Detection of Escherichia coli O157 H7 virulence genes in isolates from

合集下载

3种大肠埃希氏菌O157:H7筛检方法的比较

3种大肠埃希氏菌O157:H7筛检方法的比较

3种大肠埃希氏菌O157:H7筛检方法的比较张婧;王利刚;张磊;费云滟;付莎莉;吴丹;陈欣;杨小珊【期刊名称】《食品研究与开发》【年(卷),期】2017(038)019【摘要】比较mini-VIDAS、膜芯片两种快速筛检方法和常规培养法,以确定两种快速筛检方法对大肠埃希氏菌O157:H7筛检的效果.以大肠埃希氏菌O157:H7为目标菌,针对3种方法设计灵敏性、特异性、抗干扰性试验和人工污染试验.结果表明,常规培养法和mini-VIDAS法的灵敏性较高,mini-VIDAS法和膜芯片法的特异性和抗干扰性较高,人工污染试验三者表现符合预期.日常检验中可采用国标法和mini-VIDAS法进行筛检工作,应急检验可使用膜芯片法缩短筛检时间,mini-VIDAS 法和膜芯片法可作为初步筛检的工具使用.【总页数】4页(P112-115)【作者】张婧;王利刚;张磊;费云滟;付莎莉;吴丹;陈欣;杨小珊【作者单位】重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121;重庆市食品药品检验检测研究院,重庆401121【正文语种】中文【相关文献】1.基于内参的大肠埃希氏菌O157:H7实时荧光定量PCR快速检测方法的建立 [J], 王建昌;王金凤;段永生;李静;陈志敏;陈瑞春2.适配体结合量子点技术同时检测金黄色葡萄球菌和大肠埃希氏菌O157∶H7方法 [J], 王玥;邵琳;李乾学;易乐;曲晗;王洪利;沈明浩3.屠宰场分离大肠埃希氏菌O157:H7药敏试验及耐药基因分析 [J], 钟巧贤;袁淑英;梁秋燕;袁明贵;彭新宇;徐志宏;向蓉4.大肠埃希氏菌O157∶H7三种标准中的检测方法比较 [J], 周雯;陈雨欣;苏粉良;臧海竹;周斐;朱荣5.动物性食品中大肠埃希氏菌O157∶H7特异性二重PCR检测方法的建立 [J], 贺晓龙;张桂芝;方维焕因版权原因,仅展示原文概要,查看原文内容请购买。

O157:H7大肠杆菌食物中毒

O157:H7大肠杆菌食物中毒

什么是O157:H7大肠杆菌食物中毒事件
案情回放 O157:H7大肠杆菌感染是近年来新发现的危害严重的肠道传染病,O157:H7大肠杆菌是数百种大肠杆菌中的一个亚型(注:O157是细菌菌体抗原的编号,H7是细菌鞭毛抗原的编号)。

虽然生长在健康人类和动物肠道内的绝大多数菌种都是无害的,但这一菌种却会产生强烈的毒素,并引发严重的疾病。

1982年,该病首先在美国俄勒冈和密执安州食用汉堡包引起的食物中毒事件中发现,并从患者粪便中分离出大肠杆菌O157:H7。

1983年医学界确认,出血性肠炎由此种新发现的致病性大肠杆菌O157:H7引起,与以往引起腹泻的大肠杆菌不同,因此,将该菌命名为肠出血性大肠杆菌。

1985年又有人认为溶血性尿毒综合征的发生也与该菌株有关。

该病以后又陆续在20多个国家发现,并引起多起暴发流行。

1996年58月,O157:H7大肠杆菌性腹泻在日本造成大范围流行,40多个都、府、县有9000余人患病,近千人住院,11人死亡;这是自发现该菌以来,全球发生的最大规模的一次暴发流行,引起全世界的关注。

