向心力来源分析水平面与竖直面解析共17页

合集下载

05.05圆周运动—向心力和向心加速度(来源分析)

05.05圆周运动—向心力和向心加速度(来源分析)

05.06圆周运动—向心力和向心加速度(来源分析)Lex Li一、导航01、向心力的作用效果(1)只改变线速度的方向.由于向心力始终指向圆心,其方向与物体运动方向始终垂直,故向心力不改变速度的大小.(2)向心力不是一种特殊性质的力,在对物体进行受力分析时,不能说物体还受到向心力.02、向心力的来源分析二、再接再厉01、如图所示,细线的一端有一小球,另一端有光滑的固定轴O,现给小球一个初速度V0,使球和细线一起绕O轴在竖直面内转动,不计空气阻力,则:(1)求小球在A点处的向心力及细线的拉力;(2)若物体在B点处的速度变为V,求此时的向心力及细线的拉力;(3)求小球过最高点D的最小速度。

02、如图所示,细线的一端有一小球质量m=1 kg,另一端有光滑的固定轴O,现给小球一个初速度V0,使球和细线一起绕O轴在在光滑水平面上做匀速圆周运动,不计空气阻力,则:(1)若细线长L=1 m,V0=5 m/s,求细线的拉力;(2)若细线所能承受的最大力为100 N,求小球的最大速度。

03、如图所示,质量m=2 kg的物块在一半径R=0.1 m的圆柱形桶壁(桶壁粗糙)上,圆桶绕中心轴转动角速度ω=20 rad/s,则:(1)求物块所受的摩擦力;(2)求物块受到的向心力;(3)若物块与桶壁间的滑动摩擦因素μ=0.5,求物块不下滑的最小角速度。

04、如图所示,“飞椅”的游乐项目,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动,当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求:(1)飞椅的转动半径R及向心力F;(2)钢绳的弹力T;(3)转盘转动的角速度ω与夹角θ的关系.05、如图所示,公路在通过小型水库泄洪闸的下游时常常要修建凹型桥(图甲),也叫“过水路面”.现有一“过水路面”的圆弧半径为50 m,一辆质量为800 kg的小汽车驶过“过水路面”.当小汽车通过“过水路面”的最低点时速度为5 m/s.g取10 m/s2,则:(1)问此时汽车的压力为?对路面的压力为多大?(2)若修建凸型桥(图甲)圆弧半径仍为50 m,一辆质量为800 kg的小汽车驶过最高点时速度为10m/s,此时汽车的向心力为多大,对路面的压力为又为多大?06、如图所示,质量为m的小物体A在水平转台上随转台以频率f作匀速圆周运动,物体到转轴的距离为d,物体与转台间的动摩擦因数为μ,求:(1)物体所需要的向心力;(2)物体所受到的转台对它的支持力和摩擦力.(3)为使物体保持距离d随转台一起转动,转台转动的角速度应满足什么条件?07、长L=0.5 m的细绳拴着小水桶绕固定轴在竖直平面内转动,桶中有质量m=0.5 kg的水(g取10 m/s2),求:(1)在最高点时,水不流出的最小速率是多少?(2)在最高点时,若速率v=3 m/s,水对桶底的压力为多大?08、长度为0.5 m的轻杆OA绕O点在竖直平面内做圆周运动,A端连着一个质量m=2 kg的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向(提示:杆对球可提供支持力,也可提供拉力):(1)杆做匀速圆周运动的转速为2.0 r/s;(2)杆做匀速圆周运动的转速为0.5 r/s.09、原长为L的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO′上,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L/4,现将弹簧长度拉长到6L/5后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO′以一定角速度匀速转动,如图教2-2-2所示.