龙门起重机结构设计(完整版)

合集下载

龙门式起重机总体结构设计及金属结构设计(有设计图纸)

龙门式起重机总体结构设计及金属结构设计(有设计图纸)

有此设计的全套文档;图纸。

联系QQ1074765680前言龙门起重机的种类很多,按龙门起重机龙门架的七部结构型式可以分为单梁龙门起重机、双梁龙门起重机和尺寸的5%时,即应更换。

检验时,将桁架臂放在一个支承点上,使起升钢丝绳放松,手推滑轮如果晃动量很大,就须拆下用尺来测量,否则加些油就可以了。

对连接顶部臂节(吊钩滑轮组)、中间臂节(伸缩缸固定)、基础臂节(与转台、变幅缸、挡绳滑轮轴)等处的销轴也要经常检查。

当其磨损量达到原尺寸的5%时,须及时更换。

检查时,也是将桁架臂放在一个支承点上,拆下一根,检查一根,再安装一根,逐根检查,直至检查完毕。

检查吊钩的标记和防脱装置是否符合要求,吊钩有无裂纹、剥裂等缺陷;吊钩断面磨损、开口度的增加量、扭转变形,是否超标;吊钩颈部及表面有无疲劳变形、裂纹及相关销轴、套磨损情况。

检查钢丝绳规格、型号与滑轮卷筒匹配是否符合设计要求。

钢丝绳固定端的压板、绳卡、契块等钢丝绳固定装置是否符合要求。

钢丝绳的磨损、断丝、扭结、压扁、弯折、断股、腐蚀等是否超标。

制动器的设置,制动器的型式是否符合设计要求,制动器的拉杆、弹簧有无疲劳变形、裂纹等缺陷;销轴、心轴、制动轮、制动摩擦片是否磨损超标,液压制动是否漏油;制动间隙调整、制动能力能否符况;减速机润滑油选择、油面高低、立式减速机润滑油泵运行,开式齿轮传动润滑等是否符合要求。

车轮的踏面、轮轴是否有疲劳裂纹现象,车轮踏面轮轴磨损是否超标。

运行中是否出现啃轨现象。

造成啃轨的原因是什么。

联轴器零件有无缺损,连接松动,运行冲击现象。

联轴器、销轴、轴销孔、缓冲橡胶圈磨损是否超标。

联轴器与被连接的两个部件是否同心。

有此设计的全套文档;图纸。

联系QQ1074765680魏喜斌:龙门式起重机总体设计及金属结构设计2。

龙门式起重机的结构及工作原理分析

龙门式起重机的结构及工作原理分析

龙门式起重机的结构及工作原理分析龙门式起重机是一种常见的起重设备,常用于工地、码头等场所进行货物的吊装和运输。

本文将从结构和工作原理两个方面进行分析。

一、结构分析1. 主要组成部分:龙门式起重机主要由龙门架、起重机梁、起重机室、起重机小车、限位和安全保护装置等几个主要部分组成。

- 龙门架:龙门架是起重机的主体结构,通常由横梁和立柱组成,它的作用是提供支撑和稳定性,承载起重机梁和小车的重量。

- 起重机梁:起重机梁位于龙门架的上方,可以沿着龙门架的纵向移动,承载起重装置进行货物的吊装。

- 起重机室:起重机室位于龙门架的一侧或两侧,供操作员对起重机进行操控和监视。

- 起重机小车:起重机小车可沿着起重机梁横向移动,携带起重装置进行货物的吊装和运输。

- 限位和安全保护装置:起重机配备限位开关、重载保护装置、位移报警装置等,用于确保起重机的操作安全和自动停止。

2. 结构特点:龙门式起重机的结构特点包括以下几点:- 高度可调节:龙门架通常由多个立柱组成,可根据实际需求进行高度调节,以适应不同场地的使用要求。

- 跨度大:龙门式起重机的纵向横梁可以根据需要进行延长,以满足大范围内的货物吊装和运输需求。

- 吊装能力强:龙门式起重机的结构稳定、吊装能力大,适用于中小型货物的吊装和运输。

二、工作原理分析龙门式起重机的工作原理主要包括起升、运行和变幅三个基本动作。

1. 起升动作:起升动作是指起重机对货物进行垂直方向的吊装和放下。

起升动作是通过起重机梁上的起重装置实现的,通过起重机梁上的卷扬机构将钢丝绳与钩子连接,通过升降钩来实现吊装和放下操作。

2. 运行动作:运行动作是指起重机沿着龙门架的纵向移动。

运行动作是由起重机小车上的驱动装置提供动力,通过驱动轮与轨道的摩擦来实现移动。

3. 变幅动作:变幅动作是指起重机梁沿着龙门架的横向移动。

变幅动作是由变幅机构提供动力,通过驱动装置使起重机梁相对于龙门架的位置发生改变,从而实现货物的横向运输。

龙门起重机设计计算(完整版)

