整式的乘除运算

合集下载

整式的乘除运算掌握整式乘除法的基本要点

整式的乘除运算掌握整式乘除法的基本要点

整式的乘除运算掌握整式乘除法的基本要点整式的乘除运算是数学中的基本内容,掌握整式的乘除法的基本要点对于解决各类问题具有重要作用。

本文将详细介绍整式的乘除运算的基本概念、要点和解题技巧,以帮助读者更好地掌握这一知识点。

一、整式的基本概念整式是由常数和变量按照加、减、乘的运算法则组成的代数表达式。

一般形式为:CnX^n + Cn-1X^n-1 + ... + C1X + C0,其中Cn, Cn-1, ...,C1, C0为常数,X为变量,n为非负整数。

二、整式的乘法运算整式的乘法运算通过应用乘法分配律和合并同类项的原则来进行。

具体步骤如下:1. 将两个整式的每一项相乘。

2. 对于乘积的每一项,将其中的同类项合并。

3. 简化合并后的整式,即合并同类项并按照降序排列。

例如,对于表达式2X^2 + 3X - 1与4X + 5的乘法运算,可以按照以下步骤进行:1. 将每个项相乘得到8X^3 + 10X^2 + 12X + 15X^2 + 20X - 5。

2. 合并同类项,得到8X^3 + 25X^2 + 32X - 5。

3. 简化合并后的整式,得到8X^3 + 25X^2 + 32X - 5。

三、整式的除法运算整式的除法运算通过应用除法运算规则来进行,常用的方法是长除法。

具体步骤如下:1. 将除数和被除数按照降序排列。

2. 将除数的第一项除以被除数的第一项,得到商的首项。

3. 用商的首项乘以被除数,得到一个乘积。

4. 将乘积减去除数,得到一个差。

5. 将差视为一个新的被除数,重复步骤2至步骤4,直到无法继续执行除法运算为止。

例如,对于表达式8X^3 + 25X^2 + 32X - 5除以2X + 4的除法运算,可以按照以下步骤进行:1. 将除数和被除数按照降序排列,即8X^3 + 25X^2 + 32X - 5 ÷ 2X+ 4。

2. 将除数的首项8X^3除以被除数的首项2X,得到商的首项4X^2。

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2.整式的加减的实质:合并同类项。

3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4.乘法公式:①平方差公式:()()22b a b a b a -=-+。

②完全平方公式:()2222b ab a b a +±=±。

5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。

专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

七年级数学整式的乘除

七年级数学整式的乘除

06 练习题与自测
基础知识巩固练习
整式的乘法运算
通过练习不同类型的整式乘法,如单项式乘单项式、单项 式乘多项式、多项式乘多项式等,巩固乘法分配律和结合 律的应用。
整式的除法运算
通过练习整式的除法,如单项式除以单项式、多项式除以 单项式等,掌握除法的基本法则和运算技巧。
幂的运算性质
通过练习幂的乘方、积的乘方、同底数幂的乘法、除法以 及零指数幂和负整数指数幂的运算,加深对幂运算性质的 理解。
负数底数幂运算注意事项
负数底数定义
负数底数幂表示的是负数的乘方运算,如(-2)^3表示-2的三次方。
运算规则
负数底数幂的运算需遵循乘方运算的基本法则,同时需注意负数的 奇次幂和偶次幂的结果符号不同。
注意事项
在计算过程中,需特别注意底数为负数的情况,避免出现计算错误 或遗漏。
复杂根式化简技巧
根式化简基本方法
将多项式拆分为多个单项 式的和或差。
分别相除
将拆分后的每个单项式分 别除以给定的单项式。
合并同类项
将除法运算后的结果进行 合并同类项。
带余除法及应用
带余除法定理
对于多项式f(x)和g(x),存在唯一的多项式q(x)和r(x),使得f(x) = g(x)q(x) + r(x),其中r(x)的次数小于g(x)的次数。