1999年我国苏、皖两省相继发生了O157:H7出血性肠炎病例暴发。

今年美国的毒菠菜事件又再一次向世人敲响了警钟,由O157:H7引起的感染性腹泻成为严重的公共卫生问题。

A 其实大肠杆菌O157:H7只是肠出血性大肠杆菌亚型中成员之一,不过它是老大。

虽然1982年后才给它命名,但是早在1975年美国疾控中心(CDC)就发现了它,当时它未引起大规模的食物中毒,故而未受重视。

1982年后大肠杆菌O157:H7在20多个国家引起大规模食物中。

大肠杆菌简介

大肠杆菌简介

大肠杆菌1、大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体。

4致病性质1、定居因子(Colonizationfactor,CF):也称粘附素(Adhesin),即大肠杆菌的菌毛。

致病大肠杆菌须先粘附于宿主肠壁,以免被肠蠕动和肠分泌液清除。

使人类致泻的定居因子为CFAⅠ、CTAⅡ(ColonizationfactorantigenⅠ、Ⅱ),定居因子具有较强的免疫原性,能刺2、黏附素能使细菌紧密黏着在泌尿道和肠道的细胞上,避免因排尿时尿液的冲刷和肠道的蠕动作用而被排除。

大肠杆菌黏附素的特点是具有高特异性。

包括:定植因子抗原〡,大肠杆菌〢,〣;集聚黏附菌毛〡和〣;束形成菌毛;紧密黏附素;P菌毛;侵袭质粒抗原蛋白和Dr菌毛等。

肠产毒性大肠杆菌的有些菌株只产生一种肠毒素,即LT或ST;有些则两种均可可产生。

有些致病大肠杆菌还可产生vero毒素。

5、其他:胞壁脂多糖的类脂A具有毒性,O特异多糖有抵抗宿主防御屏障的作用。

大肠杆菌的K抗原有吞噬作用。

病原体大肠杆菌O157:H7是大肠杆菌的其中一个类型,该种病菌常见于牛只等温血动物的肠内。

这一型的大肠杆菌会释放一种强烈的毒素,并可能导致肠管出现严重症状,如带血腹泻。

大肠杆菌血清学分型基础(即其抗原)大肠埃希菌主要有三种抗原:O抗原,为细胞壁脂多糖最外层的特异性多糖,由重复的多糖单位所组成。

该抗原刺激机体主要产生IgM 类抗体(出现早,消失快)。

K抗原,位于O抗原外层,为多糖,与细菌的侵袭力有关。

K 抗原分为A,B,L三型。

H抗原,位于鞭毛上,加热和用酒精处理,可使H抗原变性或丧失。

H抗原主要刺激机体产生IgG类抗体,与其他肠道菌基本无交叉反应。

表示大肠杆菌血清型的方式是按O:K:H排列,例如:O111:K58(B4):H25危害程度认知:大肠杆菌是原核生物,构造相对简单,遗传背景清晰,培养操作容易,因此也常常被作为基因工程的对象加以利用:研究者常常将外源基因导入质粒,将质粒整合入大肠杆菌基因,这样,大肠杆菌就能够表达基因重组后的蛋白(例如胰岛素,某些疫苗等)了。

大肠埃希氏菌O157H7NM检验(食品微生物学检验)

大肠埃希氏菌O157H7NM检验(食品微生物学检验)

