高等代数(下)期终考试题及答案(B卷)
高数下期中考试(10-11)试卷及解答

广东工业大学试卷用纸,共 5 页,第 1 页一、填空题(每题3分分).已知{4,3,4}a =-在向量{2,2,1}b =t e e x,sin cos ==广东工业大学试卷用纸,共 5 页,第 2 页广东工业大学试卷用纸,共 5 页,第 3 页解:两边微分得 )()(21yz d f x z d f dx '+'= 2分2221yz d yy d z f x z d x x d z f dx -'+-'= 5分 整理得 dx f y x f xy f z x dx f y x f xy f zy y x dz 22122222121222)('+''+'+''+= 6分四、计算下列各题(每题7分,共28分)1.计算Dx ⎰⎰,其中D是由曲线.10y x y x ===及所围成的区域:2031441200:1112(1)31212311)18yD xx dxy y ====+=-⎰⎰⎰⎰⎰⎰解2.计算⎰⎰Ddxdy xy }1,max{,其中}20,20),{(≤≤≤≤=y x y x D.解:曲线1=xy 把区域D 分成三个区域1D 、2D 和3D21,221:1≤≤≤≤y x x D ;x y x D 10,221:2≤≤≤≤;20,210:3≤≤≤≤y x D 2分⎰⎰Ddxdy xy }1,max{=dxdy xy D ⎰⎰1+⎰⎰2D dxdy +⎰⎰3D dxdy=212122121221⨯++⎰⎰⎰⎰x xdy dx xydy dx 6分 =2ln 419+ 7分 3.设Ω是曲线⎩⎨⎧==022x zy 绕z 轴旋转一周而成的曲面与平面8=z 围成的空间区域,求广东工业大学试卷用纸,共 5 页,第 4 页⎰⎰⎰+=Ωdv y x I )(22。
解:Ω由z y x 222=+与 8=z 所围成,在柱坐标系下 Ω:82,40,202≤≤≤≤≤≤z ρρπθ 3分⎰⎰⎰=8224202ρπρρρθdz d d I 5分=π31024五、设),(y x f 连续,且⎰⎰+=Ddudv v u f xy y x f ),(),(,其中D 是由0=y ,2xy =,1=x 所围成区域,求),(y x f (6分)五、解:设A dxdy y x f D=⎰⎰),(,则⎰⎰⎰⎰+=DDdxdy A dxdy xy A2分 A xydy dx A x 31210+=⎰⎰⇒81=A 5分 从而 81),(+=xy y x f 6分六、设曲线:C ⎩⎨⎧=++=-+5302222z y x z y x ,求C 上距离xoy 面最远的点和最近的点。
10-11-2高数1(B)期中考试试卷参考答案

3、设积分区域 D 是 1 ≤ x 2 + y 2 ≤ 4 ,则 ∫∫ dxdy =
D
(A) π
(B)3 π
(C)4 π
(D)15 π
第 2 页 共 6 页
4、设 z = z ( x, y ) 由 x 3 + y 3 + z 3 + xyz − 6 = 0 所确定的函数,则 (A)
1 5
2 0
∂z ∂x
系
第 3 页 共 6 页
3、求旋转抛物面 z = x 2 + y 2 − 1 在点 (2,1, 4) 的切平面及法线方程
解: F ( x, y, z ) = x 2 + y 2 − z − 1, 则有 Fx = 2 x, Fy = 2 y, Fz = −1; 设 Fx (2,1, 4) = 4, Fy (2,1, 4) = 2, Fz (2,1, 4) = −1LLLLLLLLLLL 2分 所求切平面方程为 4( x − 2) + 2( y − 1) − ( z − 4) = 0 即 4 x + 2 y − z = 6LLLLLLLLLLLLLLLLLLLLLL 4分 所求法线方程为 x − 2 y −1 z − 4 = = LLLLLLLLLLLLLL 6分 4 2 −1
(1, 2 , −1)
=
(B)
x2 0
11 5
(C) −
1 5
(D) −
11 5
5、二次积分 ∫ dx ∫ (A) ∫ dy ∫
0 4 2 y
f ( x, y )dy 的另一种积分次序是 (B) ∫ dy ∫
0 4 y 0 y 2
f ( x, y )dx
f ( x, y )dx f ( x, y )dx
高等代数试卷含答案