求解方程或表达式
利用数学运算和推理,求解出 未知量的值。
检验答案
将求解出的未知量值代入题目 条件进行检验,确保答案正确

计算题步骤规范及优化
明确计算目标
确定需要计算的目标和所需使 用的数学公式或方法。
列出计算步骤
按照数学运算的优先级和顺序 ,逐步列出计算步骤。

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标1. 知识与技能:(1)理解整式的乘除概念;(2)掌握整式乘除的运算法则;(3)能够熟练进行整式的乘除运算。

2. 过程与方法:(1)通过实例演示,引导学生发现整式乘除的规律;(3)设计适量练习,提高学生的运算能力。

3. 情感态度与价值观:(1)培养学生积极参与数学学习的兴趣;(2)培养学生克服困难的意志品质;(3)培养学生合作交流的能力。

二、教学重点与难点1. 教学重点:(1)整式乘除的概念;(2)整式乘除的运算法则;(3)整式乘除的运算步骤。

2. 教学难点:(1)整式乘除的运算法则的灵活运用;(2)复杂整式乘除的运算。

三、教学准备1. 教师准备:(1)熟记整式乘除的运算法则;(2)准备典型例题和练习题;(3)准备多媒体教学设备。

2. 学生准备:(1)掌握整式的基本概念;(2)了解整式加减的运算方法;(3)预习整式乘除的相关内容。

四、教学过程1. 导入新课:(1)复习整式的基本概念;(2)复习整式加减的运算方法;(3)引导学生思考整式乘除的概念及运算法则。

2. 知识讲解:(1)通过实例演示,引导学生发现整式乘除的规律;(3)讲解整式乘除的运算步骤。

3. 课堂练习:(1)设计适量练习题,让学生独立完成;(2)引导学生互相讨论,共同解决问题;(3)讲解练习题,巩固所学知识。

五、课后作业2. 布置适量课后练习题,巩固所学知识;3. 鼓励学生进行合作学习,互相交流学习心得。

六、教学拓展1. 引导学生思考:整式乘除在实际生活中的应用;2. 举例说明整式乘除在其他学科中的应用;3. 引导学生探索整式乘除的运算规律。

七、课堂小结2. 强调整式乘除在数学中的重要性;3. 鼓励学生积极参与课后练习,巩固所学知识。

八、课后作业2. 布置适量课后练习题,巩固所学知识;3. 鼓励学生进行合作学习,互相交流学习心得。

九、教学反思2. 针对学生的学习情况,调整教学策略;3. 思考如何提高学生的学习兴趣和积极性。

整式的乘除知识点

整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。

整式的除法运算是指对一个整式除以另一个整式的运算。

整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。

一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。

例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。

例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。

例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。

例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。

例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。

例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。

这个性质可以简化计算,使得整式的乘法更加灵活。

2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。

这个性质可以改变运算次序,简化计算过程。

3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文一、教学目标:1. 知识与技能:(1)理解整式的乘除概念,掌握整式乘除的运算方法;(2)掌握因式分解的方法,能够对简单的一元二次方程进行因式分解。

2. 过程与方法:(1)通过实例演示和练习,培养学生的运算能力;(2)通过小组讨论和探究,培养学生合作解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探索、积极思考的科学精神。

二、教学内容:1. 整式的乘法:(1)单项式乘以单项式;(2)单项式乘以多项式;(3)多项式乘以多项式。

2. 整式的除法:(1)单项式除以单项式;(2)多项式除以单项式。

3. 因式分解:(1)提取公因式法;(2)十字相乘法;(3)公式法。

三、教学重点与难点:1. 教学重点:(1)整式的乘除运算方法;(2)因式分解的方法及应用。

2. 教学难点:(1)整式乘除中的复杂运算;(2)因式分解中的技巧与策略。

四、教学过程:1. 导入:通过复习相关概念,引导学生进入整式乘除与因式分解的学习。

2. 教学新课:(1)整式的乘法:通过具体例子,讲解单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算方法;(2)整式的除法:通过具体例子,讲解单项式除以单项式、多项式除以单项式的运算方法;(3)因式分解:讲解提取公因式法、十字相乘法、公式法的运用。