食品安全国家标准食品微生物学检验大肠埃希氏菌O157:H7/N M检验1范围本标准规定了食品中大肠埃希氏菌O157:H7/NM(E s c h e r i c h i a c o l i O157:H7/NM)的检验方法㊂本标准适用于食品中大肠埃希氏菌O157:H7/NM的检验㊂2设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:2.1恒温培养箱:36ħʃ1ħ㊂2.2冰箱:2ħ~5ħ㊂2.3恒温水浴箱:46ħʃ1ħ㊂2.4天平:感量0.1g㊁0.01g㊂2.5均质器㊂2.6显微镜:10倍~100倍㊂2.7无菌吸管:1m L(具0.01m L刻度)㊁10m L(具0.1m L刻度)或移液器及吸头㊂2.8无菌均质杯或无菌均质袋:容量500m L㊂2.9无菌培养皿:直径90mm㊂2.10p H计或精密p H试纸㊂2.11长波紫外光灯:365n m,功率ɤ6W㊂2.12微量离心管:1.5m L或2.0m L㊂2.13磁板㊁磁板架㊁样品混合器㊂2.14微生物鉴定系统㊂3培养基和试剂3.1改良E C肉汤(m E C+n):见A.1㊂3.2改良山梨醇麦康凯琼脂(C T-S MA C):见A.2㊂3.3三糖铁琼脂(T S I):见A.3㊂3.4营养琼脂:见A.4㊂3.5半固体琼脂:见A.5㊂3.6月桂基硫酸盐胰蛋白胨肉汤-MU G(MU G-L S T):见A.6㊂3.7氧化酶试剂:见A.7㊂3.8革兰氏染色液:见A.8㊂3.9 P B S-T w e e n20洗液:见A.9㊂3.10亚碲酸钾(A R级)㊂3.11头孢克肟(C e f i x i m e)㊂3.12大肠埃希氏菌O157显色培养基㊂3.13大肠埃希氏菌O157和H7诊断血清或O157乳胶凝集试剂㊂3.14鉴定试剂盒㊂3.15抗-E.c o l i O157免疫磁珠㊂第一法常规培养法4检验程序大肠埃希氏菌O157:H7/NM常规培养法检验程序见图1㊂图1大肠埃希氏菌O157:H7/N M常规培养法检验程序5操作步骤5.1增菌以无菌操作取检样25g(或25m L)加入到含有225m L m E C+n肉汤的均质袋中,在拍击式均质器上连续均质1m i n~2m i n;或放入盛有225m L m E C+n肉汤的均质杯中,8000r/m i n~ 10000r/m i n均质1m i n~2m i n㊂36ħʃ1ħ培养18h~24h㊂5.2分离取增菌后的m E C+n肉汤,划线接种于C T-S MA C平板和大肠埃希氏菌O157显色琼脂平板上, 36ħʃ1ħ培养18h~24h,观察菌落形态㊂在C T-S MA C平板上,典型菌落为圆形㊁光滑㊁较小的无色菌落,中心呈现较暗的灰褐色;在大肠埃希氏菌O157显色琼脂平板上的菌落特征按产品说明书进行判定㊂5.3初步生化试验在C T-S MA C和大肠埃希氏菌O157显色琼脂平板上分别挑取5个~10个可疑菌落,分别接种T S I琼脂,同时接种MU G-L S T肉汤,并用大肠埃希氏菌株(A T C C25922或等效标准菌株)做阳性对照和大肠埃希氏菌O157:H7(N C T C12900或等效标准菌株)做阴性对照,于36ħʃ1ħ培养18h~ 24h㊂必要时进行氧化酶试验和革兰氏染色㊂在T S I琼脂中,典型菌株为斜面与底层均呈黄色,产气或不产气,不产生硫化氢(H2S)㊂置MU G-L S T肉汤管于长波紫外灯下观察,MU G阳性的大肠埃希氏菌株应有荧光产生,MU G阴性的应无荧光产生,大肠埃希氏菌O157:H7/NM为MU