激光加工技术全解
激光加工技术简介

激光加工技术的应用
• • • • • • 激光切割 激光焊接 激光打孔 激光热处理 激光打标 激光快速成型
激光切割
• 激光切割过程中,不会使 布料变形或起皱,激光切 割尺寸精度高,激光切割 形状可随着图稿进行任意 更改,增加了设计的实用 性和创造性。
激光焊接
• 利用激光的能量把工件上加工区的材料熔化使之粘合 在一起。可实现同种材料、不同种材料甚至于金属与 非金属材料的焊接,如用于集成电路、晶体管元件等 地微型精密焊接。
激光加工技术的特征
• 光点小,能量集中,热 影响区小 • 不接触加工工件,对工 件无污染不受电磁干扰 • 激光束易于聚焦、导向 • 范围广泛 • 安全可靠 • 精确细致 • 效果一致 高速快捷 成本低廉 切割缝细小 切割面光滑:激光切割的 切割面无毛刺。 • 热变形小 • 适合大件产品的加工 • 节省材料 • • • •
激光的特点
• 高单色性 由于激光的单色性极高,从而保证 了光束能精确地聚焦到焦点上,得到很高的功 率密度。
• 高相干性 相干性主要描述光波各个部分的相 位关系。正是激光具有如上所述的奇异特性因 此在工业加工中得到了广泛地应用
• 高方向性 激光的高方向性使其能在有效地传 递较长的距离的同时,还能保证聚焦得到极高 的功率密度,这两点都是激光加工的重要条件
激光快速成型
• 将激光加工技术和计算机 数控技术及柔性制造技术 相结合而形成。多用于模 具和模型行业。目前使用 的激光器多以YAG激光器 、CO2激光器为主。
• 高亮度 固体激光器的亮度更可高达 1011W/cm2Sr。不仅如此,具有高亮度的激光 束经透镜聚焦后,能在焦点附近产生数千度乃 至上万度的高温,这就使其可能可加工几乎所 有的材料。
对激光加工技术的理解与认识

对激光加工技术的理解与认识一、激光加工技术的定义及原理激光加工技术是指利用激光器产生的高能量密度的激光束,对材料表面进行加工处理的一种先进制造技术。
其原理是利用激光器产生的高能量密度的激光束,通过聚焦透镜将激光束聚集到极小点上,使材料表面瞬间受热融化或汽化,从而实现对材料进行切割、打孔、焊接等各种加工处理。
二、激光加工技术的分类及应用1. 激光切割技术:主要应用于金属材料和非金属材料的切割处理。
2. 激光打孔技术:主要应用于金属板、塑料板、陶瓷等材料的打孔处理。
3. 激光焊接技术:主要应用于金属材料之间或者非金属材料与金属材料之间的焊接处理。
4. 激光雕刻技术:主要应用于木板、有机玻璃等非金属类材料上进行图案雕刻和文字刻写。
三、激光加工技术的优点1. 高精度:激光束可以聚焦到很小的点上,因此可以实现高精度的加工处理。
2. 高效率:激光加工速度快,可以大幅提高生产效率。
3. 无接触性:激光加工过程中不需要与材料接触,从而避免了因接触而产生的磨损和变形等问题。
4. 灵活性:激光加工可以对不同形状、不同材质的材料进行处理,具有很大的灵活性。
四、激光加工技术的缺点1. 高成本:激光器价格昂贵,且维护成本也较高。
2. 容易受环境影响:激光束容易受到环境因素(如气体、尘埃等)影响而发生偏移或散射等问题。
3. 容易产生毒害物质:在某些情况下,激光加工会产生有害气体和废弃物。
五、激光加工技术未来发展趋势1. 多波长多功能化:未来发展趋势是将激光器的波长从单一的红光扩展到多种波长,实现多功能化加工。
2. 智能化:激光加工技术将更加智能化,可以通过计算机程序控制激光器进行自动化生产。
3. 环保化:未来发展趋势是要求激光加工技术在加工过程中尽可能减少对环境的污染和对人体的伤害。
六、结语激光加工技术是一种先进的制造技术,具有高精度、高效率、无接触性和灵活性等优点。
未来发展趋势是多波长多功能化、智能化和环保化。
尽管激光加工技术存在一些缺点,但随着技术的不断发展和完善,其应用范围将会更广泛,为制造业带来更多的机遇和挑战。
激光加工课件资料讲解