已知小铁块的质量为m,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少?05.06圆周运动—向心力和向心加速度(来源分析)Lex Li04、解:依题意得:(2)设转盘角速度为ω,夹角为θ 座椅到中心的距离:R =r +L sin θ对座椅受力分析有:F =mg tan θ=mRω2 联立两式得ω=g tan θr +L sin θ.05、解:依题意得:汽车在“过水路面”的最低点时受力如图所示,由牛顿第二定律得:N -mg =mv 2r.解得:N =mg +m v 2r =(800×10+800×2550)N =8 400 N ,根据牛顿第三定律,汽车对路面的压力N ′=F N =8 400 N.06、解:依题意得:(1)物体随转台做圆周运动其向心加速度a =ω2r =(2πf )2d ,由牛顿第二定律得 F 向=m (2πf )2d =2m π2f 2d(2)物体在竖直方向上处于平衡状态,所以物体受到平台的支持力为G ,物体在水平面内只可能受到摩擦力,所以摩擦力提供物体做圆周运动的向心力,F f =F 向=2m π2f 2d .(3)物体受到的滑动摩擦力近似等于最大静摩擦力,当物体所受到的摩擦力不足以改变物体的速度的方向时,物体将相对平台发生滑动,所以μmg ≥m ω2d ,即ω≤μg /d . 07、解:依题意得:(1)若水恰不流出,则有:mg =m v 20L所求最小速率:v 0= gL = 10×0.5 m/s = 5 m/s =2.24 m/s.(2)设桶对水的压力为N ,则有:mg +N =m v 2LN =m v 2L -mg =0.5×90.5N -0.5×10 N=4 N由牛顿第三定律得知,水对桶底的压力:N ′=N =4 N.08、解:依题意得:(1)小球在最高点的受力如图所示: 杆的转速为2.0 r/s 时,ω=2πn =4π rad/s 由牛顿第二定律得:F +mg =mLω2故小球所受杆的作用力:F =mLω2-mg =2×(0.5×42×π2-10)N ≈138 N 即杆对小球提供了138 N 的拉力由牛顿第三定律知小球对杆的拉力大小为138 N,方向竖直向上.(2)杆的转速为0.5 r/s时,ω′=2π·n=π rad/s同理可得小球所受杆的作用力:F=mLω′2-mg=2×(0.5×π2-10)N≈-10 N.力F为负值表示它的方向与受力分析中所假设的方向相反,故小球对杆的压力大小为10 N,方向竖直向下.【审题指导】解答该题应把握以下两点:(1)最高点时,杆对球的弹力和球的重力的合力充当向心力.(2)杆对球可能提供支持力,也可能提供拉力.09、解:依题意得:以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为f max,由平衡条件得f max=kL/4.圆盘转动的角速度ω最大时,铁块受到的摩擦力f max与弹簧的拉力kx的合力提供向心力,由牛顿第二定律得kx+f max=m(6L/5)ω2max.又因为x=L/5.解以上三式得角速度的最大值ωmax=3k/(8m).。