G试验阴性,无荧光㊂挑取可疑菌落,在营养琼脂平板上分纯,于36ħʃ1ħ培养18h~24h,并进行下列鉴定㊂5.4鉴定5.4.1血清学试验在营养琼脂平板上挑取分纯的菌落,用O157和H7诊断血清或O157乳胶凝集试剂作玻片凝集试验㊂对于H7因子血清不凝集者,应穿刺接种半固体琼脂,检查动力,经连续传代3次,动力试验均阴性,确定为无动力株㊂如使用不同公司生产的诊断血清或乳胶凝集试剂,应按照产品说明书进行㊂5.4.2生化试验5.4.2.1自营养琼脂平板上挑取菌落,进行生化试验㊂大肠埃希氏菌O157:H7/NM生化反应特征见表1㊂表1大肠埃希氏菌O157:H7/NM生化反应特征生化试验特征反应三糖铁琼脂底层及斜面呈黄色,H2S阴性山梨醇阴性或迟缓发酵靛基质阳性甲基红-伏普试验(M R-V P)M R阳性,V P阴性氧化酶阴性西蒙氏柠檬酸盐阴性赖氨酸脱羧酶阳性(紫色)鸟氨酸脱羧酶阳性(紫色)纤维二糖发酵阴性棉子糖发酵阳性MU G试验阴性(无荧光)动力试验有动力或无动力5.4.2.2如选择生化鉴定试剂盒或微生物鉴定系统,应从营养琼脂平板上挑取菌落,用稀释液制备成浊度适当的菌悬液,使用生化鉴定试剂盒或微生物鉴定系统进行鉴定㊂5.4.3毒力基因测定(可选项目)样品中检出大肠埃希氏菌O157:H7或O157:NM时,如需要进一步检测V e r o细胞毒素基因的存在,可通过接种V e r o细胞或H e L a细胞,观察细胞病变进行判定;也可使用基因探针检测或聚合酶链反应(P C R)方法进行志贺毒素基因(s t x1㊁s t x2)㊁e a e㊁h l y等基因的检测㊂如使用试剂盒检测上述基因,应按照产品的说明书进行㊂6结果报告综合生化和血清学试验结果,报告25g(或25m L)样品中检出或未检出大肠埃希氏菌O157:H7或大肠埃希氏菌O157:NM㊂第二法免疫磁珠捕获法7检验程序大肠埃希氏菌O157:H7/NM免疫磁珠捕获法检验程序见图2㊂图2大肠埃希氏菌O157:H7/N M免疫磁珠捕获法检验程序8操作步骤8.1增菌同5.1㊂8.2免疫磁珠捕获与分离8.2.1应按照生产商提供的使用说明进行免疫磁珠捕获与分离㊂当生产商的使用说明与下面的描述可能有偏差时,按生产商提供的使用说明进行㊂8.2.2将微量离心管按样品和质控菌株进行编号,每个样品使用1只微量离心管,然后插入到磁板架上㊂在漩涡混合器上轻轻振荡E.c o l i O157免疫磁珠混悬液后,用开盖器打开每个微量离心管的盖子,每管加入20μL E.c o l i O157免疫磁珠悬液㊂8.2.3取m E C+n肉汤增菌培养物1m L,加入到微量离心管中,盖上盖子,然后轻微振荡10s㊂每个样品更换1只加样吸头,质控菌株必须与样品分开进行,避免交叉污染㊂8.2.4结合:在18ħ~30ħ环境中,将上述微量离心管连同磁板架放在样品混合器上转动或用手轻微转动10m i n,使E.c o l i O157与免疫磁珠充分接触㊂8.2.5捕获:将磁板插入到磁板架中浓缩磁珠㊂在3m i n内不断地倾斜磁板架,确保悬液中与盖子上的免疫磁珠全部被收集起来㊂此时,在微量离心管壁中间明显可见圆形或椭圆形棕色聚集物㊂8.2.6吸取上清液:取1支无菌加长吸管,从免疫磁珠聚集物对侧深入液面,轻轻吸走上清液㊂当吸到液面通过免疫磁珠聚集物时,应放慢速度,以确保免疫磁珠不被吸走㊂如吸取的上清液内含有磁珠,则应将其放回到微量离心管中,并重复8.2.5步骤㊂每个样品换用1支无菌加长吸管㊂免疫磁珠的滑落:某些样品特别是那些富含脂肪的样品,其磁珠聚集物易于滑落到管底㊂在吸取上清液时,很难做到不丢失磁珠,在这种情况下,可保留50μL~100μL上清液于微量离心管中㊂如果在后续的洗涤过程中也这样做的话,脂肪的影响将减小,也可达到充分捕获的目的㊂8.2.7洗涤:从磁板架上移走磁板,在每个微量离心管中加入1m