab b ab a b a ab b a b a )()2)((22b a b ab a b a +=+-+ 222))(()2(b a b a b ab a -+=+-又因.0))((,0,0,2>-+∴>>=/b a b a b a b a即.2233ab b a b a +>+综上,先取A .D 是唯一必胜的方案.[方法技巧] (1)由本题可以得到如下结论:已知),,0(,,+∞∈=/b a b a 那么,2233ab b a b a +>+此式可等价于.22b a a b ba +>+ (2)此题解法用到分类讨论的思想,使用这种思想时,先确定分类标准,再列出各情况,必须做到不重不漏.母题迁移 1.在春节期间有甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠? 考点2 一元二次不等式在实际中的应用命题规律(1)利用一元二次不等式解决实际应用中的问题。
初中数学不等式在解决实际问题中的应用案例

初中数学不等式在解决实际问题中的应用案例初中数学不等式在解决实际问题中的应用案例数学不等式作为初中数学中的一个重要内容,不仅有理论的意义,还有实际的应用。
本文将从实际问题的角度出发,给出一些初中数学不等式在解决实际问题中的应用案例,以展示不等式在实际生活中的重要性。
一、物品购买问题假设小明去商店买口红,他现在有300元的预算,一支口红的价格是x元。
根据经验,我们知道在购买同款口红时,价格越高,质量越好。
但是小明想要在预算范围内选择质量尽可能好的口红。
这个问题可以用不等式进行求解。
首先,我们可以列出不等式:x ≤ 300,其中x为口红的价格。
由于小明希望选择质量尽可能好的口红,根据经验可以假设价格与质量成正比。
因此,价格越高,质量越好。
所以,通过解不等式,我们可以得到小明预算范围内,价格越高的口红质量越好。
通过这个案例,我们可以看到不等式在物品购买问题中的应用。
二、年龄差问题在生活中,经常会遇到解决年龄差不等式的问题。
例如,小明比小红大5岁,小红比小白大3岁,请问小明和小白的年龄差是多少?假设小明的年龄为x岁,则小红的年龄为x-5岁,小白的年龄为x-5-3岁,即x-8岁。
根据题目的条件,我们可以列出不等式:(x-5) - (x-8) ≥ 0简化该不等式,我们可以得到:x - 5 - x + 8 ≥ 0化简后得到:3 ≥ 0这个不等式恒成立,说明小明和小白的年龄差是大于等于0的。
通过这个简单的案例,我们可以看到不等式在解决年龄差问题中的应用。
三、角度问题在几何学中,不等式可以用来描述角度之间的关系。
例如,给定一个三角形ABC,角A的度数是x,角B的度数是2x,角C的度数是3x。
我们需要找出x的取值范围,使得三角形ABC为锐角三角形。
根据角度的性质,我们知道锐角的度数是小于90度的。
因此,我们可以列出不等式:x < 90由于角A、角B、角C是三角形的三个内角,所以它们的和应该等于180度。
根据题目的条件,我们可以列出等式:x + 2x + 3x = 180简化该等式,我们得到:6x = 180解方程得到x = 30。
高二数学高效课堂资料教案:3.4不等式的实际应用

高二数学高效课堂资料课题: 3.4 不等式的实际应用编写人:王秀梅教学目标:1.通过具体问题的探究,了解不等式(组)产生的实际背景,掌握解决实际问题的一般程序和一些典型实际问题的解法.2.通过具体问题的分析解决,提高学生分析问题和解决问题的能力.认识不等式的优化思想.3.通过对生活中熟悉的实际问题的解决,激发学生学习的热情.培养学生严肃认真的科学态度,同时感受数学的应用性.重点难点:教学重点:培养学生把实际问题转化为数学问题的能力.掌握一些典型实际问题的解法.教学难点:用不等式(组)表示实际问题中的数量关系.教学方法:……教学过程:一、导入新课思路 1.(直接引入)许多实际问题,通过设未知数将其数学化,便可以应用不等式的知识求解.本节我们将用不等式的知识来探究一些实际问题.思路 2.(章头图引入)章头插图的人造卫星,高低不一的雄伟大楼的壮观画面,它将我们带入“横看成岭侧成峰,远近高低各不同”的大自然中.使学生在具体情境中感受到不等关系的大量存在.那么我们怎样用不等式的知识表示实际问题呢?由此进入新课.二、形成概念提出问题回忆本章第一节所学,怎样利用不等式表示不等关系?