龙门起重机设计计算(完整版)

龙门起重机设计计算」•设计条件 1. 计算风速最大工作风速:6级最大非工作风速:10级(不加锚定) 最大非工作风速:12级(加锚定) 2. 起升载荷Q=4 0 吨 3. 起升速度满载:v=1 m/min 空载:v=2 m/min 4•小车运行速度:满载:v=3 m/min 空载:v=6 m/min 5. 大车运行速度:满载:v=5 m/min 空载:v=10 m/min6. 采用双轨双轮支承型式,每侧轨距 2米7. 跨度44米,净空跨度40米。

8. 起升高度:H 上=50米,H 下=5米 二.轮压及稳定性计算 (一)载荷计算1. 起升载荷:Q=40t2. 自重载荷小车自重 G 龙门架自重 G 大车运行机构自重 G 司机室 G 电气 G 3. 载荷计算1=6.7t2=260t 3=10t 4=0.5t 5=1.5t工作风压:q i =114 N/m2q n=190 N/m 2q m=800 N/m 2(10 级)q m=1000 N/m 2(12 级)正面:Fw i=518x114N=5.91 104NFw U=518x190N=9.86 104NFw m=518x800N=41.44 104N (10级)Fw m=518x1000N=51.8 104N (12级)侧面:Fw i =4.61 104NFw n=7.68 104NFw m=32.34 104N (10 级)Fw rn =40.43 104N (12 级)二)轮压计算1. 小车位于最外端,U类风垂直于龙门吊正面吹大车,运行机构起制动,并考虑惯性力的方向与风载方向相同。

龙门吊自重:G=G1+ G2+G3+G4+G5=6.7+260+10+2=278.7t 起升载荷:Q=40t水平风载荷:Fw U=9.86t 水平风载荷对轨道面的力矩:Mw U=9.86 X44.8=441.7 tm 水平惯性力:F a=(G+Q) X a=(278.7+40) X 0.2 X 1000 = 6.37 X 10000 N =6.37 t小车对中心线的力矩:M2=(6.7+40)X 16=747.2tm最大腿压:P=0.25 max=0.25 (G+Q) + M 1/2L + M q/2K318.7 + 722.0/48 + 747.2/84水平惯性力对轨道面的力矩:总的水平力力矩:M M a = 6.37 X 44=280.3tm 1 = M a+ Mw U=722 tm=79.675+15.04+8.9 =103.6t最大工作轮压:Rn a= P max/4 =25.9t =26t(三)稳定性计算工况1:无风、静载,由于起升载荷在倾覆边内侧,故满足刀M B 0 工况2:有风、动载,刀M=0.95 (278.7+40)12-628.3=3004.9 >0工况3:突然卸载或吊具脱落,按规范不需验算工况4: 10级风袭击下的非工作状态:刀M=0.95 278.7 12 - 1.15 41.44 44=3177.2-2668.7=1080.3>0飓风袭击下:刀M=0.95 278.8 12 - 1.15 51.8 44.8=508.5>0为防止龙门吊倾覆或移动,龙门吊设置风缆。

