《二次函数》基础训练(含答案)(最新整理)

合集下载

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。

答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________.4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分)5.已知二次函数y =-12x 2+x +4.(1)确定抛物线的开口方向、顶点坐标和对称轴; (2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A .y =2x 2+x +2 B .y =x 2+3x +2 C .y =x 2-2x +3 D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1B .y =-12(x -2)2-1C .y =(x -2)2-1D .y =12(x -2)2-1二、填空题(每小题4分,共8分) 3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-34.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是( )x 6.17 6.18 6.19 6.20y =ax 2+bx +c-0.03-0.010.020.04A.6<x <6.17 B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3 B.32和-3 C .-32和2 D .-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2 011的值为__________.4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.图J22-2-1三、解答题(共11分) 5.如图J22-2-2,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的关系式;(2)求不等式x 2+bx +c >x +m 的解集(直接写出答案).图J22-2-2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 二、填空题(每小题4分,共8分) 3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.图J22-3-1三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2基础知识反馈卡·22.1.11.C 2.D 3.3 4.k >-1 5.解:图略.(1)函数y =2x 2的图象开口向上,对称轴为y 轴,顶点坐标为(0,0).函数y =-12x 2的图象开口向下,对称轴为y 轴,顶点坐标为(0,0).(2)≠0 低(3)≤ =0 大 0 基础知识反馈卡·22.1.2 1.A 2.B3.上 y 轴 4.y =2⎝⎛⎭⎪⎫x +322-32 5.解:(1)将二次函数y =-12x 2+x +4配方,得y =-12(x -1)2+92.所以抛物线的开口向下,顶点坐标为⎝ ⎛⎭⎪⎫1,92,对称轴为x =1. (2)当x >1时,y 随x 的增大而减小;当x <1时,y 随x 的增大而增大.基础知识反馈卡·*22.1.31.D2.C3.y =-(x +1)2+54.-35.解:由题意可设函数关系式为y =a (x -1)2+5,∵图象过点(0,-3),∴a (0-1)2+5=-3,解得a =-8.∴y =-8(x -1)2+5,即y =-8x 2+16x -3.基础知识反馈卡·22.21.C 2.B 3.2 012 4.-2<x <35.解:(1)∵直线y =x +m 经过点A (1,0),∴0=1+m .∴m =-1. 即m 的值为-1.∵抛物线y =x 2+bx +c 经过点A (1,0),B (3,2), ∴⎩⎪⎨⎪⎧ 0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2. ∴二次函数的关系式为y =x 2-3x +2. (2){x |x <1或x >3}. 基础知识反馈卡·22.3 1.D 2.B 3.4 4.9.1 m5.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.基础知识反馈卡·23.1 1.D 2.A3.∠D∠E DE DC 4.C顺时针90 5.解:(1)旋转中心是点B.(2)旋转了90度.(3)AC与EF垂直且相等.。

二次函数基础练习题大全(含答案)

二次函数基础练习题大全(含答案)

1、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.2、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.3、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是.4、抛物线 y =-x 2不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点5、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D6、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D .7、已知函数24mm ymx 的图像是开口向下的抛物线,求m 的值.8、二次函数12-=m mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.9、已知函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?st OstOst O s tO10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.11、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________; 12、抛物线942++=x x y 的对称轴是.13、抛物线251222+-=x x y 的开口方向是,顶点坐标是.14、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____. 15、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是16、抛物线1662--=x x y 与x 轴交点的坐标为_________; 17、函数x x y +-=22有最____值,最值为_______;18、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-1419、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3320、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 21、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标22、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上23、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?25、二次函数2224ymx x m m 的图象经过原点,则此抛物线的顶点坐标是26、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;27、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第象限.(第26题) (第27题) () () 28、二次函数2yx ax b 中,若0ab,则它的图象必经过点( )A 1,1B 1,1C 1,1D1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。

《二次函数》基础训练(含答案)(最新整理)

《二次函数》基础训练(含答案)(最新整理)

3=16+4b+c
b= 4
∴ 0=9+3b+c ,解得 c=3 。
(2)∵该二次函数为 y=x2 4x+3= x 22 1。
∴该二次函数图象的顶点坐标为(2,-1),对称轴为 x=1。
18、(1)根据题意,y=(60-50+x)(200-10x), 整理得,y=10x2+100x+2000(0<x≤12); (2)由(1)得 y=-10x2+100x+2000 =-10(x-5)2+2250, 当 x=5 时,最大月利润 y 为 2250 元。
y1,y2,y3 的大小关系是(