激光加⼯课件资料讲解激光加⼯课件⼀、激光介绍1.1 激光的产⽣1.1.1光的物理状态㈠光的电磁学说:在⼀定波长范围内的电磁波。
λ——波长 C ——频率 V ——波速㈡光的量⼦说:光是在⼀定波长范围内的电磁波,⼀种具有⼀定能量的以光速运动的粒⼦流(光⼦)。
不同频率的光对应不同能量的光⼦。
E ——光⼦能量;v ——光的频率;h ——普朗克常数;1.1.2原⼦的发光㈠基态:电⼦在最靠近原⼦核的轨道上运动时,原⼦所处的能级状态称为基态。
㈡激发态:当外界传给原⼦⼀定的能量时,原⼦的内能增加,外层电⼦的轨道半径扩⼤,被激发到⾼能级,称为激发态(⾼能态)。
㈢跃迁:原⼦从⾼能级回到低能级的过程称为“跃迁”。
被激发到⾼能级的原⼦不是很稳定,总是⼒图回到能量较低的能级去。
具有亚稳态能级的原⼦和离⼦的存在是形成激光的重要条件。
㈣光辐射:当原⼦从⾼能级跃迁回到低能级或基态时,常常以光⼦的形式辐射出光能量。
㈤⾃发辐射:原⼦从⾼能级⾃发地跃迁到低能级⽽发光的过程称为⾃发辐射。
(⽇光灯发光)各受激原⼦跃迁回到基态的时序先后不⼀,且具有多个能级,因此⽅向性、单⾊性都很差。
㈥受激辐射:满⾜⼀定频率要求的⼀束光⼊射到具有⼤量激发态原⼦的系统中,刺激处在激发能级上的原⼦跃迁回到低能级,同时发出⼀束与⼊射光具有相同特性(频率、相位、传播⽅向、偏振⽅向等)的光。
1.1.3激光产⽣的条件㈠粒⼦数反转:具有亚稳态能级结构的物质,在⼀定外来光⼦能量激发条件下,吸收光能,使处于亚稳态(⾼能级)的原⼦数⽬⼤于处于基态(低能级)的原⼦数⽬的现象。
㈡受激辐射:在粒⼦数反转的状态下,⼀束光⼦⼊射该物体,当光⼦能量恰好等于两个能级相对应的能量差时,产⽣受激辐射,输出⼤量光能。
㈢激光具有⼀般光的共性(反射、折射、⼲涉等),也有其特性。
(受激辐射) c v λ=E hv =()1n v E E h =-强度、亮度和能量密度⾼:⼀台红宝⽯激光器的亮度是太阳表⾯亮度的两百多亿倍。
详细剖析激光微加工技术

详细剖析激光微加工技术
大家对激光加工并不陌生,CO2激光,光纤激光以及半导体激光是目前工业应用中的主流激光,在微妙和纳秒量级,但是近十年来,超短脉冲激光精加工技术取得突飞猛进的发展,在飞秒和皮秒量级,也就是我们今天要说的激光微加工!
激光微加工
人们很早就尝试利用激光进行微加工。
但是由于激光的长脉冲宽度和低激光强度造成材料熔化并持续蒸发,虽然激光束可以被聚焦成很小的光斑,但是对材料的热冲击依然很大,限制了加工的精度。
唯有减少热影响才能提高加工质量。
当激光以皮秒量级的脉冲时间作用到材料上时,加工效果会发生显著变化。
随着脉冲能量急剧上升,高功率密度足以剥离外层电子。
由于激光与材料相互作用的时间很短,离子在将能量传递到周围材料之前就已经从材料表面被烧蚀掉了,不会给周围的材料带来热影响,因此也被称为“冷加工”。
凭借冷加工带来的优势,短与超短脉冲激光器进入到工业生产应用当中。
图1 超短脉冲冷加工在火柴头上进行烧蚀工艺
超快有多快?
短脉冲激光器产生的脉冲宽度定义在皮秒和飞秒量级。
1 皮秒等于10-12 秒,1 飞秒等于10-15 秒。
也许比较抽象,但是我们可以转化成距离的形式来比较。
举个例子,光的速度是3x10-8 米每秒,光从地球到月球所需要的时间大约是1.3 秒,而1皮秒的时间里光运动的距离是0.3 毫米!
超快可以做什么?
短脉冲激光技术的迅速发展使得其在工业范围的应用非常广泛,几乎每天都会发现新的应用。
目前短脉冲主要集中在下面几个应用领域。
图2 激光细微加工的分类。
激光加工技术概述分析

