推荐-直线与圆练习 精品

合集下载

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。

(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。

(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。

典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。

分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。

三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。

直线与圆(典型例题和练习题)

直线与圆(典型例题和练习题)

直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。

直线与圆的方程培优试题

直线与圆的方程培优试题
单击此处添加标题
已知圆 C 的方程为 x^2 + y^2 - 2x - 4y - 4 = 0,求圆 C 的圆心坐标 和半径。
直线方程的一般式和点斜式,以及它们的转换关系 圆的方程的三种形式及其特点 直线与圆的位置关系:相切、相交和相离 求解直线与圆的交点坐标
解析步骤:先确 定圆心和半径, 再利用点到直线 距离公式求出圆 心到直线的距离, 最后根据距离判 断直线与圆的位
圆的参数方程:$(x=a+rcos\theta, y=b+rsin\theta)$,其中 $ ( r, \ t h e t a ) $ 为 参 数
圆的切线方程:圆的切线方程有三种形式,分别为点斜式、斜截式和两点 式
相交:直线与圆有两个交点 相切:直线与圆有一个交点 相离:直线与圆没有交点 相交、相切、相离的判定方法
直接法:根据题意,直接列出 直线方程
点斜式:已知一点和斜率,写 出直线方程
斜截式:已知斜率和y轴截距, 写出直线方程
两点式:已知两点坐标,写出 直线方程
直接法:根据题 意,直接写出圆 的方程
待定系数法:先 假设圆的方程, 再根据条件求出 待定系数
几何法:根据题 意,利用几何性 质确定圆心和半 径,进而写出圆 的方程
XX,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 直 线 与 圆 的 基 本 概 念 03 直 线 与 圆 的 方 程 解 题 方 法 04 直 线 与 圆 的 方 程 培 优 练 习 05 直 线 与 圆 的 方 程 培 优 试 题 解 析 06 直 线 与 圆 的 方 程 培 优 试 题 总 结
置关系。
解析方法:通过 观察直线与圆的 位置关系,选择 合适的解析方法, 如代数法或几何

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

初中直线与圆的位置关系经典练习题

初中直线与圆的位置关系经典练习题

圆与直线的基本性质一、定义[例1]在ABCRt∆中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm。

[例2]在ABC∆中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?[变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交二、性质例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】A.30B.45C.60D.67.5例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80° B.110°C.120° D.140°变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC =°.1 / 4例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.2 / 4三、切线的判定定理:例1:如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=3,求AB的长.例2:如图,已知AB=AC,∠BAC=120º,在BC上取一点O,以O 为圆心OB为半径作圆,①且⊙O过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD是菱形。

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。

2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。

3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。

三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。

2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。

3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。

4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。

5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。

直线和圆的方程精选练习题

直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。

5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。

6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。

12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。

直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。

中职直线与圆练习题

中职直线与圆练习题一、选择题(每题2分,共20分)1. 直线与圆相切时,圆心到直线的距离等于:A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 圆的方程为 \( (x-3)^2 + (y-4)^2 = 16 \),圆心坐标是:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)3. 直线 \( y = 2x + 3 \) 与 \( y = -3x + 5 \) 的交点坐标是:A. (1, 5)B. (-1, 5)C. (1, -1)D. (-1, -1)4. 直线 \( x + 2y - 6 = 0 \) 与 \( 3x - 4y + 5 = 0 \) 的夹角是:A. 30°B. 45°C. 60°D. 90°5. 圆的半径为5,圆心在坐标原点,圆上一点P(x, y)到圆心的距离是:A. \( \sqrt{x^2 + y^2} \)B. \( \sqrt{(x-5)^2 + y^2} \)C. \( \sqrt{x^2 + (y-5)^2} \)D. \( \sqrt{(x+5)^2 + y^2} \)二、填空题(每题3分,共15分)6. 若直线 \( ax + by + c = 0 \) 与圆 \( x^2 + y^2 = r^2 \) 相切,则 \( a^2 + b^2 \) 等于______。

7. 圆心在(2, 3),半径为4的圆的方程是 \( (x-2)^2 + (y-3)^2 =______ \)。

8. 若直线 \( 2x - 3y + 5 = 0 \) 与圆 \( x^2 + y^2 = 9 \) 相切,则圆心(0, 0)到直线的距离是______。

9. 直线 \( 3x + 4y - 7 = 0 \) 与圆 \( x^2 + y^2 = 25 \) 相交,交点A和B的距离是______。

10. 若圆 \( (x-1)^2 + (y+2)^2 = 9 \) 与直线 \( y = x \) 相切,则切点的坐标是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直 线 与 圆 练 习
一,选择题:
1,若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )
A 、03=--y x
B 、032=-+y x
C 、01=-+y x
D 、052=--y x
2,和直线3x-4y+5=0关于x 轴对称的直线的方程是( )
A 、3x+4y-5=0
B 、3x+4y+5=0
C 、-3x+4y-5=0
D 、-3x+4y+5=0 3,圆01)4()3(22=+=-+-y x y x 关于直线对称的圆的方程是( )
A .1)4()3(22=-++y x
B .1)3()4(22=+++y x
C .1)3()4(22=-++y x
D .1)4()3(22=-+-y x
4,已知方程x 2+y 2+kx+(1-k)y+134
=0表示圆,则k 的取值范围 ( ) A k>3 B 2-≤k C -2<k<3 D k>3或k<-2
5,两定点A (-2,-1),B (2,-1),动点P 在抛物线2x y =上移动,则△
PAB 重心G 的轨迹方程是( )
A .312-=x y
B .3232-=x y
C .3222-=x y
D .4
1212-=x y 二,填空题:
6,圆O:x 2+y 2=9与圆C:x 2+y 2-2x +8y -1=0的位置关系是_ ____________ 7,圆心为C (1, 2)且与直线4x+3y-35=0相切的圆的方程是____________ 8, 过点P (1,6)与圆25)2()2(22=-++y x 相切的直线方程为____________ 92216.()34250x y x y x y ++=+若点,在直线上移动,则的最小值为 。

三,解答题:
10,已知直线1l :062=++y m x ,2l :023)2(=++-m my x m .当m 为何值时1l 与2
l (1)相交,(2)平行,(3)重合
答案:
A B B D B
6,相交;7,(x-1)2+(y-2)2=25;8,3x+4y-27=0;9,25; 10,(1)当1-≠m ,3≠,0≠时相交. (2)当1-=m ,0时21//l l .
(3)当3=m 时,1l 与2l 重合.。

相关文档
最新文档