3. 课堂练习:布置练习题,让学生巩固所学内容。

4. 总结与拓展:总结整式乘除与因式分解的关键点,引导学生思考如何解决实际问题。

五、课后作业:1. 完成练习册的相关题目;2. 选取一道复杂的整式乘除或因式分解题目,进行深入研究和分析。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究整式乘除与因式分解的方法;2. 利用多媒体课件,展示整式乘除与因式分解的运算过程,增强学生的直观感受;3. 设计具有梯度的练习题,让学生在实践中巩固知识,提高运算能力;4. 组织小组讨论,鼓励学生分享解题心得,培养合作精神。

整式的乘除运算及化简求值(有答案)

整式的乘除运算及化简求值(有答案)
【答案】
54.
【答案】
55.
【答案】
56.
【答案】
57.
【答案】
58.
【答案】 ,
59.
【答案】原式= ,无论 取何值,原式都表示一个偶数的立方
6
60.
【答案】
61.
【答案】
62.
【答案】
63.
计算
【答案】
64.
【答案】
65.
【答案】
66.
【答案】
67.
【答案】
68.
【答案】
69.
【答案】
70.
【答案】
39.
A. B. C. D.2
【答案】D
40.
【答案】
41.
A. B. C.16D.
【答案】A
42.
A. , B. ,
C. , D. ,
【答案】A
43.
A.
B.
C.
D.
【答案】C
44.
A. B.
C. D.
【答案】A
45.
【答案】
46.
【答案】
47.
【答案】
48.
【答案】
49.
【答案】2
50.
【答案】
51.
52.
如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠,①请画出这个长方形的草图;②运用拼图前后面积之间的关系说明这个长方形的代数意义,这个长方形的代数意义是。
小明想用类似方法解释多项式乘法 ,那么需用2号卡
张,3号卡片张.
【答案】 ①
②长方形的代数意义:
3,7
53.
【答案】C
110.

整式的乘除教案

整式的乘除教案

整式的乘除教案教案标题:整式的乘除教案教学目标:1. 理解整式的概念,并能够将其与分式进行比较。

2. 掌握整式的乘法原理,能够进行整式的乘法运算。

3. 掌握整式的除法原理,能够进行整式的除法运算。

4. 培养学生的逻辑思维和解决问题的能力。

教学准备:白板、黑板笔、教学PPT、教材教学步骤:步骤一:导入(5分钟)通过举例比较整式和分式的相同点和不同点,引发学生对整式的兴趣。

步骤二:概念讲解(10分钟)1. 讲解整式的定义及其组成,强调整式中只包含有理数和代数式,没有分母为零的字母。

2. 比较整式和分式的区别,分析其异同点。

步骤三:整式的乘法(20分钟)1. 讲解整式的乘法原理,引导学生注意整式乘法中要注意项数和指数的运算规律。

2. 通过具体例子进行讲解和演示,教学PPT的运用将有助于学生理解乘法原理。

3. 针对不同难度的乘法练习题,分别进行课堂讲解和个别辅导。

步骤四:整式的除法(20分钟)1. 讲解整式的除法原理,引导学生注意除法中的项数和指数的运算规律。

2. 通过具体例子进行讲解和演示,教学PPT的运用将有助于学生理解除法原理。

3. 针对不同难度的除法练习题,分别进行课堂讲解和个别辅导。

步骤五:习题训练(15分钟)布置一定数量的练习题,让学生独立进行练习,并及时纠正他们的错误。

通过教师的巡视和个别辅导,解决学生在习题训练中遇到的问题。

步骤六:课堂小结(5分钟)对整节课的内容进行小结,并强调整式乘除的重点和难点。

鼓励学生留意课下的习题复习,巩固所学知识。

课后拓展:指导学生找一种生活实例,列出相关的整式,并通过乘法和除法运算,计算相关问题的答案。

教学反思:此教案针对整式的乘除运算进行设计,通过理论讲解、例题演示和习题训练等多种教学手段,旨在帮助学生全面理解整式的乘除原理,掌握相应的运算技巧,并培养学生的逻辑思维和解决问题的能力。

在教学过程中,要注意根据学生的实际情况及时调整教学节奏,因材施教,保证教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除运算
知识点梳理
No.1同底数幂的乘法法则
1.同底数幂相乘,底数不变,指数相加。

