3条件概率

合集下载

第3节条件概率讲解

第3节条件概率讲解
第 3 节.条件概率
本节重点是条件概率定义及计算,有些事件虽然它的概率不 易直接计算,但容易求出它在各种情况下条件概率,于是设法由这 事件的诸条件概率求这事件概率.
一. 条件概率: 引例 1(古典概型分析):
投掷一枚骰子,设 A={出奇数点},B={出质数点},求 PB, PB | A.
解: 1,2,3,4,5,6, B 2,3,5, A 1,3,5
所以 P A P A1 P A2 | A1
P An | A1A2
An1
1 2
2 3
n 1.
n 1 n 1
2.全概率公式(将无条件概率条件化) 定理:设 B1, B2, Bn 是样本空间 的一个划分
(即 BiBj (i j),i, j 1,
P
i1
Bi
|
A
i1
P Bi
|
A.
其它性质仍满足如:
P | A 0;
PB | A 1 PB | A;
P B1 B2 | A PB1 | A PB2 | A PB1B2 | A等.
例:有 100 张彩票,其中有 3 张可中奖,有两人各买一张 (1) 已知第一人中奖,求第二人中奖的概率; (2) 不知第一人是否中奖,分别求第一人与第二人中奖的概率.
P A1 P H1 P A1 | H1 PH2 P A1 | H2
1 40 1 30 7 2 50 2 50 10
P A1A2 P H1 P A1A2 | H1 P H2 P A1A2 | H2
P
A1A2 | H1
40 10 A520
8 49
P
A1A2 | H2
P B 3 1 , P B | A nAB 2
62
nA 3

第3次课--条件概率全概率公式

第3次课--条件概率全概率公式
解: 设 A 表示“患有癌症”, A 表示“没有癌症”,B表示“实
验反应为阳性”,则由条件得
概率论与数理统计
2013
练习:某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为 是次品的概率为0.02,一个次品被认为是合格品的概率为0.05,求在被检 查后认为是合格品产品确是合格品的概率. 解:设A={产品确为合格品} , B={产品被认为是合格品}
分析:如果设事件A为“第一次取到正品”,事件B为“第二次取 到正品”,则问题转化为求条件概率P(B|A).
〖解〗:由条件可得:
P(A) 3 4 12 , P(AB) 3 2 6 ,
5 4 20
5 4 20
故有
P(B | A) P(AB) 1 . P(A) 2
概率论与数理统计
3
2013
【例2】 : 某地某天下雪的概率为0.3,下雨的概率为 0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率; (2)这天下雨或下雪的概率.
解 :设A={下雨},B={下雪}.
(1) P(B | A) P( AB) 0.1 0.2
P( A) 0.5
(2)P(A B) P(A) P(B) P(AB) 0.3 0.5 0.1 0.7
概率论与数理统计
2013
二、条件概率的性质
1、条件概率也是概率.因而也满足概率的三条公 理及其各个性质。
P(A|B)
Байду номын сангаас
概率论与数理统计
2013
显然,P(A|B)≠P(A)=1/2。
此外,在样本空间 中易计算得:P(B)=3/4,P(AB)=
1/4,且有
P(A | B) P(AB) . P(B)

概率1-3条件概率与乘法公式

概率1-3条件概率与乘法公式

解 设B1 , B2 分别表示“利率下调”和“利率不变”
这两个事件, A表示“该支股票上涨”,B1 , B2 是导致A发生的原因,且
B1 B2
B1 B2
故由全概率公式
P( A) P( A B1 ) P( B1 ) P( A B2 ) P( B2 ) 80% 80% 40% 40% 64%
于是
P( A) 1 P( A) 0.2304
三、全概率公式与贝叶斯公式
下面用概率的有限可加性及条件概率的定义和乘法 定理建立两个计算概率的公式。先引入一个例子 例7 某工厂的两个车间生产同型号的家用电器。据 以往经验,第1车间的次品率为0.15,第2车间的次品 率为0.12。两个车间生产的成品混合堆放在一个仓库 里且无区分标志,假设第1、2车间生产的成品比例为 2:3。 (1)在仓库中随机地取一件成品,求它是次品的概率 (2)在仓库中随机地取一只成品,若已知取到的是次 品,问该此次品分别是由第1、2车间生产的概率为多 少?
A为E的事件, B1 , B2 ,, Bn 是的一个划分,
P( Bi ) 0
( i 1, 2, , n )
且P( Bi ) 0,(i 1,2,, n)。

P( A) P( A B1 ) P( B1 ) P( A Bn ) P( Bn ) P( A Bi ) P( Bi )
(1)由全概率公式
4 12 a P( A) P( A Bi ) P( Bi ) 0.8 1 0.1 +0.1 0.94 5 19 i 0
这好象给了我们一个“情报”,使我们 得以在某个缩小了的范围内来考虑问题.
2. 条件概率的定义 设A、B是两个事件,且P(B)>0,则称 P ( AB) (1) P ( A | B) P ( B)

