高三数学(文)一轮复习专题突破训练:不等式

合集下载

2021年高三数学一轮复习 专题突破训练 不等式 文

2021年高三数学一轮复习 专题突破训练 不等式 文

2021年高三数学一轮复习 专题突破训练 不等式 文一、选择题1、(xx 年高考)已知满足的约束条件当目标函数在该约束条件下取得最小值时,的最小值为(A ) (B ) (C )(D ) 2、(xx 年高考)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z xy取得最小值时,x +2y -z 的最大值为( )A .0 B.98C .2 D.943、(xx 年高考)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM|的最小值是________.4、(滨州市xx 届高三一模)在平面直角坐标系中,为不等式组,所表示的区域上的一个动点,已知点,那么的最大值为( )A .B .C .2D .5、(德州市xx 届高三一模)已知D 是不等式组所确定的平面区域,则圆与D 围成的区域面积为A 、B 、C 、D 、6、(济宁市xx 届高三一模)设变量满足约束条件的取值范围B. B.C.D.7、(莱州市xx 届高三一模)已知变量满足约束条件则的最大值为A. B.0 C.1 D. 38、(青岛市xx 届高三二模)设x ,y 满足约束条件,则下列不等式恒成立的是( )A . x≥3 B. y≥4 C. x+2y ﹣8≥0 D. 2x ﹣y+1≥09、(日照市xx 届高三一模)已知x ,y 满足的最大值是最小值的4倍,则的值是A. 4B.C.D.10、(山东省实验中学xx 届高三一模)已知x ,y 满足的最小值为A .5B .-5C .6D .-611、(潍坊市xx 届高三二模)实数满足约束条件,已知的最大值是8,最小值是-5,则实数的值是A .6B .-6C .-D .12、已知实数x ,y 满足不等式组若目标函数取得最大值时的唯一最优解是(1,3),则实数a 的取值范围为(A)a<-l (B)0<a<l (C)a ≥l (D)a>113、数满足如果目标函数的最小值为,则实数m 的值为A.5B.6C.7D.814、设的最小值是A.2B.C.4D.815、设变量满足约束条件,则的最大值为( )A .B .C .D .二、填空题1、(xx 年高考)若x,y 满足约束条件则的最大值为 .2、(菏泽市xx 届高三一模)已知满足不等式组,则的最大值与最小值的比为3、(山东省实验中学xx 届高三一模)已知a 、b ∈R +2a+b=2,则的最小值为4、(泰安市xx 届高三二模)已知a >0,x ,y 满足约束条件,若z=2x+y 的最小值为0,则a=1.5、已知O 是坐标原点,点M 的坐标为(2,1),若点N(x ,y )为平面区域上的一个动点,则的最大值是 。

2019年高考数学(文)一轮复习精品资料:专题32基本不等式(押题专练)含解析

2019年高考数学(文)一轮复习精品资料:专题32基本不等式(押题专练)含解析

2019年高考数学(文)一轮复习精品资料1.设x >0,y >0,且2x +y =6,则9x +3y有( ) A .最大值27 B .最小值27 C .最大值54 D .最小值54 【答案】D【解析】因为x >0,y >0,且2x +y =6, 所以9x+3y≥29x·3y=232x +y=236=54,当且仅当x =32,y =3时,9x +3y有最小值54。

2.已知a ,b 为正实数,函数y =2ae x+b 的图象过点(0,1),则1a +1b的最小值是( )A .3+2 2B .3-2 2C .4D .2 【答案】A【解析】因为函数y =2ae x+b 的图象过(0,1)点,所以2a +b =1,所以1a +1b =2a +b a +2a +b b =3+b a +2a b≥3+22,当且仅当b a =2a b ,即b =2a 时,取等号,所以1a +1b的最小值是3+22。

3.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A .1B .6C .9D .16 【答案】B所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6。

4.设a >1,b >0,若a +b =2,则1a -1+2b的最小值为( ) A .3+2 2 B .6 C .4 2 D .2 2 【答案】A【解析】由a +b =2可得,(a -1)+b =1。