A.y1<y2<y3
B.y2<y1<y3 C.y3<y1<y2
D.y1<y3
6.由二次函数 y 2(x ) 2 1 ,可知( )
A.其图象的开口向下
B.其图象的对称轴为直线 x 3
C.其最小值为 1
D.当 x 3 时,y 随 x 的增大而增大
7.二次函数 y x2 2x 3 的图象如图所示.当 y<0 时,自变量 x 的取值范围是( ).
所以,点 P 的坐标为(-2+2 2 ,-4)或(-2-2 2 ,-4),
综上所述,点 P 的坐标是:(-2,4)、(-2+2 2 ,-4)、(-2-2 2 ,-4)
y x=2
22.
解:(1)根据题意,得
0
5
a
a
(1)2 4 (1) 02 4 0 c.
c,
解得
a 1, c 5.
)
A.先向左平移 2 个单位,再向上平移 3 个单位
B.先向左平移 2 个单位,再向下平移 3 个单位

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。

3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。

4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。

5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。

6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。

9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。

12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。

14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。

15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。

18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。

二次函数基础测试题附答案

二次函数基础测试题附答案

二次函数基础测试题附答案一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.3.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x 时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x,故本选项正确;故选:C .【点睛】 本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.4.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④9a﹣3b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④C.①②③④D.①②③④⑤【答案】D【分析】根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误;②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2b a->0,∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上,∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确;⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确;故正确的有:③④⑤.故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

二次函数测试题及答案

二次函数测试题及答案一、选择题1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = 3x^2 - 2x + 1C. y = 5x^2 + 3D. y = 2x答案:D2. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2 / 4a)D. (-b/a, 4ac - b^2 / 4a)答案:C3. 若二次函数y = ax^2 + bx + c的图象开口向上,则a的取值范围是:A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A二、填空题4. 二次函数y = x^2 - 2x + 1的顶点坐标是_________。

答案:(1, 0)5. 当a > 0时,二次函数y = ax^2 + bx + c的图象与x轴的交点个数最多为_______。

答案:2三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其顶点坐标。

解:首先,我们可以将二次函数写成顶点形式:y = 2(x - 1)^2 + 1。

因此,顶点坐标为(1, 1)。

7. 某二次函数的图象经过点(1, 1)和(2, 4),且对称轴为直线x = 2。

求该二次函数的解析式。

解:设二次函数的解析式为y = a(x - 2)^2 + k。

将点(1, 1)代入得:1 = a(1 - 2)^2 + k1 = a + k将点(2, 4)代入得:4 = a(2 - 2)^2 + k4 = k由上述两个方程组可得a = -3,k = 4。

因此,该二次函数的解析式为y = -3(x - 2)^2 + 4。

四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 10x + 100,其中x表示产品数量。

求该工厂生产多少件产品时,平均成本最低。

解:平均成本为C(x)/x = 0.5x - 10 + 100/x。

二次函数的练习题及答案

二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。

A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。

A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。

A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。

2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。

三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。

2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。

四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。

求出当生产多少件产品时,成本最低,并求出最低成本。

2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。

设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。

答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。

2. 函数与x轴的交点坐标为(1,0)和(2,0)。

四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。

2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。

二次函数基础练习题大全(含答案)

1、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.2、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.3、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .4、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点5、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D6、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D . 7、已知函数24mm y mx --=的图像是开口向下的抛物线,求m 的值. 8、二次函数12-=mmx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?tt tt10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.11、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;12、抛物线942++=x x y 的对称轴是 .13、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .14、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.15、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是16、抛物线1662--=x x y 与x 轴交点的坐标为_________;17、函数x x y +-=22有最____值,最值为_______;18、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-1419、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3320、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 21、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标22、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上23、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?25、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是26、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;27、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.(第26题) (第27题) () ()28、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。

二次函数基础练习题集大全(含答案解析)

