等差、等比数列知识点总结

合集下载

等差等比数列的性质总结

等差等比数列的性质总结

等差等比数列的性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一、等差数列1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . ⑶数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

等差等比数列的性质总结

等差等比数列的性质总结

一、等差数列1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . ⑶数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

等差数列、等比数列知识点梳理

等差数列、等比数列知识点梳理

等差数列、等比数列知识点梳理等差数列和等比数列知识点梳理一、等差数列的公式和相关性质1.等差数列的定义:如果一个数列的后一项减去前一项的差为一个定值,那么这个数列就是等差数列。

记为:an-an-1=d(d为公差)(n≥2,n∈N*)。

2.等差数列通项公式:an=a1+(n-1)d,其中a1为首项,d为公差。

推广公式:an=am+(n-m)d。

变形推广:d=(an-am)/(n-m)。

3.等差中项:(1)如果a、b、A成等差数列,那么A就是a与b的等差中项,即b成等差数列,A=(a+b)/2;(2)等差中项:数列{an}是等差数列,当且仅当2an=an-1+an+1(n≥2),或2an+1=an+an+2.4.等差数列的前n项和公式:Sn=n(a1+an)/2=n^2+(a1-d)n/2=An^2+Bn(其中A、B是常数,当d≠0时,Sn是关于n的二次式且常数项为0)。

特别地,当项数为奇数2n+1时,an+1是项数为2n+1的等差数列的中间项,Sn=(2n+1)(a1+an)/2= (2n+1)an+1/2.5.等差数列的判定方法:(1)定义法:若an-an-1=d或an+1-an=d(常数n∈N*),则{an}是等差数列;(2)等差中项:数列{an}是等差数列,当且仅当2an=an-1+an+1(n≥2),或2an+1=an+an+2;(3)数列{an}是等差数列,当且仅当an=kn+b(其中k、b是常数);(4)数列{an}是等差数列,当且仅当Sn=An^2+Bn(其中A、B是常数)。

6.等差数列的证明方法:定义法:若an-an-1=d或an+1-an=d(常数n∈N*),则{an}是等差数列。

7.等差数列相关技巧:(1)等差数列的通项公式及前n项和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)设项技巧:一般可设通项an=a1+(n-1)d。

(完整版)等差等比数列知识点总结

(完整版)等差等比数列知识点总结

1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。

以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。

2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。

4. 等差中项:任意两项的算术平均值等于第三项。

5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。

等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。

2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。

3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。

4. 等比中项:任意两项的几何平均值等于第三项。

5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。

以上是关于等差数列和等比数列的主要知识点总结。

在学习这些内容时,可以通过做练习题来加深理解和巩固知识。

等差 等比知识点总结

等差 等比知识点总结

等差等比知识点总结一、等差数列1. 定义等差数列又叫等差数列,是一种特殊的数列,它的相邻两项之间的差都是相同的,这个差值称为公差。

比如一个等差数列通常的形式是a,a+d,a+2d,a+3d,…其中a是首项,d 是公差。

2. 通项公式设等差数列的首项为a,公差为d,那么它的通项公式为:an = a + (n - 1)d,其中n为数列的项数。

3. 性质① 等差数列的任意一项可以表示成它的首项和公差的线性组合;② 等差数列的前n项和为Sn = n(a + l)/2,其中l为数列的最后一项;③ 若等差数列的前n项和为Sn,则Sn+k = Sn + kn(k为常数);④ 若Tn为等差数列的前n项和,那么Sn = Tn - (n-1)d;⑤ 若Tn为等差数列的前n项和,那么T1、T2、…、Tn为等差数列;⑥ 等差数列的和与项数成正比例。

4. 应用等差数列的应用非常广泛,它可以用在数学、物理、工程学等各个领域。

在数学中,利用等差数列可以解决关于求和、求通项公式、求公差、求项数等各种问题。

在物理中,等差数列可以用来描述各种运动的位移、速度、加速度等之间的关系。

在工程学中,等差数列也可以用来描述一些周期性变化的规律。

二、等比数列1. 定义等比数列又叫等比数列,是一种特殊的数列,它的相邻两项之间的比值都是相同的,这个比值称为公比。

比如一个等比数列通常的形式是a,ar,ar²,ar³,…其中a是首项,r是公比。

2. 通项公式设等比数列的首项为a,公比为r,那么它的通项公式为:an = a * r⁽ⁿ⁻¹⁾,其中n为数列的项数。

3. 性质① 等比数列的任意一项可以表示成它的首项和公比的乘积;② 对于等比数列,前n项和的公式为Sn = a(1-rⁿ)/(1-r);③ 若Tn为等比数列的前n项和,那么Sn = Tn - a;④ 若Tn为等比数列的前n项和,那么T1、T2、…、Tn为等比数列;⑤ 等比数列的和与项数成正比例。