概率论3

概率论3

P AB PB | AP A
5.3
例3 已知 P( A) 0.5, P( B) 0.6, P( B / A) 0.8.
求 P( AB)与P( A B )
例4 设袋中有r只红求,t只白球.每次自袋中任 取一只球,观察其颜色然后放回,并再放入a只 与所取出的那只球同色的球.若在袋中连续取 球四次,试求第一、二次取到红球且求第三、 四次取到白球的概率.
PBi | A PA | Bi PBi
j j
5.6
5 .7
PA | B PB
j 1
n
i 1,2,,n
P A P A | B 1 P B 1 P A | B 2 P B 2 P A | B n P B n
P( A) P( B) P( A / B) P( B ) P( A / B )
例1 某电子设备制造厂所用的元件是由三家元件 制造厂提供的.根据以往的记录有以下数据:
元件制造厂 1 2 3 次品率 0.02 0.01 0.03 提供元件的份额 0.15 0.80 0.05
设这三家工厂的产品在仓库中是均匀混合的, 且无区别的标志.(1)在仓库中随机地取一只元件, 求它是次品的概率;(2)在仓库中随机地取一只元件, 若已知取到的是次品,分析此次品出自何厂,需求出 由三家工厂生产的概率分别是多少.试求这些概率.
二 乘法定理
乘法定理 其意义是… (5.3)式容易推广到多个事件的情况.
P A1 A2 An PAn A1 A2 An 1 PAn 1 A1 A2 An 2 PA2 A1 P A1 其 中 P A1 A2 An 1 0
设P(A)>0,则有
注 对 任 一 事 件 A, A与 A 构 成 样 本 空 间 Ω 的一个分划。

3条件概率

3条件概率

例1、某厂生产的灯泡能用1000小时的概率为
0.8,
能用1500小时的概率为0.4 , 求已用1000小
时的灯泡能用到1500小时的概率. 例2、某批产品中,甲厂生产的产品占60%,已 知甲厂的产品的次品率为10%,从这批产品中随意的 抽取一件,求该产品是甲厂生产的次品的概率。
例3、从混有5张假钞的20张百元钞票中任意抽
出2张, 将其中1张放到验钞机上检验发现是假钞.
求2 张都是假钞的概率.
解: 令 A 表示“抽到2 张都是假钞”. B A B表示“2 张中至少有1张假钞” 则所求概率是 P ( A B ) (而不是 P ( A) ).
所以 P A B P( AB) / P( B)

P AB P(A) C / C 2 1 PB (C 5 C 5C ) / C
2、B1 , B2 ,, Bn 两两互斥;
3、 Bi S
i 1
n
B1
B5
则称事件组 B1 , B2 , , Bn为
基本空间的一个分割.也称
完备事件组。
B2 B3
B4
定理 设 B1 , B2 , , Bn 是基本空间S 的一个分割, 则对 S 中任一事件 A,有
P( A) P( A Bi ) P( Bi )
例5 设每个人的血清中含肝炎病毒的概率为0.4%, 求来自不同地区的100个人的血清混合液中含有肝 炎病毒的概率.
1 (1 0.004)100 0.33
8.4 Bernoulli概型
随机实验E只有两个可能结果: 及A,则称E为贝 A
努里试验。设 P( A) p(0 p 1) ,将E独立重复地进 行n次,称这一串重复的独立试验为n重贝努里试验. 贝努里公式

概率论1-3

概率论1-3
9 8 1 1 1 10 9 2 10
注:抽签模型抽中签的概率与次序无关
6
三、全概率公式和贝叶斯公式
B1 , B2 ,, Bn 为E的一组 定义:设S为E的样本空间,
事件,若
⑴ Bi Bj
i j i, j 1, 2,, n
⑵ B1 B2 Bn S
P( AB) 0 P( A1 A2 An ) P( A1 ) P( A2 | A1 )P( An | A1 A2 An1 )
当 当
P( A1 A2 An1 ) 0
5
乘法定理给出了事件乘积的概率与条件概率间的关系
例题:一袋中有10个球,其中9个是白球1个是红球。 10个人依次从袋中任意取球,求第一、第二、第十个 人取到红球的概率。 解:记第i 个人取到红球为 Ai , i 1, 2,,10
1 P( A1 A2 A2 ) 1 P( A1 )P( A2 )P( A3 ) 1 0.8 0.7 0.6 0.664
常用结论:
若A1 , A2 ,, An相互独立
P( A1 A2 An ) 1 P( A1 )P( A2 )P( An )
武汉科技大学理学院
20
P( AB) 1/ 2 2 P( B | A) P( A) 3/ 4 3
4
二、乘法定理
将条件概率的定义式变形,就成为乘法定理: 乘法定理:P( AB) P( A) P( B | A) P( B) P( A | B) 当
P( A) 0
P( B) 0
推广: P( ABC ) P( A) P( B | A) P(C | AB)
则称B1 , B2 ,, Bn来自S的一个划分。71.全概率公式:

北师大版高中数学选修2-3课件2.3条件概率与独立事件

北师大版高中数学选修2-3课件2.3条件概率与独立事件
(3)甲、乙各射击 1 次,“甲、乙都射中目标”与“甲、乙都没有射中目标” 不可能同时发生,二者是互斥事件;
(4)甲、乙各射击 1 次,“至少有 1 人射中目标”与“甲射中目标,但乙没 有射中目标”可能同时发生,二者构不成互斥事件,也不可能是相互独立事 件.
弄清“互斥事件”与“相互独立事件”的区别是关键,“互斥事件”不能
§3 条件概率与独立事件
-1-
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
1.了解条件概率的概念,理解互斥事件,会用条件概率公式求解简单的实际 问题. 2.理解相互独立事件的意义,理解相互独立事件同时发生的概率乘法公式.
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
=1 4 1Fra bibliotek=12.
2
答案:A
学习目标导航 基础知识梳理 重点难点突破 典型例题剖析 随堂练习巩固
12345
2 在 10 支铅笔中,有 8 支正品,2 支次品,从中任取 2 支,则在第一次抽的
是次品的条件下,第二次抽的是正品的概率是( )
A.15
B.485
C.89
D.45
解析:记事件 A,B 分别表示“第一次、第二次抽得正品”,
【例 2】 判断下列各对事件是互斥事件还是相互独立事件. (1)运动员甲射击 1 次,“射中 9 环”与“射中 8 环”; (2)甲、乙两运动员各射击 1 次,“甲射中 10 环”与“乙射中 9 环”; (3)甲、乙两运动员各射击 1 次,“甲、乙都射中目标”与“甲、乙都没有
射中目标”; (4)甲、乙两运动员各射击 1 次,“至少有 1 人射中目标”与“甲射中目标,

P(A2)=P(������1 A2)+P(A1A2)=25

第10讲 条件概率 (III) 全概率公式 贝叶斯公式

第10讲 条件概率 (III) 全概率公式 贝叶斯公式

概率论与数理统计主讲:四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式1§1.5 条件概率四川大学第10讲条件概率(III): 全概率公式贝叶斯公式3第10讲条件概率(III)全概率公式贝叶斯公式四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式4四川大学第10讲条件概率(III): 全概率公式贝叶斯公式5在前面两讲,我们讲了条件概率和乘法公式。

现在来讲全概率公式和贝叶斯公式()()(|)P AB P A P B A =(()0)P A >(一)全概率公式四川大学第10讲条件概率(III): 全概率公式贝叶斯公式6A ()(|)B P A B1AB 2AB 3AB 4AB 5AB )B1AB2AB 3AB 4AB 5AB四川大学第10讲条件概率(III): 全概率公式贝叶斯公式11全概率公式的意义事件A 的发生有各种可能的原因B i (i =1,…,n )。

如果A 是由原因B i 引起,则A 发生的概率为()()(|)i i i P AB P B P A B 每一个原因都可能导致A 发生,故A 发生的概率是全部原因引起A 发生的概率的总和,即为全概率公式。

由此可以形象地把全概率公式看成是“由原因推结果”的公式,每个原因对结果的发生有一定的作用,结果发生的可能性与各种原因的作用大小有关,全概率公式就表达了它们之间的关系。

四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式12在很多实际问题中,P (A )不容易直接求得,但却容易找到S 的一个划分B 1, B 2,…, B n ,且P (B i )和P (A |B i )容易求得,那么就可以用全概率公式求出P (A )。