用公式表示为:m
n m n a a a +=。

同底数幂的



















()()()m n m n m n m a
a
n a
a a a a
a a a
a a a
a a ++===个个个
2.同底数幂乘法法则的推广:同底数幂的乘法法则可以推广到三个或三个以上的同底数幂相乘的情况,用公式法表示为:m
n p m n p
a
a a a ++
+=
3.同底数幂乘法法则的逆用:根据等式的性质可知:同底数幂的乘法法则可转化为
m n m n a a a +=
No.2幂的乘方和积的乘方
1.幂的乘方的意义及法则:幂的乘方指几个相同的幂相乘,如()
n
m a
是n 个m
a 相乘,读作
a 的m 次方的n 次方,具体的计算方法是:()
m
m
a n n
m m m
m m m m
mn n a a a a a a ++
+===个个,即
幂的乘方,底数不变,指数相乘。

2.幂的乘方法则的逆用:当乘方中的指数是积的形式时,通常可以逆用幂的乘方法则将其转化为幂的乘方进行计算。

逆用公式为()
n
mn
m a
a
=。

3.积的乘方的意义及法则:积的乘方是指底数是积的形式的乘方,如()n
ab 是n 个ab 相乘,读

ab
的n 次方。

具体计算方法是:
()
()()n
n ab
n n n n a
b
ab ab ab ab a a
a b b
b a b ===个个个。

用语言描述为:积的乘方等于把
积中的每一个因式分别乘方,再把所得的积相乘。

4.积的乘方法则的逆用:在两个幂的积中,如果两个幂的指数相同或者可以转化为相同指数,那么逆用积的乘方法则进行计算可能能够简化计算。

逆用公式为()n
n
n
a b ab =
No.3同底数幂的除法
1.运算法则:同底数幂相除,底数不变指数相减。

(底数不等于0)
2.0指数幂和负整指数幂:
(1)0指数幂:任何非0数的0次幂都等于1,即()0
10a a =≠;
(2)负指数幂:任何非0数的n -次幂都等于这个数的n 次幂的倒数,即
()1
()0n n a a a -=≠
【经典例题解析】
例1计算: (1)2
6
a a ;
(2)3
2233⎛⎫
-⨯- ⎪⎝⎭

(3)()4
3
b b -⨯;
(4)()()1
n n x y y x --⨯-
例2计算: (1)11m n n a
a a a +-
(2)()
()3
4
2
x
x x ---
(3)
()()()
3
4
x y x y x y ++--
例3已知2,2,a b
m n ==求2a b
+的值。

例4计算
(1)2
31()2⎡⎤-⎢⎥⎣⎦;
(2)()
2
5b
-;
(3)()6
7
x ⎡⎤-⎣⎦

(4)()
22n
y
例5已知22m
m x
x =,求9m x 的值。

例6计算:
(1)2()n
xy -
(2)3()xy - (3)
43
(210)-⨯ (4)
()3
23
2a b c -
例7若m,n,p 是正整数,则(
)
p
m
n
a
a
的值是多少?
例8已知,5,3==b
a x x 求32a b
x -的值。

例9.已知2x+5y=3,求4x
·32y
的值。

1.计算2
5
---y x x y x y ()()() )(y x ≠ 2
3
4
4
()()2()()x x x x x x -⋅-+⋅---⋅
2.(1)计算:(
)()
2
222n
n n a b a b +;
(2)若
162
1m 39=+)(,求正整数m 的值;
3.已知的值)()()
,求代数式(2
322432b b a ab 3b a =;
4.计算(1)1110101000m
m +-⨯⨯
(2)22
2233⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭
5.若233x y +=,则 ()()()322222x y x
--⨯-⨯-⨯的值是多少?
6.已知23,26,212,x
y
z
===试确定,,x y z 之间的关系。

7.已知n 为正整数,且2n
a =,求(
)()2
22234n
n a a -的值。

8.计算()2
2221112π---⎧⎫⎡⎤⎪⎪
⎛⎫-+--⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎭⎩
9.计算()()()4
2
222x y y x x y -÷-÷-;
(2)若23
3
1x -=,则2x 的值为多少?。

相关文档
最新文档