专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题 竖直面内的圆周运动 高一物理 (人教版2019)

专题5 竖直面内的圆周运动(解析版)一、目标要求目标要求重、难点向心力的来源分析重难点水平面内的圆周运动重难点火车转弯模型难点二、知识点解析1.汽车过桥模型(单轨,有支撑)汽车在过拱形桥或者凹形桥时,桥身只能给物体提供弹力,而且只能向上(如以下两图所示).(1)拱形桥(失重)汽车在拱形桥上行驶到最高点时的向心力由重力和桥面对汽车的弹力提供,方向竖直向下,在这种情况下,汽车对桥的压力小于汽车的重力:mg-F=2mvR,F ≤ mg,汽车的速度越大,汽车对桥的压力就越小,当汽车的速度达到v max=gR,此时物体恰好离开桥面,做平抛运动.(2)凹形路(超重)汽车在凹形路上行驶通过最低点的向心力也是由重力和桥面对汽车的弹力提供,但是方向向上,在这种情况下,汽车对路面的压力大于汽车的重力:2-=mvF mgR,由公式可以看出汽车的速度越大,汽车对路面的压力也就越大.说明:汽车过桥模型是典型的变速圆周运动.一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题.2.绳模型(外管,无支撑,水流星模型)(1)受力条件:轻绳对小球只能产生沿绳收缩方向的拉力,圆形轨道对小球只能产生垂直于轨道向内的弹力,故这两种模型可归结为一种情况,即只能对物体施加指向轨迹圆心的力.(2)临界问题:①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)如果刚好等于零,小球的重力充当圆周运动所需的向心力,这是小球能通过最高点的最小速度,则:2=v mg m R,解得:0=v gR说明:如果是处在斜面上,则向心力公式应为:20sin v mg m R α=,解得:0sin v gR α=②能过最高点的条件:v ≥0v .③不能过最高点的条件:v <0v ,实际上小球在到0v 达最高点之前就已经脱离了圆轨道,做斜上抛运动.3.杆模型(双管,有支撑)(1)受力条件:轻杆对小球既能产生拉力又能产生支持力,圆形管道对其内部的小球能产生垂直于轨道用长为L 的轻绳拴着质量为m 的小球 使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直外管内侧做圆周运动用长为L 的轻杆拴着质量为m 的小球使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直双管内做圆周运动向内和向外的弹力.故这两种模型可归结为一种情况,即能对物体施加沿轨道半径向内和向外的力.(2)临界问题:①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度0=v 临,此时轻杆或轨道内侧对小球有向上的支持力:0-=N F mg .②当0<v gR N F .由-mg N F 2=v m R 得:N F 2=-v mg m R.支持力N F 随v 的增大而减小,其取值范围是0<N F <mg .③当=v gR 时,重力刚好提供向心力,即2=v mg m R,轻杆或轨道对小球无作用力.④当v gR F 或轨道外侧对小球施加向下的弹力N F 弥补不足,由2+=v mg F m R 得:2=-v F m mg R,且v 越大F (或N F )越大.说明:如果是在斜面上:则以上各式中的mg 都要改成sin mg α. 4.离心运动做匀速圆周运动的物体,在合外力突然消失或者减小的情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动.(1)离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞去的倾向.当2F mr ω=时,物体做匀速圆周运动;当0F =时,物体沿切线方向飞出;当2F mr ω<时,物体逐渐远离圆心.F 为实际提供的向心力.如图所示.(2)离心运动的应用离心运动可以给我们的生活、工作带来方便,如离心干燥器、洗衣机的脱水筒等就是利用离心运动而设计的.离心干燥器:将湿物体放在离心干燥器的金属网笼里,当网笼转得较快时,水滴所受的附着力不足以提供其维持圆周运动所需的向心力,水滴就做离心运动,穿过网孔,飞离物体,使物体甩去多余的水分.(3)离心运动的防止有时离心运动也会给人们带来危害,如汽车、摩托车、火车转弯时若做离心运动则易造成交通事故;砂轮转动时发生部分砂块做离心运动而造成人身伤害.因此应对它们进行限速,这样所需向心力mvr2较小,不易出现向心力不足的情况,从而避免离心运动的产生.(4)几种常见的离心运动物理情景实物图原理图现象及结论洗衣机脱水筒当水滴跟物体之间的附着力F不能提供足够的向心力(即2ω<F m r))时,水滴做离心运动汽车在水平路面上转弯当最大静摩擦力不足以提供向心力(即2max<vF mr))时,汽车做离心运动三、考查方向题型1:汽车过桥模型典例一:如图所示,质量为m的滑块与轨道间的动摩擦因数为μ,当滑块从A滑到B的过程中,受到的摩擦力的最大值为Fμ,则( )A.Fμ=μmg B.Fμ<μmgC.Fμ>μmg D.无法确定Fμ的值【答案】:C【解析】在四分之一圆弧底端,根据牛顿第二定律得:2vN mg mR-=,解得:N=mg+ 2vmR,此时摩擦力最大,有:2>v F N mg m mg R μμμμ⎛⎫==+ ⎪⎝⎭.故C 正确确,ABD 错误.题型2:绳模型典例二:如图所示,杂技演员表演水流星节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子运动中水始终不会从杯子洒出,设重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A gLB 2g LC 5gLD 10gL【答案】:B【解析】:据题知,杯子圆周运动的半径2=Lr ,杯子运动到最高点时,水恰好不流出,由水的重力刚好提供其做圆周运动的向心力,根据牛顿第二定律得:22Lmg m ω= 解得:2g L ω=题型3:杆模型典例三:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】:A【解析】:轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v gR A正确,B错误;若v gR最高点对小球的弹力竖直向上,mg-F=m2vR,随v增大,F减小,若v gR高点对小球的弹力竖直向下,mg+F=m2vR,随v增大,F增大,故C、D均错误。