激光加工技术概述分析随着工业技术发展,激光加工技术越来越受到重视,发展迅速,在工业制造方面有着广泛的应用。
激光加工技术是一种不锈钢加工的高新技术,它的特点是利用激光能量向工件表面施加能量热量,完成深层热处理和精确加工,焊接克服了传统焊接技术的不足,可以实现精确的焊接,还可以实现精密的微型部件的制造,具有丰富的加工方法,例如切割、汇聚和热处理等制备方法,被广泛应用于制造、石油、冶金、航空航天、电子、医疗、机械、电力、煤矿等行业。
激光加工技术在各行业的应用,主要有以下几个方面:第一,激光切割技术。
目前,激光切割技术被广泛应用于机械加工行业,包括不锈钢、钢板、铝板、塑料板等材料的切割,可实现自动连续切割和精确切割,具有较高的效率和精度,可大大提高加工效率。
第二,激光焊接技术。
激光焊接技术通过激光束的热量产生的热效应,实现不锈钢件的焊接,可满足质量要求较高的部件的精密焊接,实现定位、焊接、夹持等加工功能,可实现精密的微型部件的制造,特别适用于汽车、航空、航天、电子等行业。
第三,激光汇聚技术。
激光汇聚技术是激光焊接技术的一种,即使用激光束汇聚焊材料,使其发生熔化,然后实现件的汇聚连接,具有焊接可靠性高、热影响小、焊接速度快等特点,可实现高速、高质量的汇聚连接,特别适用于航空航天、电子等行业。
第四,激光热处理技术。
激光热处理技术是一种定向性热处理技术,它可以实现深层热处理,使材料在不同深度内表面结构或实质性得到改变,从而提高材料的抗磨损性、抗腐蚀性、抗压强度和界面结合等特性,是航空航天、汽车、电子、机械等行业向高性能、高效率方向发展的重要加工技术。
以上是激光加工技术的概述分析,它在工业制造方面有着广泛的应用,各行业的应用主要有激光切割技术、激光焊接技术、激光汇聚技术和激光热处理技术,可以很好的满足行业的高性能、高质量的加工需求。
激光加工技术的发展,将大大改变加工行业的传统加工方式,提升加工效率,为行业发展提供新的思路。
(完整版)激光加工技术

又会撞击其它原子,激发更多的原子产生光子,引发一 连串的连锁反应,并且都朝同一个方前进,进而形成 集中的朝向某一方向的强烈光束。由此可见,激光几 乎是一种单色光波,频率范围极窄,又可在一个狭小的 方向内集中高能量,所以利用聚焦后的激光束可以穿 透各种材料。
• 1.2 激光的特性
激光是一种经受激辐射产生的加强光,它具有 强度高、单色性好、相干性好和方向性好四大综合 性能。
•
Hale Waihona Puke 激光通过光学系统聚焦后可得到柱状或
带状光束,而且光束的粗细可根据加工需要调
整,当激光照射在工件的加工部位时,工件材
料迅速被熔化甚至气化。随着激光能量的不断
被吸收,材料凹坑内的金属蒸气迅速膨胀,压
力突然增大,熔融物爆炸式地高速喷射出来,
在工件内部形成方向性很强的冲击波。因此,
激光加工是工件在光热效应下产生高温熔融和
• 激光是通过入射光子影响处于亚稳态的较高能级 的原子、离子或分子跃迁到低能级时完成受激辐 射时发出的光,简言之,激光就是受激辐射得到 的加强光。
• 激光被广泛应用是因为它具有的单色波长、同调 性和平行光束等3大特性。科学家在电管中以光或 电流的能量来撞击某些晶体或原子易受激发的物 质,使其原子的电子达到受激发的高能量状态。当 这些电子要回复到平静的低能量状态时,原子就会 射出光子(以光速运动具有一定能量的粒子),以 放出多余的能量。这些被放出的光子
固体激光器常由 主体光泵(激励 源)及谐振腔 (由全反射镜、 半反射镜组成)、 工作物质(一些 发光材料如钇铝 石榴石、红宝石、 钕玻璃等)、聚 光器、聚焦透镜 等组成。图中激 光器的工作物质 为钇铝石榴石。
激光的强度和亮度之所以高,原因在于激光可 以实现光能在空间上和时间上的亮度集中。
激光加工技术的原理及应用