1 1.已知)2,1,2,1(1-=a ,3),(1,2,2,(2,3,1,0),32-==a a 则),,(321a a a L 的维数为的维数为①① , ,此生成空间的一组基为此生成空间的一组基为此生成空间的一组基为 ②② . 2.已知)0,0,1(),0,1,1(),1,1,1(321===a a a 是3P 的一个基,由基)0,0,1(1=e ,)1,0,0(),0,1,0(32==e e 到基321,,a a a 的过渡矩阵为① ,向量),,(c b a =b关于基321,,a a a 的坐标为的坐标为② .3.3. 设123,,a a a 是3维欧氏空间V 的一组基,这组基的度量矩阵为212121212-æöç÷--ç÷ç÷-èø, 则向量12x a a =+的长度x 为 .三.(16分)已知复系数矩阵=A ÷÷÷øöçççèæ100021032104321,(1) 求矩阵A 的行列式因子、不变因子和初等因子;的行列式因子、不变因子和初等因子; (2) 求矩阵A 的若当标准形;的若当标准形; (3)求矩阵A 的有理标准形。
的有理标准形。
2 三.解:(1)÷÷÷÷øöççççèæ--------=-1000210032104321λλλλλA E 因因为)1(4210321432+--------λλλλ=-,而3)1(100210321-=------λλλλ ………………………44分 故故行列式因子1)(3=λD ,显然,1)(,1)(12==λλD D 44)1()(-=λλD …………22分 不不变因子为 )(1λd =)(2λd =1)(3=λd ,44)1()(-=λλd ………………22分初初等因子为4)1(-λ ………………22分(2)若当标准型ççççèæ÷÷÷÷øö=1100011000110001J ………………………………33分 (3)1464)(2344+-+-=λλλλλd故有理标准型为:3 ççççèæ÷÷÷÷øö--4100601040011000 ………………………………33分七.七.(10(10分) 1、设σ是n 维欧式空间V 的一个线性变换。
高代期中考试题库及答案

高代期中考试题库及答案一、选择题(每题5分,共20分)1. 设矩阵 \(A\) 为 \(3 \times 3\) 矩阵,且 \(\text{rank}(A) = 2\),则矩阵 \(A\) 的秩是:A. 1B. 2C. 3D. 无法确定答案:B2. 以下哪个选项不是线性代数中的基本概念?A. 向量空间B. 线性映射C. 矩阵D. 微分方程答案:D3. 设 \(\alpha\) 和 \(\beta\) 是两个向量,若 \(\alpha \cdot \beta = 0\),则 \(\alpha\) 和 \(\beta\):A. 正交B. 平行C. 垂直D. 斜交答案:A4. 如果一个矩阵 \(A\) 可以表示为 \(A = PDP^{-1}\),其中 \(P\) 是可逆矩阵,\(D\) 是对角矩阵,则矩阵 \(A\):A. 可对角化B. 正交C. 正定D. 单位答案:A二、填空题(每题3分,共15分)1. 设 \(A\) 是一个 \(n \times n\) 矩阵,若 \(A^2 = A\),则称\(A\) 为幂等矩阵。
若 \(A\) 是幂等矩阵,则 \(A\) 的特征值为______。
答案:0或12. 矩阵 \(A\) 的行列式表示为 \(\text{det}(A)\),若\(\text{det}(A) = 0\),则矩阵 \(A\) 的秩小于______。
答案:n3. 设 \(\lambda\) 是矩阵 \(A\) 的一个特征值,对应的特征向量为\(v\),则 \(A\) 与 \(\lambda\) 乘以单位矩阵 \(I\) 的差 \(A - \lambda I\) 的秩为______。
答案:04. 线性方程组 \(Ax = 0\) 的基础解系由 \(A\) 的零空间的一组基构成,若 \(A\) 是一个 \(3 \times 3\) 矩阵且 \(\text{rank}(A) = 2\),则 \(Ax = 0\) 的基础解系包含______个向量。
高等代数(下)期终考试题及答案(C卷)汇编