实际生活中向心力的来源分析例析

实际生活中向心力的来源分析例析

实际生活中向心力的来源分析例析广西 秦付平众所周知在圆周运动的学习中,对向心力的来源分析是一个重点和难点,对大多数的同学来说是比较头痛的.向心力不是和重力、弹力、摩擦力相并列的一种性质力,它是根据力的效果来命名的.同学们在解有关圆周运动和向心力时,往往容易错误分析受力,多分析了向心力,导致求解出错.求解向心力问题的关键是找准向心力的来源,下面通过例题来说明实际生活中向心力的来源.一、重力提供向心力例1 如图1所示,“时空之旅”飞车表演时,演员驾着摩托车,在球形金属网内壁上下盘旋,令人惊叹不已,摩托车沿图示竖直轨道做圆周运动的过程中,若摩托车的速率为v =20m/s 时,刚好通过最高点A ,设摩托车车身的长不计,取g=10 m/s 2,则竖直圆轨道的半径为( )A .10mB .20mC .30mD .40m解析:由于摩托车刚好能顺利到达A 点,此时摩托车的速率不为零,且在竖直面内作圆周运动,即有一个向心力,此时摩托车和人作为整体只受重力作用,根据向心力只有重力提供,又由牛顿运动定律得:2v mg m R=,解得gR v =,代入数据解得R =40m .因此答案为D 选项.二、弹力提供向心力例2 如图2所示,洗衣机的甩干桶竖直放置,桶的内径为20cm ,工作被甩的衣物贴在桶壁上,衣物与桶壁的动摩擦因数为0.025.若不使衣物滑落下去,甩干桶的转速至少多大? 解析:根据题意得,在竖直方向重力与摩擦力平衡有:mg F N =μ,又因为弹力提供向心力则:r m F N 2ω=,圆周运动有:n f ππω22==,联立代入数据解得:min /600/1042r s r R g n ===μπ. 三、摩擦力提供向心力例3 如图3所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物体所受的最大静摩擦力等于滑图1 图2动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0;(2)物块与转台间的动摩擦因数μ.解析:(1)物体做平抛运动,在竖直方向上有:212H gt =,在水平方向上有:0s v t =,联立上面两式代入数据得01v ==m/s . (2)物块离开转台时,最大静摩擦力提供向心力,有:200v f m R=,又因为最大静摩擦力等于滑动摩擦力则:0f N mg μμ==,联立上式代入数据得:200.2v gRμ==.四、重力与拉力提供向心力例4 某游乐场中有一种叫“空中飞椅”的游乐设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋.若将人和座椅看成是一个质点,则可简化为如图4所示的物理模型.其中P 为处于水平面内的转盘,可绕竖直转轴OO ′转动,设绳长l =10m ,质点的质量m =60kg ,转盘静止时质点与转轴之间的距离d =4m .转盘逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角θ=370.(不计空气阻力及绳重,绳子不可伸长,sin370=0.6,cos370=0.8,g =10m/s 2)求质点与转盘一起做匀速圆周运动时绳子的拉力及转盘的角速度.解析:对质点受力分析,如图5所示,根据重力与绳子的拉力提供向心力可得:2tan mg m D θω=.又因为根据三角函数关系,其中绳子的拉力750cos mg T θ==N ,根据几何关系可得sin D d l θ=+,联立上式代入数据得:ω=rad/s . 五、重力与阻力提供向心力例5 质量为m 的直升飞机以恒定速率v 在空中水平盘旋,如图6所示,做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对直升飞机的阻力大小为( )A .2v m RB .mgO / 图4 图5C.D.解析:如图7所示,直升飞机在盘旋时在水平面内做匀速圆周运动,受到重力和空气的阻力两个力的作用,合力提供向心力2nvF mR=.飞机运动情况和受力情况示意图如图7所示,根据平形四边形定则得:F==C选项正确.六、弹力与摩擦力力提供向心力例6 如图8所示,细绳一端系着质量为M=0.6kg的物体,静止在水平面上,另一端通过光滑小孔吊着质量为m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N.现使此平面绕中心轴转动,问角速度ω在什么范围内m处于静止状态?(取g=10m/s2)解析:根据题意有,当ω比较小时物体M有向O点滑动的趋势,拉力与摩擦力之差提供向心力有:rMfmg21ω=-,代入数据解得12.9/rad sω==;当ω比较大时M有背离O运动的趋势,拉力与摩擦力之和提供向心力即:rMfmg22ω=+,代入数据解得:sradMrfmg/5.62=+=ω.所以角速度取值范围为sradsrad/5.6/9.2≤≤ω.点评:从以上的几个例题中可以发现,实际生活中向心力的来源很多,除此之外还有重力与杆的合力、重力与摩擦力的合力提供向心力等等。