激光加工技术的原理及应用激光加工技术是利用激光束对工件进行切割、刻蚀、打孔、焊接等加工的一种先进加工技术。
其原理是通过激光器发射出的高能量密度的激光束,通过光学传输系统将激光束聚焦到工件表面,使工件表面的材料蒸发、熔化或气化,从而实现加工目的。
激光加工技术的原理可以分为两个方面来解释。
首先是激光的特性,激光是一种具有单色性、高亮度、高直线度和高方向性的电磁波,激光束的能量密度非常高,因此可以对材料表面进行精细加工。
其次是激光与材料的相互作用机制,当激光束照射到材料表面时,激光能量被吸收,使得材料的温度升高,达到融化、汽化或烧蚀的程度,实现对材料的加工。
激光加工技术的应用非常广泛。
其中,最常见的应用是激光切割技术。
激光切割利用激光束的高能量密度和高方向性,可以实现对各种金属和非金属材料的精细切割,例如金属板材、塑料、纸张等。
激光切割具有切口小、切割质量好、工艺灵活等优点。
此外,激光打标技术也是激光加工技术的一个重要应用。
激光打标利用激光束对工件进行氧化、碳化或脱色等处理,实现对工件表面的标记加工。
激光打标技术可以应用于金属、塑料、玻璃、陶瓷等材料的标记,具有加工速度快、效率高、标记精细等特点。
此外还有激光焊接技术。
激光焊接利用激光束的高能量密度,通过熔化工件的表面,实现工件的焊接过程。
激光焊接技术广泛应用于汽车制造、航空航天、电子设备等领域,具有焊缝小、焊接质量好、焊接速度快等优势。
激光加工技术还可以应用于激光刻蚀、激光打孔、激光微加工等领域。
例如,在电子行业中,激光刻蚀技术可以用于PCB板的刻蚀、雕刻,激光打孔技术可以用于集成电路芯片的孔洞加工;而在微电子学领域,激光微加工技术可以实现微米级别的光阻剥离、微通道加工等微尺度的加工需求。
总之,激光加工技术是一种高精度、高效率、高质量的先进加工技术,其应用涵盖各个领域。
随着激光技术的不断发展和创新,激光加工技术在现代制造业中的地位将越来越重要。
激光加工技术的原理和应用

激光加工技术的原理和应用1. 前言激光加工技术是一种利用激光光束进行材料加工的先进技术。
激光加工技术具有高精度、高效率、非接触等优点,逐渐在工业生产、科学研究等领域得到广泛应用。
2. 激光加工技术的原理激光加工技术利用激光束对材料进行加工,其基本原理如下:• 2.1 激光发射激光发射是激光加工技术的基础。
激光通过激光器产生,具有高单色性、高亮度和高度一致的特点。
• 2.2 激光聚焦激光通过透镜等光学元件进行聚焦,使其成为高度集中的光束,实现对材料的精确加工。
• 2.3 与材料相互作用激光与材料相互作用时,可以发生吸收、散射、反射等过程,使材料受到加热、熔化、气化等效果。
• 2.4 材料去除激光对材料施加的能量引起材料表面温度升高,从而使材料发生熔化、汽化等现象,最终实现对材料的去除。
3. 激光加工技术的应用激光加工技术在各个行业中有着广泛的应用,下面介绍几个典型的应用领域:• 3.1 制造业中的应用激光加工技术在制造业中起到了至关重要的作用。
例如,激光切割技术用于金属板材的切割,激光冲击技术用于零件的打孔,激光焊接技术用于零件的连接等。
• 3.2 电子行业中的应用激光加工技术在电子行业中也有着重要的应用。
例如,激光切割技术用于印刷电路板的裁剪,激光打孔技术用于电子器件的制造,激光精细焊接技术用于电子元件的连接等。
• 3.3 医疗领域中的应用激光加工技术在医疗领域中有着广泛的应用。
例如,激光手术技术用于眼科手术、皮肤整形等,激光治疗技术用于肿瘤治疗、血管疾病治疗等。
• 3.4 精密加工领域中的应用激光加工技术在精密加工领域中也发挥着重要作用。
例如,激光微加工技术用于微型元件的制造,激光雕刻技术用于精美工艺品的制作等。
4. 激光加工技术的未来发展激光加工技术作为一门高新技术,其未来发展前景广阔。
未来,随着激光器技术的不断进步和激光加工技术的应用不断扩大,激光加工技术在各个领域中的应用将得到进一步推广。