龙门式起重机的结构设计及其应用分析

龙门式起重机的结构设计及其应用分析

龙门式起重机的结构设计及其应用分析龙门式起重机是一种常见的起重设备,广泛应用于工矿企业、港口、码头等各种场所。

它具有结构简单、稳定性好、起重能力强等特点,适用于各种吊装、装卸作业,并能满足不同场合的各种要求。

一、龙门式起重机的结构设计1. 主要结构组成龙门式起重机主要由两道立柱、横梁、螺母、螺杆、钢丝绳、卷筒、壳体和电动机等组成。

立柱是支撑起重机的重要组成部分,它承受吊臂和荷载的重量,并通过螺杆和螺母实现升降运动。

横梁用于支撑卷筒和钢丝绳,在起重操作中起到支撑和引导的作用。

卷筒则是卷绕钢丝绳的装置,通过电动机驱动实现卷绕和拉伸钢丝绳的功能。

2. 结构设计原则(1)安全性设计:龙门式起重机的设计应确保其在运行过程中能够保持稳定性和可靠性,承载能力要符合相关标准要求。

(2)高效性设计:起重机设计应尽可能降低自身重量和体积,提高起重效率和作业速度。

(3)灵活性设计:起重机设计应考虑适应不同的作业环境和场所需求,具备一定的智能化和自动化功能。

(4)经济性设计:结构设计应考虑成本压缩,选用经济可行的材料和工艺,提高设备的使用寿命。

二、龙门式起重机的应用分析1. 工矿企业在工矿企业中,龙门式起重机主要应用于吊运和装卸重物,如钢铁厂、煤矿、石化厂等。

由于其承载能力强和操作灵活性好的特点,能够满足工矿企业大型货物吊运的需求,提高生产效率和工作安全性。

2. 港口码头在港口码头的货物装卸作业中,龙门式起重机被广泛应用。

它能够高效地完成集装箱、散货等重物的装卸作业,提高港口货物处理能力和吞吐量。

此外,其具备足够的自由度和作业空间,适用于不同码头的场地布置和货物装卸需求。

3. 建筑工地在城市建设和大型工程中,龙门式起重机扮演着重要的角色。

它能够进行大型吊装作业,如钢结构的安装、混凝土构件的搬运等。

通过龙门式起重机的应用,能够提高施工效率、降低人力成本,同时也能确保施工安全。

4. 水电站和风电场在水电站和风电场的建设过程中,龙门式起重机是必不可少的设备之一。

龙门式起重机的结构设计与运行原理分析

龙门式起重机的结构设计与运行原理分析

龙门式起重机的结构设计与运行原理分析龙门式起重机是一种常用的起重设备,广泛应用于码头、工地、仓库等场所。

它以其稳定的结构和高效的工作能力,成为现代工业中重要的装卸工具。

本文将对龙门式起重机的结构设计和运行原理进行深入分析。

一、结构设计1. 主体框架:龙门式起重机的主体框架采用钢结构,包括上梁、立柱、下台架等部分。

这些部件经过合理计算和设计,以确保起重机在工作时具有足够的强度和刚性。

主体框架的结构设计对于起重机的性能和安全性至关重要。

2. 起重机机构:龙门式起重机的起重机机构包括起升机构和大车机构。

起升机构由电机、减速机、卷筒、钢丝绳等组成,用于提升和放下货物。

大车机构由电机、减速机、轨道等组成,用于在主体框架上水平移动。

这些机构的设计要考虑到起重机的额定负荷和工作速度,以确保起重机在工作时的安全和可靠性。

3. 控制系统:龙门式起重机的控制系统包括电气控制系统和液压控制系统。

电气控制系统用于控制起升机构和大车机构的动作,通过控制开关、按钮或者遥控器来实现。

液压控制系统用于控制起升机构的一些重要组件,如液压缸和阀门。

这些控制系统的设计要考虑到起重机的安全性和灵活性,以满足各种工作要求。

二、运行原理分析1. 起升原理:起升机构通过驱动电机带动减速机,使卷筒回转,从而让钢丝绳缠绕在卷筒上。

当驱动电机反向运转时,钢丝绳会缓慢放松,从而使起重物体下降。

起升机构通过提升和放下货物,实现起重的功能。

2. 移动原理:大车机构通过驱动电机带动减速机,使大车移动。

大车上的轮具在轨道上运动,从而实现起重机在主体框架上的水平移动。

大车机构通过控制电机的正反转实现前进、后退或停止。

3. 控制原理:起重机的控制系统通过传感器、开关、按钮等监测和控制起重机的动作。

当操作员按下按钮或操作遥控器时,控制系统会接收信号并执行相应的动作。

控制系统还可以设定起重机的工作速度和限位开关,以确保起重机在工作时的安全性。

综上所述,龙门式起重机的结构设计和运行原理分析包括主体框架的设计、起重机机构的设计、控制系统的设计以及起升、移动和控制的原理。