LP B S-T w e e n20洗液,放在样品混合器上转动或用手轻微转动3m i n,洗涤免疫磁珠混合物㊂重复上述步骤8.2.5~8.2.7㊂8.2.8重复上述步骤8.2.5~8.2.6㊂8.2.9免疫磁珠悬浮:移走磁板,将免疫磁珠重新悬浮在100μLP B S-T w e e n20洗液中㊂8.2.10涂布平板:将免疫磁珠混匀,各取50μL免疫磁珠悬液分别转移至C T-S MA C平板和大肠埃希氏菌O157显色琼脂平板一侧,然后用无菌涂布棒将免疫磁珠涂布平板的一半,再用接种环划线接种平板的另一半㊂待琼脂表面水分完全吸收后,翻转平板,于36ħʃ1ħ培养18h~24h㊂注:若C T-S MA C平板和大肠埃希氏菌O157显色琼脂平板表面水分过多时,应在36ħʃ1ħ下干燥10m i n~ 20m i n,涂布时避免将免疫磁珠涂布到平板的边缘㊂8.3菌落识别大肠埃希氏菌O157:H7/NM在C T-S MA C平板和大肠埃希氏菌O157显色琼脂平板上的菌落特征同5.2㊂8.4初步生化试验同5.3㊂8.5鉴定同5.4㊂9结果报告同第6章㊂附录A培养基和试剂A.1改良E C肉汤(m E C+n)A.1.1成分胰蛋白胨20.0g3号胆盐1.12g乳糖5.0gK2H P O4㊃7H2O4.0gK H2P O41.5gN a C l5.0g新生霉素钠盐溶液(20m g/m L)1.0m L蒸馏水1000m LA.1.2制法除新生霉素外,所有成分溶解在水中,加热煮沸,在20ħ~25ħ下校正p H至6.9ʃ0.1,分装㊂于121ħ高压灭菌15m i n,备用㊂制备浓度为20m g/m L的新生霉素储备溶液,过滤法除菌㊂待培养基温度冷至50ħ以下时,按1000m L培养基内加1m L新生霉素储备液,使最终浓度为20m g/L㊂A.2改良山梨醇麦康凯(C T-S M A C)琼脂A.2.1山梨醇麦康凯(S M A C)琼脂A.2.1.1成分蛋白胨20.0g山梨醇10.0g3号胆盐1.5g氯化钠5.0g中性红0.03g结晶紫0.001g琼脂15.0g蒸馏水1000m LA.2.1.2制法除琼脂㊁结晶紫和中性红外,所有成分溶解在蒸馏水中,加热煮沸,在20ħ~25ħ下校正p H至7.2ʃ0.2,加入琼脂㊁结晶紫和中性红,煮沸溶解,分装㊂于121ħ高压灭菌15m i n㊂A.2.2亚碲酸钾溶液A.2.2.1成分亚碲酸钾0.5g蒸馏水200m LA.2.2.2制法将亚碲酸钾溶于水,过滤法除菌㊂A.2.3头孢克肟(C e f i x i m e)溶液A.2.3.1成分头孢克肟1.0m g95%乙醇200m LA.2.3.2制法将头孢克肟溶解于95%乙醇中,静置1h待其充分溶解后过滤除菌㊂分装试管,储存于-20ħ,有效期1年㊂解冻后的头孢克肟溶液不应再冻存,且在2ħ~8ħ下有效期14d㊂A.2.4C T-S M A C制法取1000m L灭菌融化并冷却至46ħʃ1ħ的山梨醇麦康凯(S MA C)琼脂,加入1m L亚碲酸钾溶液和10m L头孢克肟溶液,使亚碲酸钾浓度达到2.5m g/L,头孢克肟浓度达到0.05m g/L,混匀后倾注平板㊂A.3三糖铁琼脂(T S I)A.3.1成分蛋白胨20.0g牛肉浸膏5.0g乳糖10.0g蔗糖10.0g葡萄糖1.0g硫酸亚铁铵[(N H4)2F e(S O4)2㊃6H2O]0.2g氯化钠5.0g硫代硫酸钠0.2g酚红0.025g或5.0g/L溶液5.0m