利用MATLAB实现连续信号的采样与重构仿真

合集下载

基于MATLAB的信号采样与重构的实现

基于MATLAB的信号采样与重构的实现

中 , 若无特别说明 , 则 3 表示矩阵相乘 。
按周期 Ts 对信号 f ( t)进行采样 , 则采样后的
信号为一组离散信号 fs ( t)

∑ fs ( t) =
f ( nTs )δ( t - nTs ) ;
n=-∞
采样信号的频谱为
从式
N
∑ Fs (νj ) = Ts
f ( n Ts ) e- jnTνs 1
若以被测信号 f ( t) = S a ( t)为例 , 取低通滤波
器的截止频率为
ν c
= 1.
1νm ,
采样周期
Ts 取值为
Ts
= kπ /νm , 则 重构 后的 信号 存在 的 误 差 如 下 表 1
所示 。
从采样信号重构中可以得到几点启示 :
(1) 重构误差主要取决于采样周期 Ts 的大小 , 以临界采样周期 Ta =π /νm 为分界点 , 则当 Ts < Ta 或 Ts > Ta 时 , 重构误差将快速变化 ;
[ 2 ] 黄国权. 计算机辅助教学应用认知学习 - 理论的研究 [ J ]. 教学研究 , 2003, 26 ( 2) : 1632165.
[ 3 ] 朱万森 、梁楚材. 计算机辅助教学及多媒体 CA I课件设计与制 作 [M ]. 北京 : 地质出版社 , 2000.
[ 4 ] 燕 良 轼 , 教 育 心 理 学 [ M ]. 长 沙 : 中 南 工 业 大 学 出 版 社 , 1998.
1. 0
0. 09
2. 7394
1. 05
0. 2
9. 7460
1. 1
0. 3
18. 7804
1. 2
0. 45

《信号与分析》连续信号的采样与重构实验报告

《信号与分析》连续信号的采样与重构实验报告
ylabel('振幅');
axis([-2.5,1.5,-0.1,1.1]);
t=0:0.01:2*pi;
Y=2*t.*sin(t.^2);
subplot(2,1,1);
plot(t,Y);
title('原信号');
xlabel('时间/s');
ylabel('振幅');
axis([0,2*pi,-12,12]);
grid;
ylabel(‘Cn’);
xlabel(‘角频率/rad*s^(-1)’);
title(‘幅度频谱序列‘);
实验心得:
通过本次实验我学会了利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的认识,学会该软件的操作和使用方法。并且我还熟练掌握了利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
%幅度频谱Cn=2[sin(pi*n*t/T)/(pi*n)
N=10;
n=1:N;
C0=0.1; %计算n=0傅里叶级数C0及直流幅度
%计算n=1到10的傅里叶级数系数
Cn=sin(pi*n/5)/pi./n.*2; %T/t=5
CN=[C0 Cn];
nN=0:N;
subplot(1,2,2);
stem(nN,CN);
《信号与分析》连续信号的采样与重构实验报告
实验目的:1)掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
(2)掌握利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
(3)学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

MATLAB实现连续信号的采样与重构仿真

MATLAB实现连续信号的采样与重构仿真

目录概述 (1)设计原理 (2)1.1 MATLAB 介绍 (2)1.2 连续时间信号 (2)1.3 采样定理 (3)1.4 信号重构 (5)连续信号采样及重构 (7)2.1 S A(T)的临界采样及重构 (7)2.1.1 实现程序代码 (7)2.1.2 程序运行运行结果图与分析 (8)2.2 S A(T)的过采样及重构 (9)2.2.1 实现程序代码 (9)2.2.2 程序运行运行结果图与分析 ............................. 1..1 2.3 S A(T)的欠采样及重构 (12)2.3.1 实现程序代码 (12)2.3.2 程序运行运行结果图与分析 (13)2.4 程序中的常见函数和功能 (14)致谢 (14)参考资料 (15)课程设计总结 (15)前言信号与系统课程设计是学习《信号与系统》课程必要的教学环节。