因为a >1,b >0,所以1a -1+2b =⎝ ⎛⎭⎪⎫1a -1+2b (a -1+b )=b a -1+a -b+3≥22+3。

当且仅当ba -1=a -b,即a =2,b =2-2时取等号。

5.已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.94D.256 【答案】A6.已知x >0,y >0,则“xy =1”是“x +y ≥2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】若xy =1,由基本不等式,知x +y ≥2xy =2;反之,取x =3,y =1,则满足x +y ≥2,但xy =3≠1,所以“xy =1”是“x +y ≥2”的充分不必要条件.故选A.7.当x >0时,函数f (x )=2xx 2+1有( ) A .最小值1 B .最大值1 C .最小值2 D .最大值2【答案】B【解析】∵x >0,∴f (x )=2x +1x≤1.故选B. 8.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .4 【答案】C【解析】由ab =1a +2b ≥22ab,得ab ≥22,当且仅当1a =2b时取“=”.选C.9. -a a +(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.322【答案】B【解析】因为-6≤a ≤3,所以3-a ≥0,a +6≥0.由基本不等式,可知-aa +≤-a +a +2=92,当且仅当a =-32时等号成立. 10.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【答案】A11.设x >0,y >0,且x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4 D .2 【答案】D【解析】∵x +4y =40,且x >0,y >0,∴x +4y ≥2x ·4y =4xy (当且仅当x =4y 时取“=”), ∴4xy ≤40.∴xy ≤100.∴lg x +lg y =lg (xy )≤lg 100=2. ∴lg x +lg y 的最大值为2.12.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8 【答案】B13.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞) 【答案】B【解析】∵x >0,y >0,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =2+4x y +y 4x ≥4,∴⎝ ⎛⎭⎪⎫x +y 4min =4,∴m 2-3m >4,解得m <-1或m >4.选B.14.设a >0,b >1,若a +b =2,则2a +1b -1的最小值为( )A .3+2 2B .6C .4 2D .2 2【答案】A【解析】由题可知a +b =2,a +b -1=1,∴2a +1b -1=⎝ ⎛⎭⎪⎫2a +1b -1(a +b -1)=2+b -a+ab -1+1≥3+22,当且仅当b -a=ab -1,即a =2-2,b =2时等号成立.故选A.15.函数y =2x +1x -1(x >1)的最小值为________. 【答案】22+2 【解析】因为y =2x +1x -1(x >1),所以y =2x +1x -1=2(x -1)+1x -1+2≥2+22x -1x -1=22+2. 当且仅当x =1+22时取等号,故函数y =2x +1x -1(x >1)的最小值为22+2. 16.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 【答案】5是5.17.正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞) B.(-∞,3] C .(-∞,6] D .[6,+∞) 【答案】D【解析】因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥10+29=16,由题意,得16≥-x 2+4x +18-m , 即x 2-4x -2≥-m 对任意实数x 恒成立, 而x 2-4x -2=(x -2)2-6, 所以x 2-4x -2的最小值为-6, 所以-6≥-m ,即m ≥6。