二次函数基础练习题练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t秒)的数据如下表:时间t (秒)1234距离s(米)281832写出用t 表示s 的函数关系式:2、下列函数:① y = 3x2;② y = x2 - x(1+ x) ;③ y = x2(x2+ x)- 4;④⑤ y = x(1- x ),其中是二次函数的是,其中a = ,b = ,c =3、当m 时,函数y = (m - 2)x2 + 3x - 5(m 为常数)是关于x 的二次函数24、当m= ____ 时,函数y = (m2+ m)x m -2m- 1是关于x 的二次函数25、当m = ____ 时,函数y = (m - 4)x m - 5m+6+3x 是关于x 的二次函数6、若点 A ( 2, m )在函数y x2 1的图像上,则 A 点的坐标是____.7、在圆的面积公式S=πr 2中,s 与r 的关系是()A、一次函数关系 B 、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm )的小正方形,用余下的部分做成一个无盖的盒子.2(1)求盒子的表面积S(cm 2)与小正方形边长x(cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是4cm ,宽是3cm ,如果将长和宽都增加x cm ,那么面积增加ycm 2,① 求y 与x 之间的函数关系式.② 求当边长增加多少时,面积增加8cm 2.10、已知二次函数y ax2 c(a 0),当x=1 时,y= -1 ;当x=2 时,y=2 ,求该函数解析式11、富根老伯想利用一边长为 a 米的旧墙及可以围成24 米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB 为x 米,则猪舍的总面积S(米2)与x 有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32 米2,应该如何安排猪舍的长BC和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数y ax2的图像与性质12y x2的对称轴是2当x 时,y 随x 的增大而减小,当x=12(2)抛物线y x2的对称轴是2x 的增大而增大,当x1、填空:(1)抛物线y 随x 的增大而增大,),顶点坐标是,当x时,该函数有最值是),顶点坐标是,当x时,时,y 随时,y 随x 的增大而减小,当x=时,该函数有最22、对于函数y 2x2下列说法:①当x 取任何实数时,y的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④ 图像关于y 轴对称.其中正确的是3、抛物线y=-x2不具有的性质是(A 、开口向下B、对称轴是4、苹果熟了,从树上落下所经过的路程)y 轴 C 、与y 轴不相交 D 、最高点是原点12 s 与下落时间t满足S=12gtg=9.8),则s 与t 的函7、二次函数m21mx m 1在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数32x ,当x1>x2>0 时,求y1与y2的大小关系.9、已知函数2m 2 x m m 4是关于x 的二次函数,求:A B C6、已知函数y=ax b 的图像可能是(mmx(1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?210、如果抛物线y = ax2与直线y = x - 1交于点(b,2),求这条抛物线所对应的二次函数的关系式.练习三函数y ax2 c 的图象与性质1、抛物线y 2x2 3 的开口,对称轴是,顶点坐标是,当x 时, y随x 的增大而增大, 当x 时, y 随x 的增大而减小.122、将抛物线y x 2向下平移 2 个单位得到的抛物线的解析式为,再向上平移 3 个单位得3到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k,得到不同的抛物线y x2 k ,当k 取0,1 时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③ 形状相同;④ 都有最底点.其中判断正确的是.4、将抛物线y 2x2 1向上平移 4 个单位后,所得的抛物线是,当x= 时,该抛物线有最(填大或小)值,是.5、已知函数y mx2(m2 m)x 2的图象关于y 轴对称,则m =________ ;___26、二次函数y ax2 c a 0 中,若当x 取x1、x2(x1≠x2)时,函数值相等,则当x 取x1+x 2时,函数值等于.练习四函数y a x h 2的图象与性质121、抛物线y x 3 2,顶点坐标是,当x 时,y随x 的增大而减小,函数有2最值.2、试写出抛物线y 3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标21)右移2个单位;(2)左移2个单位;(3)先左移1个单位,再右移4个单位.33、请你写出函数y x 1 2和y x2 1具有的共同性质(至少 2 个).214、二次函数y a x h 2的图象如图:已知a ,OA=OC ,试求该抛物线2的解析式.5、抛物线 y 3(x 3)2与 x 轴交点为 A ,与 y 轴交点为 B ,求 A 、B 两点坐标及 ⊿AOB 的面积.6、二次函数 y a (x 4)2 ,当自变量 x 由0增加到 2 时,函数值增加 6.( 1)求出此函数关系式 .(2)说明函数值 y 随 x 值的变化情况 .7、已知抛物线 y x 2 (k 2)x 9的顶点在坐标轴上,求 k 的值.练习五 y a x h 2 k 的图象与性质1、请写出一个二次函数以( 2, 3)为顶点,且开口向上 .