解决实际问题的一般程序是什么?我们都学习了不等式的哪些性质?三、概念深化活动:教师利用多媒体演示章头图的画面.引导学生回忆前面所学,对现实世界中普遍存在的不等关系,怎样用数学式子表示出来,并从理性的角度去思考、去分析.我们在考察事物之间的数量关系时,经常要对数量的大小进行比较,如每个家庭食品消费额的年平均增长率至多至少问题,容器的容积最大问题,商品的最高最低定价问题等.这些问题的解决都需用不等式的知识.接着教师引导学生回忆前面学过的不等式的性质,以及如何用数学知识解决实际问题.讨论结果:(1)(3)略.(2)解决实际问题的一般程序是:设出未知数,分析数量间的关系,列出方程或不等式,解决这个数学问题.其中的关键是建立不等式模型,即根据题意找出常量与变量之间的不等关系.四、应用例1(教材本节例1)活动:教师引导学生将题目中的窗户面积和占地面积用字母a、b表示出来,再用字母m表示出窗户和占地所增加的面积.这样只要比较增加前和增加后窗户的总面积与占地面积的比值的大小,即可作出正确的判断.点评:由本例可得出一般结论:设a>0,b>0,且a<b,m>0,则a+mb+m>ab.变式训练某种商品原来定价为每件p元,每月将卖出n件.假若定价上涨x成(即x10,0<x≤10),每月卖出数量减少y成,而售货金额变成原来的z倍.若y=23x,求使售货金额比原来有所增加的x的取值范围.解:依题意涨价后的售货金额为npz=p(1+x10)·n·(1-y10).由售货金额比原来有所增加,则np(1+x10)(1-y10)>np.∵n>0,p>0,y=23x,∴(1+x10)(1-115x)>1.整理得x2-5x<0,解这个一元二次不等式,得0<x<5.又∵0<x≤10,∴0<x<5.故x的取值范围是{x|0<x<5}.例2(教材本节例2)活动:教师引导学生理清问题的情境,并尝试着用数学语言将其表示出来.这是所有实际问题使学生感到困惑的地方.如本例中教师引导学生分析:若桶的容积为x升,那么第一次倒出8升纯农药后再用水加满,这时桶内纯农药药液占容积的x-8x.同样第二次又倒出4升药液,则倒出的纯农药药液为4·x-8x,此时桶内还有纯农药药液[(x-8)--x]升.这样,问题就很自然地转化为一个数学不等式问题.点评:学生或许熟悉解决实际问题的一般步骤或者一般程序,但解决问题的重点应放在怎样选用合适的字母表示出题中给出的不等量关系,进而列出关于未知数的不等式(组).注意文字语言和符号语言的转换.变式训练一个车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:y=-2x2+220x.若这家工厂希望在一个星期内利用这条流水线创收 6 000元以上,那么他在一星期内大约应该生产多少辆摩托车?活动:本例设在一星期内大约应该生产x辆摩托车,则可得一元二次不等式x2-110x+3 000<0,解这个一元二次不等式即可.解:设在一星期内大约应该生产x辆摩托车.根据题意,能得到-2x2+220x>6 000.移项、整理,得x2-110x+3 000<0.因为Δ=100>0,所以方程x2-110x+3 000=0有两个实数根x1=50,x2=60,然后,画出二次函数y=x2-110x+3 000,由图象得不等式的解集为{x|50<x<60}.因为x只能取整数值,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51到59辆之间时,这家工厂能够获得 6 000元以上的收益.例3(教材本节例3)活动:根据上例,教师引导学生将这个实际问题转化为数学问题:(1)设出食品消费额的年平均增长率为x(x>0),(2)到2005年的食品消费额为0.6(1+x)2(万元),(3)消费支出总额为1+2×0.3=1.6(万元).这样根据恩格尔系数η的计算公式η=食品消费额消费支出总额×100%,就很容易列出不等式了.点评:本题采用了“化整为零”的办法,即逐条分析转化.对此类问题的解决,应注意将一个大问题化成若干个小问题的思维习惯,不要被问题的表面形式所迷惑.