高等代数(下)期末考试试卷(C 卷)一. 选择题(每空2分,共12分) 1.( D )下列集合哪一个是R n 的子空间11 1 1 2 1 2 11 2 1(A) {(,0,....,0,)| , ,}(B){( ,,...,)| , 1,...,}(C){( ,,...,)| 1 , }(D){( ,,...,)|0, }n n n n i nn i i i n n i i i a a a a R a a a a a a Z i n a a a a a R a a a a a R ==∈≠∈==∈=∈∑∑2.( B ) 令ξ=(x 1,x 2,x 3)是R 3的任意向量.下列哪一个映射σ是R 3的线性变换31 2 3233231 2312(A) ( ) = , 0(B) ( ) = (2-+ , , -)(C) ( ) =(,, )(D) ( ) =( 1 ,,0)R x x x x x x x x x x x σξξαασξσξσξ+≠++其中是 的固定向量3. (C) 如果1V , 2V 是线性空间V 的两个子空间, 且()1dim 3V =, ()2dim 2V =,()12dim 1V V ?, 那么()12dim V V +为(A) 2 (B) 3 (C) 4 (D) 5 4. (C )若4阶方阵A 的初等因子为()23l +, +3, 2. 则 A 的不变因子是(A) 1,( +3),( +2),()23l +; (B) 1,1, ( +3) ( + 2) ,()()223l l ++; (C )1,1,( +3),()()223l l ++;(D) 1,1,( +2),()()223l l ++;5.( B )设矩阵A 的全部不同特征值为12,,...,s λλλ,则下列哪一说法与A 可对角化不等价(A ) A 有n 个线性无关的特征向量; (B ) ()(1,2,...)()i ii i R E A n i s n λλ-==其中为的重数;(C ) V dim (V )(1,2,...,)iii i i s λλλλ==的特征子空间的维数的重数 ;( D) A 的最小多项式均是数域P 上互素的一次因式的乘积;6.(D ) 在实数域R 中,由全体4阶反对称矩阵所构成的线性空间W 的维数为(A) 10; (B )4; (C) 9; (D )6;.二. 填空题(每空2分,共18分)1、已知a 是数域P 上的一个固定的数,而2{(,,,),2,,}n i W a x x x P i n =∈=是1n P +的一个子空间,则a =_______, dim (W )=________. 2. 设,στ是2P 的两个线性变换,定义如下(,)(2,0)x y x y σ=-+, (,)(3,)x y y x y τ=-+ (,x y P ∀∈)则 (,)x y τσ=_________.3. 已知E A λ-的标准形为1000000(2)λλλ⎛⎫⎪⎪ ⎪-⎝⎭,则A 的特征多项式2(2)E A λλλ-=-,A 的最小多项式为___________。
厦门大学10-11学年第二学期《高等代数》半期考试卷参考答案

a ¹ 0 。必
2
1011 学年第二学期厦门大学《高等代数》期中试卷参考答案
3) 设 f ( x ) = x + 4 x + 5 x + 3 , 则____是以 f ( x ) 的根的倒数为根的四次多项式。 3 x + 5 x + 4 x + 1 (不唯一,可相差非零常数倍)
且 p( x) | f ( x ) g ( x ) ,证明: p( x) | f ( x ) 且 p( x) | g ( x ) 。 证明:因 p( x ) 是数域 K 上的不可约多项式且 p( x) | f ( x ) g ( x ) ,所以 p( x) | f ( x ) 或者 p( x) | g ( x ) 。若
① x 2 + p (其中 p 是素数) ; A) 3,1; C) 2,1; 3)
设 f ( x ) 是数域 K 上的非零多项式, p( x ) 是 K 上不可约多项式。如果存在复数 c ,使得
f (c ) = p (c) = 0 ,则____。B
A) f ( x) | p ( x ) ; C) f ( x) = p( x) ; 4) B) p( x) | f ( x ) ; D) f ( x) = ap( x )( a ¹ 0) 。
厦门大学《高等代数》课程试卷
数学科学学院 各 系 2010 年级 各 专业
1011 学年第二学期厦门大学《高等代数》期中试卷参考答案
主考教师:杜妮、林鹭 试卷类型: (A 卷)
2011.3.31
一、 单选题(32 分. 共 8 题, 每题 4 分)
1) 设 ( f ( x ), g ( x )) = 1 , ( f ( x ), h( x )) = 1 ,则____未必互素。D B) f ( x ) 与 f ( x ) + g 2 ( x ) ; D) f ( x ) 与 g ( x ) + h( x) 。
《高等代数》期中考试试卷 2003-11-6

《高等代数》期中考试试卷 2003-11-6一. 填空题1.已知βα,=A ,其中)1,2(),2,1(==βα,求=5A _________。
2.设B A ,都是n 阶可逆阵,3,2-==B A ,则=-1*2B A _________。
3.⎪⎪⎭⎫⎝⎛=n n I K I A ,则=-1A _________。
4.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么()TAB 是一个________阶矩阵,它的第i 行第j 列元素为________。
5.设123023003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则*1()A -=________。
6.设A ,B 都是可逆矩阵,矩阵00A C B ⎛⎫=⎪⎝⎭的逆矩阵为________。
7.A 既是对称矩阵,又是反对称矩阵,则A 为________矩阵。
8.设方阵111111222222333333,b x c b y c A b x c B b y c b x c b y c ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且2,3A B =-=,则行列式A B +=________。
二.选择题1.设A 是n m ⨯矩阵,设B 是m n ⨯矩阵,则____。
(A ) 当n m >时,必有0≠AB (B )当n m >时,必有0=AB (C )当m n >时,必有0≠AB (D )当m n >时,必有0=AB2.A 是m k ⨯矩阵,B 是k t ⨯矩阵,若B 的第j 列元素全为零,则下列结论正确的是____。
(A )AB 的第j 列元素全等于零 (B )AB 的第j 行元素全等于零 (A )BA 的第j 列元素全等于零 (A )BA 的第j 行元素全等于零 3.,,A B C 均为n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有____。
(A) ACB E = (B )BAC E = (C )BCA E = (D )CBA E =4.设A 是5阶方阵,且0A ≠,则*A =____。
高代题库试题与答案