高考数学一轮复习专题训练—含有ex与ln x的组合函数或不等式问题

高考数学一轮复习专题训练—含有ex与ln x的组合函数或不等式问题

微课3 含有e x 与ln x 的组合函数或不等式问题题型一 分离e x 和ln x【例1】已知函数f (x )=e x 2-x ln x .证明:当x >0时,f (x )<x e x +1e .证明 要证f (x )<x e x +1e,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x .令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0, 所以ln x +1e x≥0.再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, 则φ(x )max =φ(1)=0,所以e x -e x ≤0. 因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x,故原不等式成立.感悟升华 1.若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.2.本题中变形后再隔离分析构造函数,原不等式化为ln x +1e x >e x -e x (x >0)(分离ln x 与e x ),便于探求构造的函数h (x )=ln x +1e x 和φ(x )=e x -e x 的单调性,分别求出h (x )的最小值与φ(x )的最大值,借助“中间媒介”证明不等式.【训练1】已知函数f (x )=1+ln x x ,证明:当x >1时,不等式f (x )e +1>2e x -1(x +1)(x e x +1)成立.证明 将不等式f (x )e +1>2e x -1(x +1)(x e x +1)变形为1e +1·(x +1)(ln x +1)x >2e x -1x e x +1,分别构建函数g (x )=(x +1)(ln x +1)x 和函数h (x )=2e x -1x e x +1.则g ′(x )=x -ln xx 2,令φ(x )=x -ln x , 则φ′(x )=1-1x =x -1x.因为x >1,所以φ′(x )>0,所以φ(x )在(1,+∞)上是增函数,所以φ(x )>φ(1)=1>0,所以g ′(x )>0,所以g (x )在(1,+∞)上是增函数,所以x >1时,g (x )>g (1)=2,故g (x )e +1>2e +1.h ′(x )=2e x -1(1-e x )(x e x +1)2,因为x >1,所以1-e x <0,所以h ′(x )<0,所以h (x )在(1,+∞)上是减函数,所以x >1时,h (x )<h (1)=2e +1. 综上所述,g (x )e +1>h (x ),即f (x )e +1>2e x -1(x +1)(x e x +1). 题型二 借助e x ≥x +1和ln x ≤x -1(x >0)进行放缩 【例2】已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值. 解 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意. ②若a >0,由f ′(x )=1-a x =x -a x知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0; 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )≥0,故a =1. (2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0,即ln x <x -1.令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e , 又⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123=13564>2, 从而m 的最小正整数是m =3.感悟升华 1.第(1)问可借助y =x -1与y =a ln x 图象的位置关系,利用导数的几何意义求解,请读者完成.2.第(2)问利用教材习题结论x >1+ln x (x >0,且x ≠1)进行放缩,优化了解题过程.若利用e x 替换x ,可进一步得到不等式e x ≥x +1(当x ≠0时取等号). 【训练2】已知函数f (x )=e x -a .(1)若函数f (x )的图象与直线l :y =x -1相切,求a 的值; (2)若f (x )-ln x >0恒成立,求整数a 的最大值.解 (1)f ′(x )=e x ,因为函数f (x )的图象与直线y =x -1相切,所以令f ′(x )=1,即e x =1,得x =0,∴切点坐标为(0,-1),则f (0)=1-a =-1,∴a =2. (2)先证明e x ≥x +1,设F (x )=e x -x -1, 则F ′(x )=e x -1,令F ′(x )=0,则x =0,当x ∈(0,+∞)时,F ′(x )>0;当x ∈(-∞,0)时,F ′(x )<0.所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立.∴e x ≥x +1,从而e x -2≥x -1(x =0时取等号).