变式训练国家计划以 2 400元/t的价格收购某种农产品m t,按规定,农民向国家纳税为每收入100元纳税8元(称作税率为8个百分点,即8%),为了减轻农民负担,制定积极的收购政策,根据市场规律,税率降低x个百分点,收购量能增加2x个百分点,试确定x的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.活动:本例是一道实际应用题,其关键是把文字语言转化为数学语言:(1)“税率降低x个百分点”,即调低后税率为(8-x)%;(2)“收购量能增加2x个百分点”,这时总收购价为2 400m(1+2x%)元;(3)“总收入不低于原计划的78%”,即税率调低后,“税收总收入”≥ 2 400m×8%×78%.解:设税率调低后的“税收总收入”为y元.根据题意,得y=2 400m(1+2x%)(8-x)%=-1225m(x2+42x-400)(0<x≤8).∴y≥2 400m×8%×78%,即-1225m(x2+42x-400)≥2 400m×8%×78%.∴x2+42x-88≤0.解这个一元二次不等式,得-44≤x≤2.又∵0<x≤8,∴0<x≤2.五、随堂练习某种牌号的汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m和汽车车速x km/h有如下关系:s=120x+1180x2.在一次交通事故中,测得这种车的刹车距离大于39.5 m,那么这辆汽车刹车前的车速至少为多少?(精确到0.01 km/h) 解:设这辆汽车刹车前的车速至少为x km/h,根据题意,得120x+1180x2>39.5,移项、整理,得x2+9x-7 110>0.因为Δ>0,方程x2+9x-7 110=0有两个实数根,即x1≈-88.94,x2≈79.94.然后,画出二次函数y=x2+9x-7 110,由图象得不等式的解集为{x|x<-88.94或x >79.94}.在这个实际问题中x>0,所以这辆汽车刹车前的车速至少为79.94 km/h.六、课堂小结1.由学生自己理顺整合本节所学知识方法,归纳总结利用不等式解决实际问题的方法步骤,感悟突破难点的探究过程.2.教师进一步强调,解有关不等式的应用题,首先要选用合适的字母表示题中的未知数.再由题中给出的不等量关系,列出关于未知数的不等式(组).然后解所列的不等式(组),最后再结合问题的实际意义写出答案.七、作业习题3—4A组1~4;习题3—4B组1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式及其应用
—利用基本不等式求最值
教学重点
1.构建基本不等式解决函数的最值问题;
2.用消元、配凑、代换的方法构造基本不等式求最值。
教学难点
1.结构的变形技巧,一题多解最佳方法的选择;
2.基本不等式应用时等号成立条件的考查。
新课标考纲要求:
()()()1.2.
了解基本不等式的证明过程 会用基本不等式解决简单的最大小值问题 知识回顾:
1(0,0) 2
a b a b +≤≥≥2、利用基本不等式求最值:
一正二定三相等.积定和最小,和定积最大;
32
0,0)112a b a b a b a b +≤≤≤>>=+、知识拓展:(不等链)
当且仅当“”时取等号 此不等式链揭示了四种平均值的相互关系,依次叫调和平均数、几何平均数、算术平均数、加权平均数。
课前自测:
1(1).0,()x f x x x
<=+设则函数的最大值为
(2).02,()x f x <<=设则函数
4(3).()sin ,(0,]sin 2f x x x x π=+
∈函数的最小值为
考向1 求不含等式条件的最值
21(1)0()21
(2)1,1x f x x t t t t <<=-+>-例、若则函数已知则的最小值为
考向2 求含有等式条件的最值
2 (1).,35,34x y x y xy x y +=+例若正数满足则的最小值是 (2).(2017)0,0,39,3x y x y x y
x y >>++=+江西南昌模拟已知且则的最小值为
练习:
(1).(1,2),(2,6),0,0//,
31
()
46812
AB x CD y x y AB CD x y A B C D =-=->>+已知向量其中,且则的最小值等于、、、、
8
(2).,2,(
)(2)(4)1
1
12
42x y x y x y A B C D +=++已知都是非负实数,且则的最小值为、、、、
课堂小结
你学到了什么?还有什么疑惑?。