____________ .2、二次函数 y =(x -1)2+2,当 x =____时, y 有最小值 .3、函数 y = 21 (x - 1)2 +3,当 x ____时,函数值 y 随 x 的增大而增大 .224、函数 y= 1 (x+3) 2-2 的图象可由函数 y= 1 x 2的图象向平移 3个单位, 再向 平移 222个单位得到 .5、 已知抛物线的顶点坐标为 (2,1) ,且抛物线过点 ( 3, 0) ,则抛物线的关系式是8、已知函数 y x 1 2 4.( 1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与 x 轴的交点为 A 、B 和与 y 轴的交点 C ,求△ABC 的面积; ( 3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移 2 个单位,在向上平移 4 个单位,求得到的抛物线的解析式; ( 5) 该抛物线经过怎样的平移能经过原点 .( 6) 画出该函数图象,并根据图象回答:当 x 取何值时,函数值大于 0;当 x 取何值时,函数值小6、 如图所示, () 、抛物线顶点坐标是 P (1, 3),则函数 y 随自变量 B 、 x<3C 、 x>1D 、 x<1x 的增大而减小的 x 的取值范围是7、已知函数 y3 x 2 2 9.1) 2) 3) 4) 5)确定下列抛物线的开口方向、对称轴和顶点坐标; 当 x= 时,抛物线有最 值,是 当 x 时, y 随 x 的增大而增大;当 x 求出该抛物线与 求出该抛物线与 时,抛物线有最 时, y 随 x 的增大而增大;当x 轴的交点坐标及两交点间距离;y 轴的交点坐标;6) 该函数图象可由 y 3x 2 的图象经过怎样的平移得到的?时,于 0.练习六 y ax 2 bx c 的图象和性质1、抛物线 y x 2 4x 9 的对称轴是.22、抛物线 y 2x 2 12x 25 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线 x=-2 ,且与 y 轴的交点坐标为( 0,3)的抛物线的解析 式.224、将 y =x -2x +3 化成 y =a (x -h ) +k 的形式,则 y =____ .1 2 55、把二次函数 y = - x 2- 3x - 的图象向上平移 3 个单位,再向右平移 4 个单位,则两次平移 22后的函数图象的关系式是6、抛物线 y x 2 6x 16 与 x 轴交点的坐标为 _________ ; _7、函数 y2x 2 x 有最 ___值_,最值为 __ ;___图象的函数解析式为 y x 2 2x 1,则 b 与 c 分别等于( )A 、 6 , 4B 、- 8 , 14C 、- 6 , 6D 、- 8,- 14 9、二次函数 y x 2 2x 1的图象在 x 轴上截得的线段长为( )A 、 2 2B 、 3 2C 、 2 3D 、3 310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:11、把抛物线 y 2x 2 4x 1 沿坐标轴先向左平移 2 个单位,再向上平移 3 个单位,问所得的抛物8、二次函数 y x 2 bx c 的图象沿 x 轴向左平移2 个单位,再沿y 轴向上平移 3 个单位,得到的1)y 12 x 2 2x 1; 22) y 3x 8x 2 ;123) yx x 4 4线有没有最大值,若有,求出该最大值;若没有,说明理由212、求二次函数y x2 x 6 的图象与x 轴和y 轴的交点坐标213、已知一次函数的图象过抛物线y = x 2 + 2x + 3的顶点和坐标原点1) 求一次函数的关系式;2) 判断点(- 2,5) 是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700 元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50 台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七y ax2 bx c 的性质21、函数y = x2 + px + q的图象是以(3,2) 为顶点的一条抛物线,这个二次函数的表达式为2、二次函数y = mx2 + 2x + m - 4m 2的图象经过原点,则此抛物线的顶点坐标是ac3、如果抛物线y = ax 2 + bx + c 与y 轴交于点A (0,2) ,它的对称轴是x = - 1 ,那么=b4、抛物线y x2 bx c与x 轴的正半轴交于点A、B 两点,与y 轴交于点C,且线段AB 的长为1,△ABC 的面积为1,则b的值为_____5、已知二次函数y ax2 bx c 的图象如图所示,则a___,0 b___,0 c___,0 b2 4ac ____ ;06、二次函数y ax2 bx c 的图象如图,则直线y ax bc的图象不经过第象限.27、已知二次函数y = ax2 + bx + c( a 0)的图象如图所示,则下列结论:1)a,b同号;2)当x = 1和x = 3时,函数值相同;3)4a+ b= 0;4)当y = - 2时,x 的第 5 题) 第 6 题) 第7 题)第10 题)2 22m 48、已知二次函数 y 4x 2 2mx m 2 与反比例函数 y 的图象在第二象限内的一个交点的x横坐标是 -2 ,则 m=29、二次函数 y = x 2 + ax + b 中,若 a + b = 0 ,则它的图象必经过点()10、函数 y ax b 与 y ax 2 bx c 的图象如上图所示,则下列选项中正确的是( ) A 、 ab 0,c 0 B 、 ab 0,c 0C 、 ab 0,c 0D 、ab 0,c 0这四个代数式中,值为正数的A .4 个B .3 个C .2 个D .1 个求a 、b 、c 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.解:(1)将(3,0)代入二次函数解析式,得 -32+2×3+m=0. 解得,m=3. (2)二次函数解析式为 y=-x2+2x+3,令 y=0,得 -x2+2x+3=0. 解得 x=3 或 x=-1. ∴点 B 的坐标为(-1,0).