龙门式起重机结构设计与工作原理分析

龙门式起重机结构设计与工作原理分析

龙门式起重机结构设计与工作原理分析龙门式起重机是一种广泛应用在工业领域的起重设备,其结构设计与工作原理对于起重机的性能和安全性具有重要影响。

本文将就龙门式起重机的结构设计与工作原理进行分析和介绍,以便更好地理解和应用这种起重设备。

一、龙门式起重机的结构设计1. 主梁结构设计龙门式起重机的主梁是承担起重作业的重要构件,其设计需考虑起重物的负荷、工作环境和使用寿命等因素。

主梁一般由钢材制成,常见的形状有箱形、桁架形和悬臂形等。

根据不同的工况和要求,可以选择适当的主梁结构形式。

2. 起升机构设计起升机构是龙门式起重机的核心组成部分,直接用于提升和降低物体。

通常采用电动葫芦或电动绞盘作为动力源。

在设计时需要考虑起重能力、提升速度、稳定性和安全性等因素。

还需要选择合适的起重溜车和卷筒等附件,使起升机构能够满足具体工作要求。

3. 运行机构设计龙门式起重机的运行机构包括大车、小车和铁轨等组成部分。

大车负责水平移动,小车负责沿主梁竖直方向移动。

铁轨的选择和布置要考虑起重机的运行速度、平稳性和行程长度等因素。

在设计时需合理选择传动方式和支撑方式,以确保运行机构的可靠性和安全性。

4. 控制系统设计龙门式起重机的控制系统负责控制起重机的各项运动,包括起升、运行和停止等。

需要选择适合的控制设备和传感器,以实现精确的控制。

控制系统的设计要考虑到起重机的操作要求和自动化程度,确保操作简单、安全可靠。

二、龙门式起重机的工作原理分析1. 起升原理龙门式起重机的起升原理是通过起升机构提升重物。

电动葫芦或电动绞盘提供驱动力,通过钢丝绳传递动力给起重钩,使物体上升或下降。

起升机构的电机控制方向和速度,实现物体的精确起升。

2. 运行原理龙门式起重机的运行原理是通过运行机构实现起重机的运动。

大车和小车的电机提供驱动力,通过传动装置和铁轨使起重机在水平和竖直方向上运行。

运行机构的电机控制方向和速度,确保起重机的平稳和安全移动。

3. 控制原理龙门式起重机的控制原理是通过控制系统实现起重机的运动控制。

龙门式起重机主要结构设计及影响因素分析

龙门式起重机主要结构设计及影响因素分析

龙门式起重机主要结构设计及影响因素分析龙门式起重机是一种常见的起重设备,具有结构简单、工作范围大、稳定性好等优点,广泛应用于港口、工地、工厂等场所。

本文将对龙门式起重机的主要结构设计和影响因素进行分析,以便更好地理解和应用这一设备。

一、龙门式起重机的主要结构设计1. 主梁结构设计:主梁是起重机的主要承重部分,起到支撑和传递荷载的作用。

主梁的设计需要考虑起重机的最大荷载和工作范围,合理确定主梁的尺寸和形状,以确保起重机的稳定运行和安全性能。

2. 支腿结构设计:支腿是支撑龙门式起重机的重要组成部分,起到固定和平衡起重机的作用。

支腿的设计需要考虑地面情况、工作环境和承载要求,合理选择支腿的数量、尺寸和材料,以保证起重机的稳定性和工作效率。

3. 起升机构设计:起升机构是驱动起重机上下运动的装置,通常由电动机、钢丝绳和滑轮组成。

起升机构的设计需要考虑起升高度、起升速度和起升负荷等因素,合理选择电机功率、钢丝绳直径和滑轮比例,以满足起重机的不同工作需求。

4. 行走机构设计:行走机构是驱动起重机在水平方向移动的装置,通常由电动机、轨道和轮组成。

行走机构的设计需要考虑起重机的工作范围和移动速度,合理选择电机功率、轨道类型和轮的数量,以确保起重机平稳行走和灵活操作。

二、龙门式起重机主要影响因素分析1. 起重机的荷载要求:起重机的最大荷载是设计的重要参数,不同工程和工作环境对起重机的荷载要求不同。

起重机的荷载要求将直接影响到主梁、起升机构和支腿的设计,需要根据具体情况进行合理确定。

2. 工作环境:起重机的工作环境包括室内、室外、高温、低温等因素。

不同的工作环境将对起重机的结构和材料选择产生影响,需要考虑材料的耐腐蚀性、耐高温性、抗震性等因素。

3. 地面情况:起重机的工作基地地面情况也是影响结构设计的因素之一。

地面的稳定性、承载能力和坡度将直接影响到支腿的设计和选择,需要对地面情况进行合理评估和调查。