数列的等差数列与等比数列知识点总结

数列的等差数列与等比数列知识点总结

数列的等差数列与等比数列知识点总结数列是数学中经常出现的概念,它是按照一定规律排列的一组数的集合。

其中,等差数列和等比数列是两种常见的数列类型。

本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行总结。

一、等差数列等差数列是指数列中相邻两项之差均相等的数列。

用通项公式表示为:an = a1 + (n-1)d,其中an表示第n项,a1为首项,d为公差。

1. 等差数列的基本概念等差数列中,每一项与它的前一项的差值都相等,这个差值称为公差。

等差数列可以是正差、零差或负差的数列。

2. 等差数列的性质(1)首项和末项之和等于中间项之和的两倍:a1 + an = 2Sn,其中Sn表示前n项和。

(2)任意一项与首项之和等于任意一项与末项之和:ai + aj = a1 + an。

(3)等差数列的前n项和Sn等于首项与末项之和乘以项数的一半:Sn = (a1 + an) × n / 2。

3. 求等差数列的和求解等差数列的和可以利用求和公式Sn = (a1 + an) × n / 2,其中n 为项数。

4. 等差数列的应用等差数列在实际问题中有广泛的应用,如金融投资、房贷分期还款等均可以利用等差数列的性质进行计算。

二、等比数列等比数列是指数列中相邻两项之比均相等的数列。

用通项公式表示为:an = a1 × r^(n-1),其中an表示第n项,a1为首项,r为公比。

1. 等比数列的基本概念等比数列中,每一项与它的前一项的比值都相等,这个比值称为公比。

等比数列可以是正比、零比或负比的数列。

2. 等比数列的性质(1)相邻两项之商等于任意一项与首项之商等于任意一项与末项之商:ai/aj = a1/ai = ai/an。

(2)等比数列的前n项和Sn等于首项与末项之差除以公比减1:Sn = (a1 - an × r^n) / (1 - r)。

3. 求等比数列的和求解等比数列的和可以利用求和公式Sn = (a1 - an × r^n) / (1 - r),其中r不等于1。

等差、等比数列性质总结

等差、等比数列性质总结

等差数列性质总结1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +⇔=+≥∈212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . ⑶数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,. 7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差、等比数列知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、任意数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn二、等差数列1、等差数列及等差中项定义d a a n n =--1、211-++=n n n a a a 。

2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+=当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。

3、等差数列的前n 项和公式:2)(1n n a a n S +=d n n na S n 2)1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……仍为等差数列。

6、B A a A d Bn An S n +==+=122,,7、在等差数列}{n a 中,有关n S 的最值问题利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列1、等比数列及等比中项定义:q a a n n=-1、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n =当1≠q 时,q q a S n n --=1)1(1 qq a a S n n --=114、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ⋅=⋅5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则四、求数列}{n a 的最大的方法:1-1n n n n a a a a ≥≥+五、求数列}{n a 的最小项的方法:1-1n n n n a a a a ≤≤+例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。

例:已知数列}{n a 的通项公式为:nn n n a 10)1(9+=,求数列}{n a 的最大项。

数列求和方法总结1、公式法(1)等差数列(2)等比数列2、分组求和法类型:数列{a n }的通项公式形如a n =b n ±c n ,而{b n }是等差数列,{c n }是等比数列。

例4:计算 的值练习:求数列的前n 项和Sn : (1)(2)13(3)11111122143181223132313231323121214121412234562121,,,…,,…;,,,…,,…;,+,+,…,+++…+,….()n n n n n ++++++--3、裂项相消法 常见裂项技巧:例5、化简⎪⎩⎪⎨⎧≠--=--==11)1)1(1111q qq a a q q a q na S n n n 4)]1([...321)4(23333+=++++n n n 6)12)(1(...321)3(2222++=++++n n n n d n n na n a a S n n2)1(211-+=+=1111+3+5++(2-1)2482n n ;111)1(1)1(+-=+n n n n ;111)2(n n n n -+=++);121121(21)12)(12(1)3(+--=+-n n n n );121121(211)12)(12(11)12)(12()2()4(2+--+=+-+=+-n n n n n n n .11341231121n n ++++++++练习4、倒序相加法例5、例6、1、已知()xf x =,设123()()()()n nS f f f f n n n n=++++,求n S5、错位相减法常应用于形如{a n ·b n }的数列求和,其中{a n }为等差数列, {b n } 为等比数列.例7、练习:练习:数列}{n a 的前n 项和为n S ,11=a ,121+=+n n S a (1≥n ) (1)求数列}{n a 的通项公式n a(2)等差数列}{n b 的各项为正数,且52=b ,又11b a +,22b a +,33b a +成等比数列,求n b (3)求数列}{n n b a ⋅的前n 项和n T.)12()12(1751531311的值求+⨯-++⨯+⨯+⨯=n n S n ...332211=+=+=+---n n n a a a a a a 特点:。