(3)∵S△ABD=S△ABC,点 D 在第一象限, ∴点 C、D 关于二次函数对称轴对称. ∵由二次函数解析式可得其对称轴为 x=1,点 C 的坐标为(0,3), ∴点 D 的坐标为(2,3).
(第 22 题图)
参考答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
A
C
ABBC来自ADD
D
二、填空题 11、y=(x-2) 2+1 12、直线 x=2 13、② 14、(-4,0) , (2,0)
15、0 16、如: y 2 , y x 3, y x2 5 等 x
三、简答题
17、解:(1)∵二次函数 y=x2 +bx+c 的图象经过点(4,3),(3,0),
22、(本题 14 分)如图,已知二次函数 y ax2 4x c 的图象与坐标轴交于点 A(-1, 0)和点 B(0,-5). (1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点 P,使得△ABP 的周长最小.请求出点 P 的坐标.
y
AO
x
B
20、(本题 11 分)二次函数 y=-x2+2x+m 的图象与 x 轴的一个交点为 A(3,0),另一个交点为 B,且与 y 轴交于 点 C. (1)求 m 的值 (2)求点 B 的坐标 (3)该二次函数图象上有一点 D(x,y)(其中 x>0,y>0),使 S△ABD=S△ABC,求点 D 的坐标.
19、(1)由题意可得:B(2,2),C(0,2),将 B、C 坐标代入 y= 2 x2 bx c 得: 3
4
c=2,b= ,
3
所以二次函数的解析式是 y= 2 x2+ 4 x+2 33
(2)
解2
4
x2+
x+2=0,
33
得:x1=3,x2=-1,
由图像可知:y>0 时 x 的取值范围是-1<x<3
21. 解:(1)把点 A(-4,0)及原点(0,0)代入函数解析式,利用待定系数法求二次函数解析式解答;
c 0
a 1
a
(-4)2 -4
(-4)+c=0
解得
c
0
所以,此二次函数的解析式为 y=-x2-4x;
(2)根据三角形的面积公式求出点 P 到 AO 的距离,然后分点 P 在 x 轴的上方与下方两种情况解答即可.由已
∴二次函数的表达式为 y x2 4x 5 .
AO
Cx
P B
(2)令 y=0,得二次函数 y x2 4x 5 的图象与 x 轴
的另一个交点坐标 C(5, 0). 由于 P 是对称轴 x 2 上一点,
(第 23 题图)
连结 AB,由于 AB OA2 OB2 26 ,
要使△ABP 的周长最小,只要 PA PB 最小. 由于点 A 与点 C 关于对称轴 x 2 对称,连结 BC 交对称轴于点 P,则 PA PB = BP+PC =BC,根据两点之间, 线段最短,可得 PA PB 的最小值为 BC. 因而 BC 与对称轴 x 2 的交点 P 就是所求的点.
3=16+4b+c
b= 4
∴ 0=9+3b+c ,解得 c=3 。
(2)∵该二次函数为 y=x2 4x+3= x 22 1。
∴该二次函数图象的顶点坐标为(2,-1),对称轴为 x=1。
18、(1)根据题意,y=(60-50+x)(200-10x), 整理得,y=10x2+100x+2000(0<x≤12); (2)由(1)得 y=-10x2+100x+2000 =-10(x-5)2+2250, 当 x=5 时,最大月利润 y 为 2250 元。
上,则 4a﹣2b+c 的值为 .
16.一个 y 关于 x 的函数同时满足两个条件:①图象过(2,1)点;②当 x>0 时,y 随 x 的增大而减小.这个函数解析
式为_________________________(写出一个即可) 三、简答题(共 66 分) 17、(本题 7 分)二次函数 y=x2 +bx+c 的图象经过点(4,3),(3,0)。
《二次函数》基础训练
一、选择题(每题 3 分,共 30 分)
姓名_______
1.下列关系式中,属于二次函数的是(x 为自变量) ( )
A
y 1 x2 8
B
y x2 1
C
y
1 x2
D y a2x2
2.下列二次函数中,图象以直线 x = 2 为对称轴,且经过点(0,1)的是
A.y = (x − 2)2 + 1
所以,点 P 的坐标为(-2+2 2 ,-4)或(-2-2 2 ,-4),
综上所述,点 P 的坐标是:(-2,4)、(-2+2 2 ,-4)、(-2-2 2 ,-4)
y x=2
22.
解:(1)根据题意,得
0
5
a
a
(1)2 4 (1) 02 4 0 c.
c,
解得
a 1, c 5.
第 12 题
第 15 题
13.已知下列函数:①y=x2;②y= -x2;③y=(x-1)2+2.其中,图像通过平移可以得到函数 y= -x2+2x-3 的图像有 .
14.函数 y=x2+2x-8 与 x 轴的交点坐标是_________
15.如图,抛物线 y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于 y 轴的直线,若点 P(4,0)在该抛物线
知条件得(2)∵点 A 的坐标为(-4,0),
∴AO=4,
设点 P 到 x 轴的距离为 h,
1
则 S△AOP= ×4h=4,解得 h=4,
2
① 当点 P 在 x 轴上方时,-x2-4x=4,解得 x=-2,所以,点 P 的坐标为(-2,4);
② 当点 P 在 x 轴下方时,-x2-4x=-4,解得 x1=-2+2 2 ,x2=-2-2 2
19、(本题 11 分)如图,在平面直角坐标系 xOy 中,边长为 2 的正方形 OABC 的顶点 A、C 分别在 x 轴、y 轴的正
半轴上,二次函数 y= 2 x2 bx c 的图像经过 B、C 两点. 3
(1)求该二次函数的解析式;
(2)结合函数的图像探索:当 y>0 时 x 的取值范围.
c>1;(3)2a-b<0;(4)a+b+c<0。你认为其中错误的有( )
A.2 个 B.3 个 C.4 个 D.1 个
二、填空题(每题 4 分,共 24 分)
11.将二次函数 y x2 4x 5 化为 y (x h)2 k 的形式,则 y