以ln x 代换x 得ln x ≤x -1(当x =1时,等号成立), 所以e x -2>ln x .当a ≤2时,ln x <e x -2≤e x -a , 则当a ≤2时,f (x )-ln x >0恒成立. 当a ≥3时,存在x ,使e x -a <ln x , 即e x -a >ln x 不恒成立. 综上,整数a 的最大值为2.1.(2020·重庆调研)函数f (x )=e x -1-12ax 2+(a -1)x +a 2在(-∞,+∞)上单调递增,则实数a的取值范围是( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0}答案 A解析 f ′(x )=e x -1-ax +(a -1)≥0恒成立, 即e x -1≥ax -(a -1)恒成立, 由于:e x ≥x +1,即e x -1≥x ,∴只需要x ≥ax -(a -1),即(a -1)(x -1)≤0恒成立, 所以a =1.2.已知函数f (x )=ax +ln x +1,对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围. 解 由f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立,先证明e x ≥x +1,当且仅当x =0时取等号(证明略).所以当x >0时,有x e 2x =e ln x e 2x =e ln x+2x≥ln x +2x +1,所以e 2x ≥ln x x +2+1x ,即e 2x -ln x +1x ≥2,当且仅当ln x +2x =0时取等号,所以实数a 的取值范围为(-∞,2].3.已知f (x )=e x ,g (x )=x +1(e 为自然对数的底数). (1)求证:f (x )≥g (x )恒成立;(2)设m 是正整数,对任意正整数n ,⎝⎛⎭⎫1+13⎝⎛⎭⎫1+132·…·⎝⎛⎭⎫1+13n <m ,求m 的最小值. (1)证明 令h (x )=f (x )-g (x )=e x -x -1,则h ′(x )=e x -1, 当x ∈(-∞,0)时,h ′(x )<0,当x ∈(0,+∞)时,h ′(x )>0, 故h (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 所以h (x )min =h (0)=0,即h (x )≥0恒成立, 所以f (x )≥g (x )恒成立.(2)解 由(1)可知0<1+13n ≤e 13n ,由不等式的性质得⎝⎛⎭⎫1+13⎝⎛⎭⎫1+132⎝⎛⎭⎫1+133·…·⎝⎛⎭⎫1+13n ≤e 13·e 132·e 133·…·e 13n =e 13+132+133+…+13n=e13[1-⎝ ⎛⎭⎪⎫13n]1-13=e 12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫13n <e 12=e <2.所以m 的最小值为2(m ∈N *).4.已知函数f (x )=ln x +a x ,证明:当a ≥2e 时,f (x )-e -x >0.证明 要证当a ≥2e 时,ln x +a x -e -x >0,即证ln x +a x>e -x ,∵x >0,∴即证x ln x +a >x e -x , 即证(x ln x +a )min >(x e -x )max .令h (x )=x ln x +a ,则h ′(x )=ln x +1. 当0<x <1e 时,f ′(x )<0;当x >1e时,f ′(x )>0.∴函数h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, ∴h (x )min =h ⎝⎛⎭⎫1e =-1e +a , 故当a ≥2e 时,h (x )≥-1e +a ≥1e.①令φ(x )=x e -x ,则φ′(x )=e -x -x e -x =e -x (1-x ). 当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0.∴函数φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=1e .故当x >0时,φ(x )≤1e.②显然,不等式①②中的等号不能同时成立, 故当a ≥2e 时,ln x +a x -e -x >0.5.已知函数f (x )=a ln(x -1)+2x -1,其中a 为正实数,证明:当x >2时,f (x )<e x +(a -1)x -2a . 证明 令g (x )=ln x -x +1,则g ′(x )=1x -1.所以当0<x <1时,g ′(x )>0; 当x >1时,g ′(x )<0.所以g (x )≤g (1)=0,所以ln x ≤x -1, 所以当x >2时,有ln(x -1)<x -2成立, 又因为a >0,所以要证f (x )<e x +(a -1)x -2a , 只需证a (x -2)+2x -1<e x +(a -1)x -2a ,即e x -x -2x -1>0对任意x >2恒成立.令h(x)=e x-x-2x-1,x>2,则h′(x)=e x-1+2(x-1)2,因为x>2,所以h′(x)>0恒成立,所以h(x)在(2,+∞)上单调递增,所以h(x)>h(2)=e2-4>0,所以当x>2时,f(x)<e x+(a-1)x-2a.。