89sin 88sin 3sin 2sin 1sin 22222+++++1221-328252-⋅++⨯+⨯+=n n n S )( 12)21(1-3)21(82152-⋅++⨯+⨯+=n n n S )( ;321132112111)2(n +++++++++++ 12413410474)3(-⋅+++⨯+⨯+n n )(数列通项公式方法总结1、公式法等差数列的通项公式: d n a a n )1(1-+= d m n a a m n )(-+= 等比数列的通项公式: 11-=n n q a am n m n q a a -=2、累加法例1、例2、例3、3、累乘法例4、 练习:5、取倒数))((1N n n f a a nn ∈=-+类型:n n n a a n a a 求,,11211=++=+nn n a a n a a 求,,12311=-+=+n n n n a a a a 求,,1311=+=+))((1N n n f a a n n ∈=+类型:n n n n a a a a 求,,3211==+1111,,n n n n a a a a n ++==求n n a S 求、利用411 ,=1,2n nn S n a S S n -⎧=⎨-≥⎩431,n n n S a=+例:求))(1(31*N n a S nn ∈-=练习:1nn npa a p qa +=+类型:.}{,,3,2,1,S 311S n }{)4(432n11n 的通项公式的值及数列求,,且项和为的前、数列n n n a a a a n a a a ⋯⋯===+例6、已知数列{a n }中,a 1=1, a n +1+3a n+1a n -a n =0, 求数列{a n }的通项公式.6、取对数例7、7、构造法主要用于形如a n+1=c a n +d 的已知递推关系式求通项公式。

例8、a 1=3,a n+1=2a n +3,求a n8、特征根法 形如(其中p,q 为常数)型nn n n aa a a a 求,、例,122511=+=+1p n n a Aa +=类型:n n n a a a a 求,2,131==+1111111,23(2)691,n n n n n n a a a a a a a a ++=+==+=练习:(1),求,求111,32n n n n a a a a a +==+练习:,求1122,1,n n n n a a a a +=+=求11123,1,n n n n a a a a ++=+=求{}{}{}111,,42(),1(1)2,;(2),.2n n n n n n n n n n nn a s n s a n N a b a a b a c c +++=+∈==-=(5)、数列中是它的前和并且满足设求证是等比数列设求证数列是等差数列{}{}11(6)3,2(2)..n n n n n n n a a a n s a s s n a -==⋅≥、已知数列的首项通项与前项和之间满足求数列的通项公式设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .111296,1,2,n n n n a a a a a a +-=+==例、求11121044,1,2,n n n n a a a a a a +-=-==例、求121211,()n n n n n x x a Ax Bx x a A Bn x =+=方法总结:若方程有两个根,则 若方程只有一个根,则+111228,1,2,n n n n a a a a a a +-=+==练习、求111269,1,2,n n n n aa a a a a +-=-==练习、求1.若 ,求11231{}1,23...(1)(2),__[1_.]__n n n n a a a a a a n a n a -==++++-≥=例已知数列满足则123123...(1)(2)n n a a a a n a n -=++++-≥1123223...(2)(3)n n a a a a n a n --=++++-≥11(1)(3)n n n a a n a n ---=-≥1(3)nn a n n a -=≥1 , 1 123, 22n n a nn =⎧⎪=⎨⨯⨯⨯⨯≥⎪⎩【例2】已知数列}{n a 、}{n b 满足11=a ,32=a ,)(2*1N n b b nn ∈=+,n n n a a b -=+1。

(1)求数列}{n b 的通项公式;(2)求数列{}n a 的通项公式;(3)数列}{n c 满足)1(log 2+=n n a c )(*N n ∈,求133********n n n S c c c c c c -+=+++。

【解】(1))(2*1N n b b n n ∈=+,又121312b a a =-=-=。

所以数列}{n b 是首项1b 2=,公比2=q 的等比数列。

故112n n n b b q -==。

(2)*12()n n na a n N +-=∈112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+122121122221-=--=++++=--n n n n 。

(3)n a c n n n n ==+-=+=2log )112(log )1(log 222,∴212111111()(21)(21)22121n n c c n n n n -+==--+-+∴133********n n n S c c c c c c -+=+++111111(1)23352121n n =-+-++--+11(1)22121n n n =-=++。

相关文档
最新文档