高中物理【向心力的分析及表达式的应用】优质课件

高中物理【向心力的分析及表达式的应用】优质课件

人教物理必修第二册
返回导航 上页 下页
4.来源 (1)向心力是根据力的__作__用__效__果__命名的。 (2)匀速圆周运动中向心力是由某个力或者几个力的合力提供的。 5.作用:改变线速度的方向。
人教物理必修第二册
返回导航 上页 下页
二 变速圆周运动和一般曲线运动的受力特点 1.变速圆周运动的合力_不__等__于___向心力,合力产生两个方向的效果, 如图所示。
(1)跟圆周相切的分力Ft:改变线速度的___大__小___。 (2)指向圆心的分力Fn:改变线速度的___方__向___。
人教物理必修第二册
返回导航 上页 下页
2.一般的曲线运动的处理方法 (1)一般的曲线运动:运动轨迹既不是__直__线____也不是__圆__周____的曲线 运动。
(2)处理方法:可以把曲线分割为许多很短的小段,质点在每一小段的 运动都可以看作__圆__周__运__动__的一部分,分析质点经过曲线上某位置的 运动时,可以采用__圆__周____运动的分析方法来处理。
人教物理必修第二册
返回导航 上页 下页
[解析] 因为向心力是效果力,并不是实际受力,受力分析时不分析, A错误;小球受重力和绳子的拉力而做匀速圆周运动,所以小球做圆周 运动的向心力是由重力和绳子的拉力的合力提供的,B正确;根据向心 力公式可知Fn=mrω2,根据受力分析也可得到Fn=mgtan θ,C正确; 小球所受合力提供向心力,方向时刻指向圆心,力的方向一直在变, 是变力,D错误。
人教物理必修第二册
返回导航 上页 下页
1.向心力公式 (1)公式:Fn=mvr2=mω2r=mωv。 (2)说明:对于匀速圆周运动,向心力大小始终不变,但对非匀速圆周运动 (如用一根绳拴住小球绕固定圆心在竖直平面内做的圆周运动),其向心力 大小随速率 v 的变化而变化,公式表述的只是瞬时值。

向心力来源分析水平面和竖直面

向心力来源分析水平面和竖直面

•V
•A. ∑F法=mω2r
•B. ∑F法=0
•V
•C. ∑F法<mω2r
•D.∑F法>mω2r
•V
•o•∑F法(F提)
•V
二.连接体
•例1. 解:•设每根绳长为
•分L别取两球为对象:
•受力如图。
•ω相 同•故T1=mω2×2L
•T2 -
T1=mω2
•故
•N
•N
•L
•L
•T •T1/ •T1
2 •m

• 是否物体需要的向心力越大就一定先滑 动?

•解3 :•.A. 三者ω相
同•,由a= ω2r∝r •故aB最大.
•B. 三者都做匀速圆周运动,
•ω
•C A B
•则: F提= F需 •故f=mω2r ∝mr
•故 fA:fB :fC=mArA : mBrB :mCrC •=2m×r :m×2r :m×r
向心力来源分析水平面和竖 直面
•ω
•f
•m •N ••mR
•⑷g
•N=m ω2R
•f••MN2
2 •Mg
•ω
•f
1•L
•N1
•m
•mg
•μmg+μMg=mω2 L
•(5)μ≠0,允许的最大角速度
•r•T
•ω
•m •T
2
•m2
•(6)最大角g 速度

最小角速度
•N •①对
•m
•1m1g
•m1:对T=mm2: 1Tω=2mr 2g•故 m2g=m1ω2r •②f=0为临界•:m2g=m1ω02
•m
g
g
二.动态分析
•例 2•.⑴ •M所需的向心力由

圆周运动的临界问题-高考物理复习

圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水

专题3.2 向心力的来源分析与计算(解析版)

专题3.2 向心力的来源分析与计算(解析版)

第三部分专项提能优化训练专题3.2 向心力的来源分析与计算目录一、从动力学角度分析向心力来源 (1)类型1单一性质的力提供向心 (3)类型2多种性质的力的合力提供向心力 (5)二、从向心力来源角度分析圆周运动的临界问题 (7)类型1水平面上的圆周运动 (8)类型2竖直平面内的圆周运动 (11)类型3复合场中的圆周运动 (13)三.专题强化训练 (15)一、从动力学角度分析向心力来源做圆周运动的物体必须有外力提供其向心力,向心力既可以由某一个力来提供,也可以是由几个力的合力或某一个力的分力来提供。