由于该课程是专业基础课,需要通过实践了巩固基础知识,为使学生取得最现代化的设计技能和研究方法,课程设计训练也就成为了一个重要教学环节。

通过一个模拟信号的一系列数据处理,达到进一步完善对信号与系统课程学习的效果。

信号与系统课程同时也是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用。

该科的基本方法和理论大量应用于计算机信息处理的各个领域特别是通信,数字语音处理、数字图象处理、数字信号分析等领域,应用更为广泛。

概述本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

用MATLAB实现信号的采样与恢复

用MATLAB实现信号的采样与恢复

11()()-(-)()()(2)222t f t u t u t matlab f t f f t =+1、已知:,试用命令绘制、、 的频谱图,并进行比较。

实验三 用MATLAB 实现信号的采样与恢复一、 实验目的1、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质;2、理解信号的抽样及抽样定理以及抽样信号的频谱分析;二、 实验内容2、用MATLAB 编程实现S a (t)信号经矩形脉冲p(t)采样后得到的抽样信号f s (t),结合采样定理分析试验结果。

三、 实验要求利用所学知识,编写实验内容中相应程序,并将运行结果写入实验报告。

syms t w,f='Heaviside(t+1/2)-Heaviside(t-1/2)';subplot(3,2,1),ezplot(f,[-1.5,1.5]),grid onfw1=simplify(fourier(f,t,w));subplot(3,2,2),ezplot(abs(fw1),[-10*pi,10*pi]),grid onf2='Heaviside(t/2+1/2)-Heaviside(t/2-1/2)';subplot(3,2,3),ezplot(f2,[-1.5,1.5]),grid onfw2=simplify(fourier(f2,t,w));subplot(3,2,4),ezplot(abs(fw2),[-10*pi,10*pi]),grid on()()()s a f t S t p t =⋅即>> f3='Heaviside(2*t+1/2)-Heaviside(2*t-1/2)'; subplot(3,2,5),ezplot(f3,[-1.5,1.5]),grid onfw3=simplify(fourier(f3,t,w));subplot(3,2,6),ezplot(abs(fw3),[-10*pi,10*pi]),grid on >>syms t s;t=-3*pi:0.01:3*pi;s=sinc(t/pi);subplot(311),plot(t,s);y=0.5*(square(2*pi*(t+0.2)/0.6,2*100/3)+1); subplot(312),plot(t,y);f=s.*y;subplot(313),plot(t,f);>>。

应用_MATLAB实现连续信号的采样与重构

应用_MATLAB实现连续信号的采样与重构

应用_MATLAB实现连续信号的采样与重构连续信号的采样与重构是数字信号处理中一个重要的概念,MATLAB作为一种强大的数值计算软件,可以很方便地实现连续信号的采样和重构。

连续信号的采样是指将连续时间上的信号转换为离散时间上的信号。

在MATLAB中,可以使用两种方式进行采样:时间域采样和频率域采样。

时间域采样是指根据一定的采样频率对连续信号进行采样。

在MATLAB中,可以使用"linspace"函数生成一定时间范围内的等间隔采样点。

例如,生成一个时间范围为0到1秒,采样频率为1000Hz的采样点序列可以使用以下代码实现:```fs = 1000; % 采样频率t = linspace(0, 1, fs); % 生成采样点序列```频率域采样是指将连续信号的频谱进行采样。

在MATLAB中,可以使用"fft"函数对信号进行傅里叶变换,得到信号的频谱。

然后可以根据需要选择一定数量的频域采样点进行重构。

例如,对一个连续信号x进行频域采样,可以使用以下代码实现:```X = fft(x); % 对信号进行傅里叶变换得到频谱Xn=1000;%选择1000个频域采样点进行重构x_reconstructed = ifft(X(1:n)); % 对频域采样点进行逆傅里叶变换得到重构信号```连续信号的重构是指根据采样点进行信号的还原。

在MATLAB中,可以使用插值方法进行重构,常用的插值方法有线性插值、样条插值等。

例如,使用线性插值对连续信号进行重构,可以使用以下代码实现:```x_reconstructed = interp1(t, x, t_reconstructed, 'linear'); % 使用线性插值对信号进行重构```上述代码中,t为原始采样点序列,x为原始信号,t_reconstructed为重构时使用的采样点序列。