L琼脂12.0g蒸馏水1000m LA.3.2制法除酚红和琼脂外,将其他成分加于400m L蒸馏水中,煮沸溶解,在20ħ~25ħ下校正p H至7.4ʃ0.2㊂另将琼脂加于600m L蒸馏水中,煮沸溶解㊂将上述两溶液混合均匀后,加入5%酚红水溶液5m L,混匀,分装小号试管,每管约2m L~4m L㊂于121ʎC10m i n或115ʎC15m i n,制成高层斜面㊂冷却后呈桔红色㊂如不立即使用,在2ħ~8ħ条件下可储存一个月㊂A.4营养琼脂A.4.1成分蛋白胨10.0g牛肉膏3.0g氯化钠5.0g琼脂15.0g蒸馏水1000m LA.4.2制法将各成分溶解于蒸馏水中,加热煮沸至完全溶解,校正p H至7.4ʃ0.2,分装㊂于121ħ高压灭菌15m i n㊂A.5半固体琼脂A.5.1成分蛋白胨1.0g牛肉膏0.3g氯化钠0.5g琼脂0.3g~0.4g蒸馏水100m LA.5.2制法将各成分溶解于蒸馏水中,加热煮沸至完全溶解,校正p H至7.4ʃ0.2,分装小试管,于121ħ高压灭菌15m i n㊂直立凝固备用㊂A.6月桂基硫酸盐蛋白胨肉汤-M U G(L S T-M U G)A.6.1成分胰蛋白胨20.0g氯化钠5.0g乳糖5.0g磷酸氢二钾(K2H P O4)2.75g磷酸二氢钾(K H2P O4)2.75g十二烷基硫酸钠0.1g4-甲基伞形酮-β-D-葡萄糖醛酸苷(MU G)0.1g蒸馏水1000m LA.6.2制法将各成分溶解于蒸馏水中,加热煮沸至完全溶解,于20ħ~25ħ下校正p H至6.8ʃ0.2,分装到带有倒管的试管中,每管10m L,于121ħ高压灭菌15m i n㊂A.7氧化酶试剂A.7.1成分N,N'-二甲基对苯二胺盐酸盐或N,N,N',N'-四甲基对苯二胺盐酸盐1.0g蒸馏水100m LA.7.2制法少量新鲜配制,于冰箱内避光保存,在7d内使用㊂A.7.3试验方法用无菌棉拭子取单个菌落,滴加氧化酶试剂,10s内呈现粉红或紫红色,即为氧化酶试验阳性㊂不变色者为氧化酶试验阴性㊂A.8革兰氏染色液A.8.1结晶紫染色液A.8.1.1成分结晶紫1.0g95%乙醇20m L1%草酸铵水溶液80m LA.8.1.2制法将结晶紫完全溶解于乙醇中,然后与草酸铵溶液混合㊂A.8.2革兰氏碘液A.8.2.1成分碘1.0g碘化钾2.0g蒸馏水300m LA.8.2.2制法将碘与碘化钾先行混合,加入蒸馏水少许充分振摇,待完全溶解后,再加蒸馏水至300m L㊂A.8.3沙黄复染液A.8.3.1成分沙黄0.25g95%乙醇10.0m L蒸馏水90.0m LG B 4789.36 201611 A .8.3.2 制法将沙黄溶解于乙醇中,然后用蒸馏水稀释㊂A .8.4 染色法A .8.4.1 涂片在火焰上固定,滴加结晶紫染液,染1m i n ,水洗㊂A .8.4.2 滴加革兰氏碘液,作用1m i n ,水洗㊂A .8.4.3 滴加95%乙醇脱色约15s ~30s ,直至染色液被洗掉,不要过分脱色,水洗㊂A .8.4.4 滴加复染液,复染1m i n,水洗㊁待干㊁镜检㊂A .9 P B S -T w e e n 20洗液按照商品用E .c o l i O 157免疫磁珠的洗液配方进行制备,或按照下列配方制备㊂A .9.1 成分氯化钠8.0g 氯化钾0.2g 磷酸氢二钠(N a 2H P O 41.15g 磷酸二氢钾(K H 2P O 4)0.2g T w e e n200.5g 蒸馏水1000m LA .9.2 制法将上述成分溶解于水中,于20ħ~25ħ下校正p H 至7.3ʃ0.2,分装锥形瓶㊂121ħ高压灭菌15m i n ,备用㊂。