圆周运动及其相关问题,往往都需要寻找向心力来源,然后根据“供”“需”关系列出合外力提供向心力的动力学关系式求解相关问题。

【例1】如图所示,平面直角坐标系xOy的x轴上固定一带负电的点电荷A,一带正电的点电荷B绕A在椭圆轨道上沿逆时针方向运动,椭圆轨道的中心在O点,P1、P2、P3、P4为椭圆轨道与坐标轴的交点。

为使B绕A做圆周运动,某时刻起在此空间加一垂直于xOy平面的匀强磁场,不计B受到的重力。

下列说法中可能正确的是()A.当B运动到P1点时,加一垂直于xOy平面向里的匀强磁场B.当B运动到P2点时,加一垂直于xOy平面向外的匀强磁场C.当B运动到P3点时,加一垂直于xOy平面向里的匀强磁场D.当B运动到P4点时,加一垂直于xOy平面向外的匀强磁场【答案】C【解析】过P1点以A点为圆心的圆如图所示当点电荷B运动到P1点时,加一垂直于xOy平面向里的匀强磁场,根据左手定则可知点电荷B受到的洛伦兹力方向指向A,点电荷B一定相对于原来的轨道做向心运动,不可能在轨道1上做匀速圆周运动,故A错误;当B运动到P2点或P4点时,加一垂直于xOy平面向外的匀强磁场,根据左手定则可知粒子受到的洛伦兹力方向向外,洛伦兹力和电场力的合力不指向A点,不可能绕A做匀速圆周运动,故B、D错误;当B运动到P3点时,加一垂直于xOy平面向里的匀强磁场,根据左手定则可知洛伦兹力方向指向A,此时粒子相对于原来的椭圆做向心运动,可能绕图中轨道2做匀速圆周运动,其向心力为洛伦兹力和电场力的合力,故C正确。

第四章 第3节 向心力的实例分析

第四章  第3节  向心力的实例分析

第3节向心力的实例分析一、转弯时的向心力实例分析1.汽车在水平路面转弯,所受静摩擦力提供转弯所需的向心力。

2.火车(或汽车)转弯时,如图4-3-1所示,向心力由重力和支持力的合力提供,向心力F =mg tan θ=m v 2r,转弯处的速度v =gr tan θ。

图4-3-1 图4-3-23.飞机(或飞鸟)转弯受力如图4-3-2所示,向心力由空气作用力F 和重力mg 的合力提供。

二、竖直平面内的圆周运动实例分析1.汽车在水平路面上转弯时的向心力由静摩擦力提供。

2.高速公路、铁路的弯道做成外高内低,汽车、火车转弯时依靠重力与支持力的合力提供向心力,以保证汽车、火车安全转弯。

3.汽车驶过凸形路面顶端时对路面的压力小于汽车所受的重力;汽车驶过凹形路面底端时对路面的压力大于汽车所受的重力。

4.竖直平面内圆周运动模型有绳球模型和杆球模型,因绳与杆的弹力不同,造成两模型在最高点的受力不同。

5.绳球模型最高点临界速度mg =m v2r ⇒v =gr ,杆球模型在最高点重力可以等于支持力,故临界速度v =0。

1.汽车过拱形桥2.过山车(在最高点和最低点)(1)向心力来源:受力如图4-3-3所示,重力和支持力的合力提供向心力。

图4-3-3(2)向心力方程在最高点:N +mg =m v 2r ,v 越小,N 越小,当N =0时v min =gr 。

在最低点:N -mg =m v 2r 。

1.自主思考——判一判(1)火车转弯时的向心力是火车受到的合外力。

(×) (2)火车以恒定速率转弯时,合外力提供向心力。

(√) (3)做匀速圆周运动的汽车,其向心力保持不变。

(×)(4)汽车过拱形桥时,对桥面的压力一定大于汽车自身的重力。

(×)(5)汽车在水平路面上行驶时,汽车对地面的压力大小等于自身的重力大小。

(√) 2.合作探究——议一议(1)假定你是一个铁路设计的工程师,你打算用什么方法为火车转弯提供向心力? 提示:要根据弯道的半径和规定的行驶速度,确定内外轨的高度差,使火车转弯时所需的向心力几乎完全由重力G 和支持力N 的合力来提供。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档