12.如图,对称轴平行于 y 轴的抛物线与 x 轴交于(1,0),(3,0)两点,則它的对称轴为 .
A.-1<x<3
B.x<-1
C. x>3
D.x<-1 或 x>3
8.已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )
A.有最小值 0,有最大值 3
B.有最小值-1,有最大值 0
C.有最小值-1,有最大值 3
D.有最小值-1,无最大值
y
1 -O 1 x 1
B.y = (x + 2)2 + 1
C.y = (x − 2)2 − 3
D.y = (x + 2)2 − 3
3.抛物线 y x2 2x 1的顶点坐标是( )
()
A.(1,0)
B.(-1,0)
C.(-2,1)
D.(2,-1)
4.抛物线 y x 22 3 可以由抛物线 y x2 平移得到,则下列平移过程正确的是(
(1)求 b、c 的值; (2)求出该二次函数图象的顶点坐标和对称轴;
18、(本题 9 分)某种商品的进价为每件 50 元,售价为每件 60 元,每个月可卖出 200 件;如果每件商品的售价 上涨 1 元,则每个月少卖 10 件(每件售价不能高于 72 元),设每件商品的售价上涨 x 元(x 为整数),每个月的 销售利润为 y 元.
y1,y2,y3 的大小关系是(

A.y1<y2<y3
B.y2<y1<y3 C.y3<y1<y2
D.y1<y3
6.由二次函数 y 2(x 3) 2 1 ,可知( )
A.其图象的开口向下
B.其图象的对称轴为直线 x 3
C.其最小值为 1
D.当 x 3 时,y 随 x 的增大而增大
7.二次函数 y x2 2x 3 的图象如图所示.当 y<0 时,自变量 x 的取值范围是( ).
第7题
第8题
第 10 题
9.敏在校运会比赛中跳出了满意一跳,函数 h=3.5t-4.9t2(t 的单位:s, h 的单位:m)可以描述他跳跃时重心高
度的变化.则他跳起后到重心最高时所用的时间是( )
A.0.71 s
B.0.70s
C.0.63s
D.0.36s
10.如图所示的二次函数 y ax2 bx c 的图象中,刘星同学观察得出了下面四条信息:(1) b2 4ac 0 ;(2)
)
A.先向左平移 2 个单位,再向上平移 3 个单位
相关文档
最新文档