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。

高考数学一轮复习专题训练—不等式恒成立或有解问题

高考数学一轮复习专题训练—不等式恒成立或有解问题

微课2 不等式恒成立或有解问题题型一 分离法求参数的取值范围【例1】(2020·全国Ⅰ卷)已知函数f (x )=e x +ax 2-x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.解 (1)当a =1时,f (x )=e x +x 2-x ,x ∈R , f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由f (x )≥12x 3+1得,e x +ax 2-x ≥12x 3+1,其中x ≥0,①当x =0时,不等式为1≥1,显然成立,此时a ∈R . ②当x >0时,分离参数a ,得a ≥-e x -12x 3-x -1x 2,记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3.令h (x )=e x -12x 2-x -1(x >0),则h ′(x )=e x -x -1,令H (x )=e x -x -1, H ′(x )=e x -1>0,故h ′(x )在(0,+∞)上是增函数,因此h ′(x )>h ′(0)=0,故函数h (x )在(0,+∞)上递增, ∴h (x )>h (0)=0,即e x -12x 2-x -1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增; 当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减. 因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎡⎭⎫7-e 24,+∞. 感悟升华 分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实数)恒成立问题中参数取值范围的基本步骤(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 【训练1】已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围. 解 (1)f (x )的定义域为(0,+∞),且f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,∴f (x )在(0, +∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ,由f ′(x )>0得x >1a ,∴f (x )在⎝⎛⎭⎫0,1a 上递减,在⎝⎛⎭⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点,当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值, ∴a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎤-∞,1-1e 2. 题型二 等价转化法求参数范围 【例2】函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值; (2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a -3x ,令g (x )=2ln x +x -a +3x,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数; 在区间(1,e]上,g ′(x )>0,函数g (x )为增函数. 由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4, 所以实数a 的取值范围是(-∞,4].感悟升华 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,如f (x )≥a 恒成立,则f (x )min ≥a ,然后利用最值确定参数满足的不等式,解不等式即得参数范围. 【训练2】已知f (x )=e x -ax 2,若f (x )≥x +(1-x ) e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].题型三 可化为不等式恒成立求参数的取值范围(含有解问题) 【例3】已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解 (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立, 即a ≥-(x +1)2+1在[1,+∞)上恒成立, 而函数y =-(x +1)2+1在[1,+∞)单调递减, 则y max =-3,所以a ≥-3,所以a 的最小值为-3. (2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2, 使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增,所以f ′(x )max =f ′(2)=8+a . 而g ′(x )=1-xe x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1, 所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,所以实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. 感悟升华 含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有: (1)∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min . (2)∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max . (3)∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min . (4)∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【训练3】已知函数f (x )=ax -e x (a ∈R ),g (x )=ln xx .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 解 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max . 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) + 0 - h (x )极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e .1.已知函数f (x )=ax -1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( )A.a >2B.a <3C.a ≤1D.a ≥3答案 C解析 函数f (x )的定义域是(0,+∞),不等式ax -1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解.令h (x )=x -x ln x ,则h ′(x )=-ln x . 由h ′(x )=0,得x =1.当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0. 故当x =1时,函数h (x )=x -x ln x 取得最大值1, 所以要使不等式a ≤x -x ln x 在(0,+∞)上有解, 只要a ≤h (x )max 即可,即a ≤1.2.已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A.[0,1] B.[0,2]C.[0,e]D.[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a , 所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤xln x恒成立.设g (x )=xln x (x >1),则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0, ∴g (x )min =g (e)=e ,∴a ≤e. 综上,a 的取值范围是[0,e].3.已知函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围. 解 依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx 能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e.由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e . 4.设f (x )=x e x ,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解 (1)因为F (x )=f (x )+g (x )=x e x +12x 2+x ,所以F ′(x )=(x +1)(e x +1), 令F ′(x )>0,解得x >-1, 令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立, 所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x -12x 2-x ,x ∈[-1,+∞),即只需h (x )在[-1,+∞)上单调递增即可.故h ′(x )=(x +1)(m e x -1)≥0在[-1,+∞)上恒成立,故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞). 5.已知函数f (x )=m e x -x 2.(1)若m =1,求曲线y =f (x )在(0,f (0))处的切线方程;(2)若关于x 的不等式f (x )≥x (4-m e x )在[0,+∞)上恒成立,求实数m 的取值范围.解 (1)当m =1时,f (x )=e x -x 2,则f ′(x )=e x -2x . 所以f (0)=1,且斜率k =f ′(0)=1.故所求切线方程为y -1=x ,即x -y +1=0. (2)由m e x -x 2≥x (4-m e x )得m e x (x +1)≥x 2+4x . 故问题转化为当x ≥0时,m ≥⎝ ⎛⎭⎪⎫x 2+4x e x (x +1)max . 令g (x )=x 2+4xe x (x +1),x ≥0,则g ′(x )=-(x +2)(x 2+2x -2)(x +1)2e x .由g ′(x )=0及x ≥0,得x =3-1.当x ∈(0,3-1)时,g ′(x )>0,g (x )单调递增; 当x ∈(3-1,+∞)时,g ′(x )<0,g (x )单调递减. 所以当x =3-1时,g (x )max =g (3-1)=2e 1-3.所以m ≥2e 1-3.即实数m 的取值范围为[2e 1-3,+∞).。

数学高考一轮复习基本不等式专项练习(带解析)

数学高考一轮复习基本不等式专项练习(带解析)

数学高考一轮复习基本不等式专项练习(带解析)学习数学能够让我们的思维更清晰,我们在摸索和解决问题的时候,条理更清晰。

小编预备了差不多不等式专项练习,期望你喜爱。

1.若xy0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y差不多上正整数,则xy的最大值是()A.400B.100C.40D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x0时,求f(x)的最小值;(2)当x0 时,求f(x)的最大值.解:(1)∵x0,12x,4x0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x0时,f(x)的最小值为83.(2)∵x0,-x0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x0时,f(x)的最大值为-83.一、选择题1.下列各式,能用差不多不等式直截了当求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba②∵x,y(0,+),lgx+lgy2lgx③∵aR,a0,4a+a 24a④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从差不多不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合差不多不等式的条件,故①的推导过程正确;②尽管x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合差不多不等式的条件,4a+a24aa=4是错误的;④由xy0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合差不多不等式的条件,故④正确.5.已知a0,b0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x0,y0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2021年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x0,y0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x1)的最值.解:(1)∵x-1,x+10.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x1,x-10.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b-1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建筑单价为每米400元,中间一条隔壁建筑单价为每米100元,池底建筑单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120211600x225x+12021=36000(元)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

高中数学一轮复习考点专题训练:专题35 基本不等式(解析版)

高中数学一轮复习考点专题训练:专题35 基本不等式(解析版)