使用全概率公式的关键是作出S 的一个划分。

何时用全概率公式求A 的概率?四川大学1()()(|)ni i i P A P B P A B ==∑四川大学第10讲条件概率(III): 全概率公式贝叶斯公式16例2 有12个足球都是新球,每次比赛时取出3个,比赛后又放回去,求第三次比赛时取到的3 个足球都是新球的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别:+B A P(A +B) P(A) P(B) ; 5. P(A +B) P(A) P(B) P(AB)
1.4 条件概率
全概率公式与贝叶斯公式
一、条件概率与乘法公式 二、全概率公式与贝叶斯公式 三、小结
一、条件概率
1. 定义1.8
设 A, B 是 两 个 事 件,且 P(B) 0, 称 P( A | B) P( AB) P(B)
(5)可加可列性: 设 A1, A2 ,,是两两不相容的事 件,则有
P
Ai
i1
B
P(Ai
i1
B).
例1 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
解: 设A={掷出点数之和不小于10}
B={第一颗掷出6点}
解:
应用定义
P( A | B) P( AB) 3 36 1 P(B) 6 36 2
则有
P(B A) P( AB) . P( A)
因为 P( A) 0.8, P(B) 0.4, P( AB) P(B),
所以 P(B A) P( AB) 0.4 1 . P( A) 0.8 2
3. 乘法定理
设 P( A) 0, 则有 P( AB) P(B A)P( A). 设 A, B,C 为事件,且 P( AB) 0, 则有
54 54 5
P(A3) P(A3) P(A3(A1 A2 A1A2 A1 A2))
P( A1 A2 A3 ) P( A1 A2 A3 ) P( A1 A2 A3 )
P( A1 )P( A2 A1 )P( A3 A1 A2 ) P( A1 )P( A2 A1 )P( A3 A1 A2 )
例2 一盒子装有4 只产品,其中有3 只一等品,1只 二等品.从中取产品两次,每次任取一只,作不放回 抽样.设事件A为“第一次取到的是பைடு நூலகம்等品” ,事件 B 为“第二次取到的是一等品”,试求条件概率 P(B|A). 解 将产品编号, 1, 2, 3 为一等品 ; 4 号为二等品 .
以 (i, j) 表示第一次、 第二次分别取到第i 号、 第
AB {(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)}, 由条件概率的公式得
P(B A) P( AB) 6 12 2 . P( A) 9 12 3
例3 某种动物由出生算起活20岁以上的概率为 0.8, 活到25岁以上的概率为0.4, 如果现在有一个 20岁的这种动物, 问它能活到25岁以上的概率是 多少? 解 设 A 表示“ 能活 20 岁以上 ” 的事件; B 表 示 “ 能活 25 岁以上”的事件,
1 0 Ai Aj , i, j 1,2, , n;
20 A1 A2 An , 则称 A1, A2 , , An 为样本空间 的一个划分.
A2
A1
A3
A An1
n
2. 全概率公式
定 义 设为 试 验E的 样 本 空 间, B为E的 事 件, A1, A2 , , An为的 一 个 划 分,且P( Ai ) 0 (i 1,2, , n),则 P(B) P(B | A1)P( A1) P(B | A2 )P( A2 ) P(B | An )P( An )
P( ABC) P( A)P(B A)P(C AB).
推广 设 A1, A2, , An 为 n 个事件,n 2, 且 P( A1 A2 An1 ) 0, 则有
P(A1A2 An ) P(A1)P(A2 A1)P(A3 A1A2) P(An A1A2 An1)
抓阄是否与次序有关?
例4 五个阄, 其中两个阄内写着“有” 字, 三个阄内不写字 , 五人依次抓取, 问各人抓到“有”字阄的概率是否相 同?
P( A1 )P( A2 A1 )P( A3 A1 A2 )
231 321 322 2, 543 543 543 5
依此类推
P( A4 )
P( A5 )
2 5
.
故抓阄与次序无关.
二、全概率公式与贝叶斯公式
1. 样本空间的划分
定义 设 为试验E的样本空间, A1, A2 , , An
为 E 的一组事件,若
为 在 事 件B 发 生 的 条 件 下 事 件A发 生 的条 件 概 率.
A AB B
2. 性质
(1)有界性 : 0 P( A B) 1;
(2)规 范 性 P( B) 1, P( | B) 0
(3) P( A1 A2 B) P( A1 B) P( A2 B) P( A1A2 B); (4) P( A B) 1 P( A B).
n
P( Ai )P(B | Ai ) i 1
全概率公式
证明 B B B ( A1 A2 An )
BA1 BA2 BAn.
由 Ai Aj (BAi )( BAj )
P(B) P(BA1) P(BA2 ) P(BAn )
P(B) P(A1)P(B | A1) P(A2 )P(B | A2 )
j 号产品,则试验的样本空间为
{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4) , ,
(4,1), (4,2), (4,3)},
A {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)},
解 设 Ai 表示"第 i 人抓到有字阄"的事件,
i 1,2,3,4,5.
则有
P( A1 )
2, 5
P( A2 ) P( A2) P( A2 ( A1 A1))
P( A1A2 A1A2 ) P( A1 A2 ) P( A1 A2 ) P( A1 )P( A2 A1 ) P( A1 )P( A2 A1 ) 21 32 2,
一、什么是概率?--公理系统 二、概率怎么计算?--直接与间接
直接计算--古典概型、几何概 型间接计算--运用各种公式计算
常用公式: 1. P() 0 ; 2. AI B P(A +B) P(A) P(B) ;
3. P( A) 1 P( A) ;
4. P(A +B) P(A) P(AB) ;
相关文档
最新文档