除了插值方法,MATLAB还提供了其他一些重构信号的函数,例如"upfirdn"函数可以实现区间插值和抽取操作,"resample"函数可以实现信号的重采样等。

利用MATLAB实现连续信的采样与重构仿真课程设计方案9

利用MATLAB实现连续信的采样与重构仿真课程设计方案9

目录1、摘要12、正文22.1、设计目的 (2)2.2、设计原理 (2)(1>、MTLAB简介………………………………………2(2>、连续时间信号??(3>、采样定理3(4>、信号重构52.3、信号采样与恢复的程序??<1)设计连续信号6<2)设计连续信号的频谱7<3)设计采样信号??<4)设计采样信号的频谱图9<5)设计低通滤波器10<6)恢复原信号123、总结与致谢????4、参考文献151.摘要本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

要做到以下基本要求:1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3 . 初步掌握线性系统的设计方法,培养独立工作能力。

4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

5. 加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

2.正文2.1设计目的与要求对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。

信号与系统课程设计--应用MATLAB实现连续信号的采样与重构仿真

信号与系统课程设计--应用MATLAB实现连续信号的采样与重构仿真

应用MATLAB 实现连续信号的采样与重构仿真1、课程设计目的信号与系统分析是通信工程专业的基础课,学好这一科对将来学习专业课有着不可估量的作用。

本次课程设计,会引入一个模拟的信号,通过MATLAB 软件的防真技术来实现对它的分析、理解与学习。

本次课程设计的目的是:增加对仿真软件MATLAB 的感性认识,熟悉MATLAB 软件平台的使用和MATLAB 编程方法及常用语句;了解MATLAB 的编程方法和特点;加深理解采样与重构的概念,掌握连续系统频率响应概念,掌握利用MATLAB 分析系统频率响应的方法和掌握利用MATLAB 实现连续信号采用与重构的方法;计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响;初步掌握线性系统的设计方法,培养独立工作能力。

2、原理说明2.1连续时间信号系统是连续事物或各个部分的一个复杂的整体,有形或无形事物的组成体。

系统可以分为即时系统与动态系统;连续系统与离散系统;线性系统与非线形系统;样时变系统和非时变系统等等。

在连续时间系统中,如一个连续时间系统接收,输入信号x(t),并产生输出信号y(t)。

连续时间信号:在连续时间范围内定义的信号值,信号的幅值可以是连续数值,也可以是离散数值。

当信号幅值连续是,则称之为模拟信号。

2.2信号采样取样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值(或称样本值)表示,这些样本值包含了连续时间信号的全部信息,利用这些样本值可以恢复原信号。

可以说取样定理在连续时间信号与离散时间信号中架起了一座桥梁。

其具体内容如下:取样定理:设为带限信号,带宽为0F ,则当取样频率02F F s ≥时,可从取样序列)()(s a nT x n x =中重构,否则将导致)(n x 的混叠现象。

带限信号的最低取样频率称为Nyquist (奈奎斯特)速率。

2.3重构仿真Simulink 是MATLAB 中的一种可视化仿真工具,是实现动态系统建模、仿真和分析的一个集成 环境,广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