高考数学一轮考点扫描专题35 基本不等式一、【知识精讲】 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[微点提醒]1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. 3.21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).二、【典例精练】考点一 利用基本不等式求最值 角度1 通过配凑法求最值 【例1-1】设a >b >0,则a 2+1ab +1aa -b 的最小值是( ) A .1 B .2 C .3D .4【答案】D 【解析】 a 2+1ab +1aa -b =(a 2-ab )+1a 2-ab +1ab+ab ≥2a 2-ab ·1a 2-ab+21ab×ab =4,当且仅当a 2-ab =1a 2-ab 且1ab=ab , 即a =2,b =22时取等号,故选D. 角度2 通过常数代换法求最值【例1-2】已知x >0,y >0,且x +2y =xy ,则x +y 的最小值为________. 【答案】3+2 2【解析】由x >0,y >0,x +2y =xy ,得2x +1y=1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫2x +1y=3+2y x +xy ≥3+2 2.当且仅当x =2y 时取等号.【解法小结】 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值. 考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【解析】 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 【解法小结】 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解. 考点三 基本不等式的综合应用【例3】 (1) (2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. (2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】 (1)8 (2)9【解析】(1) ∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+4a b +b a≥4+24a b ·ba=8,当且仅当b a =4ab,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.(2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c=5+c a +4a c≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0,∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 【解法小结】 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是: 1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题. 三、【名校新题】1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R,故必要性不成立.2.(2019·玉溪一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0【答案】D【解析】 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.3.(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( )A.2B.12C.4D.14【答案B【解析】】因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2, ∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 4.(2019·长春质量监测)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16【答案】B【解析】 由4x +y =xy 得4y +1x=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx +1+4≥24+5=9,当且仅当4x y=yx,即x =3,y =6时取“=”,故选B. 5.(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则ac b2的最大值为( ) A .8 B .2 C .18 D .16【答案】 C【解析】 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac4a 2+4ac +c2=14a c +ca+4≤124a c ·c a+4=18,当且仅当c =2a >0时等号成立.故选C. 6.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2 B.2 2C.4D.4 2【答案】B【解析】由题意知∠APB =90°,∴|PA |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号), ∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.7.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)【答案】D【解析】 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥16,当且仅当b a =9ab,即a =4,b =12时取等号. 依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6.8.(2019·山西模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4 C .6 D .8【答案】 B【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9,∴(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2≥9.∴a ≥4.故选B.9. (2019·厦门模拟)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)【答案】B【解析】由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x+23x .又3x +23x ≥22(当且仅当3x=23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.10.(2019·上海模拟)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16【答案】 D 【解析】32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.11.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +bc 的最小值为( )A.2B.2+ 2C.4D.2+2 2【答案】D【解析】 因为△ABC 的面积为1,内切圆半径也为1, 所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b +a +b c≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立, 所以4a +b +a +bc的最小值为2+2 2. 12.(2019·绵阳诊断)若θ∈⎝ ⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( ) A .[6,+∞) B .[10,+∞) C .[12,+∞) D .[16,+∞)【答案】 D【解析】 ∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D.13. (2019·合肥调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________. 【答案】8【解析】 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3.于是有2ab +3=35,ab =16.所以a +b ≥2ab =8,当且仅当a =b =4时等号成立, 所以(a +b )min =8.14. (2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.【答案】92【解析】 y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92. 15.(2019·潍坊调研)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n为正数,则1m +1n的最小值为________.【答案】4【解析】∵曲线y =a 1-x恒过定点A ,x =1时,y =1,∴A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0), 可得m +n =1,∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·mn=4, 当且仅当n m =m n 且m +n =1(m >0,n >0),即m =n =12时,取得等号.16.(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________. 【答案】3【解析】∵a 3=7,a 9=19, ∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1, ∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3, 当且仅当n =2时取等号.故S n +10a n +1的最小值为3. 17.(2019·孝感模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎪⎨⎪⎧175x 2-130x +4 900,x ∈[50,80,12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少? 【解析】(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675],所以当x =65时,y 取得最小值,最小值为175×675=9.当x ∈[80,120]时,函数y =12-x 60单调递减,故当x =120时,y 取得最小值,最小值为12-12060=10.因为9<10,所以当x =65,即该型号汽车的速度为65 km/h 时,可使得每小时耗油量最少. (2)设总耗油量为l L ,由题意可知l =y ·120x,①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4 900x -130≥85⎝⎛⎭⎪⎫2 x ×4 900x-130=16,当且仅当x =4 900x,即x =70时,l 取得最小值,最小值为16;②当x ∈[80,120]时,l =y ·120x =1 440x-2为减函数,所以当x =120时,l 取得最小值,最小值为10.因为10<16,所以当速度为120 km/h 时,总耗油量最少.18. (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案? 【解析】 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元, ∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝ ⎛⎭⎪⎫81n +n ≤30-281n ·n =12(当且仅当81n=n ,即 n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.。