4. 安全性要求:起重机的安全性是至关重要的,结构设计需要满足安全性要求,避免任何可能的事故和损坏。

60t造船龙门起重机支腿结构设计

60t造船龙门起重机支腿结构设计
大车轮距: 35m ;
工作级别 : M5
3.1.2总图及结构图
3-1 60t龙门起重机总图
3-2 起重机结构图
3.2 主梁小车计算参数
主梁结构采用箱形双主梁结构形式,箱形桥架见简图
图3-3主梁结构形式
梁自重载荷 =1280×1.0 =1280KN材料:Q345
上小车自重:
下小车自重:
工作级别 : M5 运行速度: 39m/min
表4-2支腿平面的支腿内力计算
名称
计算剪图和内力图
支座反力V或轴力和弯矩M
A.由起升载荷 、自重载荷 、小车自重 引起的内力












名称
计算简图和内力图
支座反力V或轴力和弯矩M




B.
大车制动时产生的水平惯性力 引称
计算简图和内力图
支座反力V或轴力和弯矩M



小车在跨中时:A+B+D
M =7917KN
V=500+959.6-158.3=1301.3KN
小车在支座时:A+C+D
M =7917KN
V=500+1766.3-158.3=2108KN
M =7917KN
V =2108KN
2.工况2:大车不动,小车满载运行至跨中或支座处制动,吊重下降制动,分向垂直大车轨道。
吊具自重载荷:0.5t
水平惯性载荷
小车制动时,产生的水平载荷: =226.2KN
大车制动时,产生的水平载荷: =62.4 KN
起重机偏斜运行时对龙门结构产生的附加载荷:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙门起重机计算说明书
一龙门起重机的结构形式、有限元模型及模型信息。

该龙门起重机由万能杆、钢管以及箱形梁组成。

上部由万能杆拼成,所有万能杆由三种型号组成,分别为2N1,2N4,2N5,所有最外围的竖杆由2N1组成,其他竖杆由2N4组成,所有斜杆由2N5组成,其他杆均为2N4;龙门起重机两侧下部得支撑架由钢管组成,钢管的型号为φ219⨯6、φ83⨯5,其中斜竖的钢管为φ219X6,其他钢管为φ83X5;龙门起重机上部和下支撑架之间由箱型梁连固接而成,下支撑架最下端和箱型梁相固连。

所有箱型梁由厚为6mm的钢板焊接而成。

对龙门起重机进行建模时,所选单元类型为Link8、Pipe16、Shell63三种单元类型。

有限元单元模型见图1。

模型的基本信息见下:
关键点数 988
线数 3544
面数 162
体数 0
节点数 1060
单元数 3526
加约束的节点数 48
加约束的关键点数 0
加约束的线数 0
加约束的面数 12
加载节点数 18
加载关键点数 18
加载的单元数 0
加载的线数 0
加载的面数 0
二结构分析的建模方法和边界条件说明。

应力分析采用有限元的静力学分析原理,其建模方法采用实体建模法,采用体、面、线、点构造有限元实体。

其中所有箱形梁用面素建模,其余用线素建模,然后在实体上划分有限元网格,具体见单元图。

对于边界条件和约束条件,是在支撑架下的箱型梁的底面两端加X,Y,Z三方向的约束以模拟龙门起重机的实际情况。

载荷分布有4种情况:工作时的吊重、小车自重、风载荷、考虑两度偏摆时的水平惯性力,具体见下。

三载荷施加情况。

(1)工作时的吊重
工作时的吊重为40t,此载荷分布在小车压在轨道的4个位置,每个位置为10t。

由于小车在轨道上移动,故载荷的分布位置随小车的移动而改变,由于小车移动速度慢,我们只把吊重载荷的施加作两种情况处理:在最左端(或最右
端),以及龙门架中部位置。

(2)小车自重
小车自重为7t,和吊重载荷分布位置相同。

(3)风载荷
风载荷:Ⅱ类风载。

(4)考虑20偏摆时的水平惯性力
该水平惯性力大小为吊重乘以角度大小为20的正切值,施加位置和吊重载荷施加位置相同,方向为水平的X向和Z向。

四计算结果与说明。

对应吊重载荷的施加位置,共有两种计算情况;
(1) 小车在中间位置时:
万能杆应力分布云图如图2所示,最大应力分布云图如图3所示,钢管应力分布云图如图4示,最大应力分布云图如图5示,箱形梁应力分布云图如图6示,最大应力分布云图如图7示,X,Y,Z三方向位移分布云图如图8, 9,10示。