应用_MATLAB实现连续信号的采样与重构仿真

应用_MATLAB实现连续信号的采样与重构仿真

应用_MATLAB实现连续信号的采样与重构仿真MATLAB是一款强大的数学建模和仿真软件,非常适合用于实现连续信号的采样与重构仿真。

本文将详细介绍如何使用MATLAB实现这一过程,并探讨其中的原理和细节。

一、连续信号的采样在MATLAB中,可以使用采样函数`sample(`来实现对连续信号的采样。

采样过程的关键参数是采样频率和采样周期。

采样频率表示单位时间内采样的次数,采样周期表示两次采样之间的时间间隔。

假设我们要对一个连续信号进行采样,步骤如下:1.定义采样频率和采样周期采样频率一般根据采样要求来确定,可以根据信号的最高频率进行选择。

常见的采样频率有8kHz、16kHz等。

采样周期是采样频率的倒数,即`Ts=1/fs`。

2.创建一个采样时间序列通过`Ts`和信号的时间长度确定采样时间序列,可以使用`linspace(`函数生成等间隔的采样时间序列。

3.对信号进行采样使用`sample(`函数对信号进行采样。

该函数接受两个参数,第一个参数是要采样的信号,第二个参数是采样时间序列。

4.可视化采样结果使用`plot(`函数可以将连续信号和采样信号在同一个图中进行比较,以便观察采样效果。

二、连续信号的重构重构是指将离散的采样信号还原为原始的连续信号。

实现连续信号的重构可以使用内插函数,如线性插值、多项式插值等。

在MATLAB中,可以使用`interp(`函数来实现信号的重构。

假设我们已经得到了采样信号和采样时间序列,步骤如下:1.定义重构时间序列重构时间序列与采样时间序列的生成方式相同,可以使用`linspace(`函数生成等间隔的时间序列。

2.对采样信号进行插值使用`interp(`函数对采样信号进行插值。

该函数接受两个参数,第一个参数是采样时间序列,第二个参数是采样信号。

3.可视化重构结果使用`plot(`函数将重构信号与原始信号进行比较,以便观察重构效果。

三、仿真实例为了更好地理解连续信号的采样与重构过程,在这里我们以正弦信号为例进行仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书N O.1
沈阳大学课程设计说明书 NO.2
沈阳大学课程设计说明书 NO.3
沈阳大学课程设计说明书 NO.4
沈阳大

课程设计说明书 NO.5
沈阳大学
课程设计说明书 NO.6
沈阳大学课程设计说明书 NO.7
奈奎斯特间隔。

根据时域卷积定理,求出信号重构的数学表达式为:
式中的抽样函数Sa(wct)起着内插函数的作用,信号的恢复可以视为将抽样函数进行不同时刻移位后加权求和的结果,其加权的权值为采样信号在相应时刻的定义值。

利用MATLAB 中的抽样函数
来表示Sa(t),有

,于是,信号重构的内插公式也可表示为:
()()()s n s nT t nT f t f -=∑∞
-∞=δ[]*[⎪⎭

⎝⎛t w Sa w T c c
s
ππ] =
()()][
sin s c
n s c
s nT t w c nT f w T -∑
∞-∞

π
3.课程设计的主要内容 3.1详细设计过程
3.1.1 Sa(t)的临界采样及重构
⑴实现程序代码:
当采样频率等于一个连续的同信号最大频率的2倍,即m s ωω2=时,称为临界采样。

修改门信号宽度、采样周期等参数,重新运行程序,观察得到的采样信号时域和频域特性,以及重构信号与误差信号的变化。

Sa(t)的临界采样及重构程序代码;
wm=1; %升余弦脉冲信号带宽 wc=wm; %频率 Ts=pi/wm; %周期
ws=2.4*pi/Ts; %理想低通截止频率 n=-100:100; %定义序列的长度是201 nTs=n*Ts %采样点
沈 阳 大 学
课程设计说明书 NO.8 f=sinc(nTs/pi); %抽样信号
Dt=0.005;t=-20:Dt:20;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,len gth(t)))); %信号重建
t1=-20:0.5:20;
f1=sinc(t1/pi);
subplot(211);
stem(t1,f1);
xlabel('kTs');
ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的临界采样信号');
subplot(212);
plot(t,fa)
xlabel('t');
ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)');
grid;
⑵程序运行运行分析与结果图
①程序分析:
Sa(t)=sinc(t/pi) %利用sinc函数生成函数Sa(t)
Pi %圆周率
沈阳大学
课程设计说明书 NO.9
沈阳大学课程设计说明书 NO.10
沈阳大学
课程设计说明书 NO.11
沈阳大学课程设计说明书 NO.12
沈阳大学
课程设计说明书 NO.13
沈阳大学课程设计说明书 NO.14
沈阳大学。

相关文档
最新文档