高三数学 第一轮复习 04:基本不等式

高三数学 第一轮复习 04:基本不等式

高中数学第一轮复习04基本不等式·知识梳理·模块01:平均值不等式一、平均值不等式有关概念1、通常我们称a b+2为正数a b 、a b 、的几何平均值。

2、定理:两个正数的算术平均数大于等于它们的几何平均值,即对于任意的正数b a 、,有2a b+≥,且等号当且仅当a b =时成立.3、定理:对于任意的实数b a 、,有2()2a b ab +≥,且等号当且仅当b a =时成立。

即对任意的实数b a 、,有222a b ab +≥,且等号当且仅当b a =时成立。

[注意事项]:222a b ab +≥和2a b+≥两者的异同:(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等号的条件在形式上是相同的,都是“当且仅当a b =时取等号”;(3)222a b ab +≥可以变形为:222a b ab +≤;2a b +≥可以变形为:2(2a b ab +≤。

4、平均值不等式的几何证明法:如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =.这个圆的半径为2b a +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等号成立.[知识拓展]1、当0a b <≤时,2112a ba b a b+≤≤≤+(调和平均值≤几何平均值≤算术平均值≤平方平均值)2、123,,,,n a a a a 是n 个正数,则12na a a n+++ 称为这n个正数的算术平均数,称为这n 个正数的几何平均数,它们的关系是:12n a a a n+++≥ ,当且仅当12n a a a ===时等号成立.二、利用基本不等式求最值问题(1)“积定和最小”:a b +≥⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值;(2)“和定积最大”:2(2a b ab +≤⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S .[注意事项]:基本不等式求最值需注意的问题:(1)各数(或式)均为正;(2)和或积为定值;(3)等号能否成立,即“一正、二定、三相等”这三个条件缺一不可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学文一轮复习专题突破训练不等式一、填空、选择题1、(2016年全国I 卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.2、(2016年全国II 卷)若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为__________3、(2015年全国I 卷)若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .4、(福建省2016届高三4月质检)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥++≥+≥+-,02,02,02y x y y x 则()()2232+++y x 的最小值为A.1B.29C.5D.9 5、(福州市2016届高三5月综合质量检测)若,x y 满足约束条件10,20,220,x x y x y +⎧⎪-+⎨⎪++⎩………则2x y -的最大值等于 .6、(福州一中、福州三中、福安二中2016届高三下学期模拟联考)若实数y x ,满足⎪⎩⎪⎨⎧≤+≤≥12y x x y x y ,若my x z +=的最大值为35,则实数=m ______. 7、(龙岩市2016届高三3月质量检查)设x 、y 满足约束条件220326000x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩, ,若目标函数z ax by =+(0,0)a b >>的最大值为12,则22a b +的最小值为A .254B .499C .14425D .225498、(南平市2016届高三3月质量检查)若x ,y 满足约束条件⎪⎩⎪⎨⎧--+,,,2142x y x y x 则y x z +=的最小值为 (A )1 (B )-5 (C )3 (D )-19、(泉州市2016届高三第二次(5月)质量检查)已知变量,x y 满足03030x x y x y ≤≤⎧⎪+≥⎨⎪-+≥⎩,则23x x y=-的最大值为 .10、(泉州市2016届高中毕业班3月质量检查)设x ,y 满足,632⎪⎩⎪⎨⎧-≥≥+≤x y y x x y 则y x z +=2的最小值为 .11、(泉州五校2016届高三12月联考)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为_______12、(三明市2016届普通高中毕业班5月质量检查)已知实数y x ,满足20,1,1,x y x y x y +≥⎧⎪+≤⎨⎪-≤⎩则目标函数2z x y =+的取值范围是 .13、(厦门市2016届高三第二次(5月)质量检查)若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤03y 07-202--y x y x ,则1z +=x y的最大值为( ) A . 23 B . 1 C . 21 D . 14514、(厦门双十中学2016届高三下学期热身考)设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥≤≥,则目标 函数z =2+x y的最大值为( ) A .21 B .32 C .75D .不存在15、(漳州市2016届高三下学期普通毕业班第二次模拟)设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =(A )32(B )32-(C )14(D )14-16、(莆田市2016高中毕业班3月质量检测)若变量x ,y ,满足约束条件10210,30x x y x y -≥⎧⎪--≤⎨⎪+-≤⎩则z=x -y 的最小值为__ .17、(2016年全国III 卷)若,x y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则235z x y =+-的最大值为_____________.18、(2016年北京高考)函数()(2)1xf x x x =≥-的最大值为_________. 19、(2016江苏省高考) 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .20、(2016江苏省高考)函数y =232x x --的定义域是 ▲ .二、解答题1、某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y 表示生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.2、第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x 台,需另投入成本为()C x 万元.若年产量不足80台时,()21402C x x x =+(万元);若年产量不小于80台时, ()81001012180C x x x=+-(万元).每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?参考答案 一、填空、选择题 1、【答案】216000【解析】设生产A 产品x 件,B 产品y 件,生产产品A 、产品B 的利润之和为z 元,依题意有**1.50.51500.3905360000x y x y x y x y x y ⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩N N≤≤≤≥≥ 目标函数2100900z x y =+.作出二元一次不等式组表示的平面区域即可行域(如图).将2100900z x y =+变形,得73900zy x =-+,平行直线73y x =-,当直线73900zy x =-+经过点M 时,z 取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 2、【答案】5- 【解析】试题分析:由1030x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,点()1,2A ,由1030x y x -+=⎧⎨-=⎩得34x y =⎧⎨=⎩,点()3,4B ,由3030x x y -=⎧⎨+-=⎩得30x y =⎧⎨=⎩,点()C 3,0,分别将A ,B ,C 代入2z x y =-得:1223z A =-⨯=-,3245z B =-⨯=-,C 3203z =-⨯=,所以2z x y =-的最小值为5-.3、【答案】4 【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.4、B5、32-6、【答案】2【解析】画出不等式组对应的平面区域如图所示,1211(,),(,).3322A B由11z x my y x z m m =+=-+得,平移直线,若在12(,)33A 点取到最大值,得12511,2-1,3332m m m +===->-得,此时斜率 符合题意。