总计算结果见表一,表二。

由于该龙门架结构主要杆结构组成,所以要对局部受力较大的杆进行稳定性计算。

对于型号为2N1的万能杆,其应力分布见图11示,从图中可以看出最大压应力为N=77.505,2N1的万能杆的稳定系数φmin=0.6936,
N/φmin=77.505/0.6936=111.74MPa<170MPa,所以不会失稳。

对于型号为2N4的万能杆,其应力分布见图12示,从图中可以看出最大压应力为N=44.604,2N4的万能杆的稳定系数φmin=0.79,
N/φmin=44.604/0.79=56.46 MPa<170MPa,所以不会失稳。

对于型号为2N5的万能杆,其应力分布见图13示,从图中可以看出最大压应力为N=46.54,2N5的万能杆的稳定系数φmin=0.439,
N/φmin=46.54/0.439=106.01 MPa<170MPa,所以不会失稳。

对于φ219×6的钢管,其应力分布见图14示,最大压应力为N=86.888, 从图中可以看出弯曲应力为88.414,最长的φ219×6钢管的稳定系数φmin=0.856,
稳定性应力=86.888/0.856 + 88.414 –86.888
= 103.4Mpa<140MPa,所以不会失稳。

对于φ83×5的钢管,其应力分布见图15示,压应力为N=40MPa,弯曲应力为46Mpa,φ83×5钢管的稳定系数φmin=0.707,
稳定性应力=40/0.707 + 46 – 40
=62.6Mpa《140Mpa,所以不会失稳
(2) 小车在最左(或最右)位置时:
万能杆应力分布云图如图16示,最大应力分布云图如图17示,钢管应力分布云图如图18示,大应力分布云图如图19示,板应力分布云图如图20示,最大应力分布云图如图21示,X,Y,Z三方向位移分布云图如图22,23,24示。

由于该龙门架结构主要杆结构组成,所以要对局部受力较大的杆进行稳定性计算。

对于型号为2N1的万能杆,其应力分布见图25示,从图中可以看出最大压应力为N=67.208,2N1的万能杆的稳定系数φmin=0.6936,
N/φmin=67.208/0.6936=96.9 Mpa<170Mpa,所以不会失稳。

对于型号为2N4的万能杆,其应力分布见图26示,从图中可以看出最大压应力为N=52.997,2N4的万能杆的稳定系数φmin=0.79,
N/φmin=52.997/0.79=67.08 Mpa<170Mpa,所以不会失稳。

对于型号为2N5的万能杆,其应力分布见图27示,从图中可以看出最大压应力为N=54.669,2N5的万能杆的稳定系数φmin=0.439,
N/φmin=54.669/0.439=124.53 Mpa<170Mpa,所以不会失稳。

对于φ219×6的钢管,其应力分布见图14示,最大压应力为N=104.804MPa, 从图中可以看出弯曲应力为106.345MPa,φ219×6钢管的稳定系数φmin=0.856,
稳定性应力=104.804/0.856 + 106.345-104.804
= 124Mpa<140MPa,所以不会失稳。

对于φ83×5的钢管,其应力分布见图29示,压应力为N=55.137MPa,弯曲应力为59.307Mpa,φ219×6钢管的稳定系数φmin=0.707
稳定性应力=55.137/0.707 + 59.307-55.137
=82.2<140Mpa, 所以不会失稳.
图1 单元模型图图2 整机主结构应力分布图
图3 最大应力分布图图4 钢管应力分布图
图5 大钢管最大应力分布图图6 箱形梁应力分布图
图7箱形梁最大应力分布图图8 X方向位移图
图9 Y方向位移图图10 Z方向位移图
图11 2N1应力分布图图12 2N4应力分布图
图13 2N5应力分布图图14 大钢管应力分图
图15 小钢管应力分图
图16 整机主结构应力分布图
图17整机主结构最大应力分布图图18大钢管应力分布图
图19大钢管最大应力分布图图20 箱形梁应力分布图
图21箱形梁应力分布图图22 X方向位移图
图23 Y方向位移图图24 Z方向位移图
图25 2N1应力分布图图26 2N4应力分布图
图27 2N5应力分布图图28 大钢管应力分图
图29 小钢管应力分图。

相关文档
最新文档