高等代数(下)试题(10)一填空题(每小题三分共15分)1 A,B 为n 阶可逆矩阵,C=⎪⎭⎫ ⎝⎛O B A O ,则C 1-=________。
2 A 为n 阶矩阵,A =21,则*1)3(A A --=_______ 3设f 是一个n 元负定的二次型,则二次型f 的秩等于______________. 4设n ααα,...,21线性无关,W=L (n ααα,...,21),则W 的维数为______________。
5数量矩阵A=aE 的特征根为_______________。
二单项选择题(每小题三分共15分)1设A 是m n ⨯矩阵,B 是n ⨯m 矩阵,则()(A)当m>n 时,必有行列式AB ≠0(B )当m>n 时,必有行列式AB =0(C )当n>m 时,必有行列式AB ≠0(D )当n>m 时,必有行列式AB =02设A ,B ,C 均为n 阶矩阵,且秩A=秩B ,则()(A)AB 的秩与AC 的秩不一定相等。
(B)AB 的秩与AC 的秩一定相等。
(C)AB 的秩与AC 的秩一定不相等。
(D)AB 的秩一定不超过C 的秩。
3设向量空间V 中含有r 个向量,则下列结论成立的是()(A ) r=1; (B )r=2 ;(C ) r=m (有限数); (D ) r=1或∞4 数域F 上n 维向量空间V 有( )个基(A ) 1; (B ) n ;(C ) n!; (D )无穷多.5设向量空间W={(a,2a,3a)R a ∈},则W 的基为: ( )(A ) (1,2,3,) ; (B ) (a,a,a );(C ) (a,2a3a); (D )(1,0,0),(0,2,0),(0,0,3)三(15分)⎪⎪⎭⎫ ⎝⎛--121011322X=⎪⎪⎭⎫ ⎝⎛-417求X 四(15分)把二此型f(,x 2,x 3)=x 1x 2+x 1,x 3+x 2x 3通过非退化线性替换化成平方和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J=
6.在n维欧氏空间V中,向量 在标准正交基 下的坐标是 ,那么 =
7. 两个有限维欧氏空间同构的充要条件是.
二.选择题(每小题2分,共10分)
1.( )已知 为R上的线性空间,
则dim(V)为
(A) 1;(B) 2; (C) 3;(D) 4
高等代数(下)期末考试试卷及答案(B卷)
一.填空题(每小题3分,共21分)
1.
2. 设n阶矩阵A的全体特征值为 , 为任一多项式,则 的全体特征值为.
3.
4.已知3阶λ-矩阵A(λ)的标准形为 ,则A(λ)的不变因子________________________;3阶行列式因子D3=_______________.
4.()在线性空间R2中定义变换σ: ,则σ是R2的一个线性变换.
5.( )设V是一个欧氏空间, ,并且 ,则 与 正交。
6.()λ-矩阵A(λ)可逆的充要条件是
四.计算题(3小题,共30分)
1.已知 关于基 的坐标为(1,0,2),由基 到基 的
过渡矩阵为 ,求 关于基 的坐标.(8分)
2.设V是数域P上一个二维线性空间, 和 是V的两组基,V的线性变换 在基 下的矩阵为 ,又从基 到基 的过渡矩阵为 ,求 在基 下的矩阵.(8分)
3.
(14分)
五.证明题(每题9分,共27分)
1.设 为数域 上的n维线性空间, 为V的一组基,证明
V= L( ).
2.设 为 维欧氏空间V的一组基.证明:这组基是标准正交基的充分必要条件是,对V中任意向量 都有
3.设 都是数域 上线性空间 的线性变换,且 ,证明 和 都是 的不变子空间.
答案
幻灯片1
2.( )下列哪个条件不是n阶复系数矩阵A可对角化的充要条件
(A)A有n个线性无关的特征向量;(B)A的初等因子全是1次的;
(C)A的不变因子都没有重根;(D)A有n个不同的特征根;
3.( )设三阶方阵A的特征多项式为 ,则
(A) 1;(B) 2; (C) 3;(D)2
幻灯片3
幻灯片4
幻灯片5
幻灯片6
幻灯片7
幻灯片8
幻灯片9
幻灯片10
幻灯片11
幻灯片12
幻灯片13
幻灯片14
幻灯片15
幻灯片16
(A)k=1; (B)k=4; (C)k=3;(D)k=2
5.( )下列子集哪个不是R3的子空间
(A) (B)
(C) (D)
三.判断题(对的打”√”,错的打”X”,每小题2分,共12分)
1.()设 ,则 是V的子空间.
2.( ) 是n维欧氏空间的一组基,矩阵 ,其中 ,则A是正定矩阵.
3.( )若n维向量空间Pn含有一个非零向量,则它必含有无穷多个向量.