若在11(,)22B 处取到最大值,得1157,2233m m +==得,13-1, 2.7A m m =->-∴=此时斜率应在直线经过点处时取到最值.不符合题意,舍去.7、C 8、B 9、15 10、3 11、7 12、[1,3]- 13、A14、C 【解析】2+x y 即为区域中的点()y x ,和点()0,2-M 连续的斜率,⎪⎭⎫⎝⎛25,23A ,()2,1B ,()2,2C ,可得21,32,75===MC MB MA k k k ,故选C15、答案:C解析:作出不等式组表示的平面区域,即可行域(如图所示).解方程组⎩⎪⎨⎪⎧y -x =1,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.,即A(1,2),解方程组⎩⎪⎨⎪⎧y =m ,y -x =1,得⎩⎪⎨⎪⎧x =m -1,y =m .,即B(m -1,m ),由目标函数为z =x +3y ,作出直线y =-13x +13z ,可知直线经过点A 时,z 取得最大值,z max=1+3×2=7;直线经过点B 时,z 取得最小值,z min =m -1+3m ,则7-(4m -1)=7,解得m =14,故选C .16、-1 17、10-18、2 19、4[,13]520、[]3,1-二、解答题1、(Ⅰ)解:由已知y x ,满足的数学关系式为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+003001033605820054y x y x y x y x ,该二元一次不等式组所表示的区域为图1中的阴影部分.(1)3x+10y=3004x+5y=2008x+5y=3601010yxO(Ⅱ)解:设利润为z 万元,则目标函数y x z 32+=,这是斜率为32-,随z 变化的一族平行直线.3z 为直线在y 轴上的截距,当3z取最大值时,z 的值最大.又因为y x ,满足约束条件,所以由图2可知,当直线y x z 32+=经过可行域中的点M 时,截距3z的值最大,即z 的值最大.解方程组⎩⎨⎧=+=+30010320054y x y x 得点M 的坐标为)24,20(M ,所以112243202max =⨯+⨯=z .答:生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元.2、。

相关文档
最新文档