ColiComplete 产品说明书

ColiComplete 产品说明书

Page 1 of 2 ColiComplete ®AOAC Official Method 992.30General DescriptionColiComplete ® contains 5-bromo-4-chloro-3-indolyl-ß-Dgalactopyranoside (X-Gal) and 4-methyl umbelliferyl-ß-D-glucuronide (MUG). Discs are added to LST inoculated with selected dilutions of samples. Samples are incubated at 35–37 °C and examined after 24 and 48 ±2 h for confirmed total coliforms and after 30 ±2 h for confirmed E. coli results. ß-Galactosidase, from coliforms present in samples, cleaves X-Gal into 5-bromo-4-chloro-indoxyl intermediate which undergoes oxidation to yield water-insoluble blue dimer, visually detectable on disc or in surrounding medium as confirmed positive result for total coliform activity. ß-Glucuronidase, from E. coli present in samples, cleaves MUG into glucuronide and methyl umbelliferone which fluoresces under long wave UV light (366 nm) as confirmed positive result for E. coli presence.NOTE : As E. coli O157:H7 does not produce ß-glucuronidase, ColiComplete ® is not suitable for the detection of E. coli O157:H7.A. Sample PreparationPrepare appropriate serial dilutions as indicated in FDA Bacteriological Analytical Manual (BAM), or AOAC Official Methods of Analysis according to sample type.B. InoculationInoculate LST tubes with appropriate sample dilution series selected to determine MPN levels or presence/absence of total coliforms and E. coli in sample. Aseptically add a single ColiComplete ® disc to each tube. Incubate at 35–37 °C.C. Reading ColiComplete ®a. For total coliforms — After at least 24 h incubation, examine each tube for visually detectable blue color on disc or in surrounding medium. Presence of blue color indicates confirmed positive result for total coliforms.NOTE: A wide range of blue color intensity may be expected, depending on sample composition and microflora. All blue reactions are positive regardless of intensity of color.Reincubate at 35–37 °C. After additional 24 ±2 h re-examine. Continued absence of blue indicates negative result; presence of blue indicates confirmed positive result for total coliforms. Read and record the MPN code or presence/absence of total coliforms in the sample.b. For E.coli — After 30 ±2 h from start of initial incubation, examine tubes under long-wave UV light (366 nm). Fluorescent tubes indicate confirmed positive result for E. coli. Read and record the MPN code or presence/absence of E. coli in the sample.D. CONTROLSPositive and negative controls should be used to facilitate interpretation of MUG fluorescent reaction. Use one known positive E. coli tube and two negative controls - one non -E. coli /coliform tube (e.g., Klebsiella spp.) and one uninoculated media tube.NOTE: Use borosilicate glass tubes, flint glass gives fluorescence that may be misinterpreted for a positive result.Lit. No. MK_UG4655EN Merck KGaAFrankfurter Strasse 25064293 DarmstadtGermanyPage 2 of 2 E. Method Modification for Certain JuicesApplicable to juice products/processors which rely on treatments that do not come into direct contact with all parts of the juice, as contained in 21 CFR Part 120: Rules and Regulations. Hazard Analysis and Critical Control Point (HAACP); Procedures for the Safe and Sanitary Processing and Importing of Juice; Final Rule. Vol 66 No. 13. 6137-6202. Use the modified method “Analysis for Escherichia coli in Citrus Juices - Modifi cation of AOAC Official Method 992.30” as stated in Section 120.25 (a).F. StorageStore unused discs at 2–8 °C (36–46 °F) in a sealed container, with desiccant.G. DisposalAfter use, all tubes must be steam-sterilized at 121 °C for at least 30 min before discarding. For in-vitro diagnostic use only.Manufacturing EntityBioControl Systems, Inc, 12822 SE 32nd St, Bellevue, WA 98005, USA.BioControl Systems, Inc is an affiliate of Merck KGaA, Darmstadt, Germany.。

益生菌对大肠埃希菌O157:H7的抑制作用

益生菌对大肠埃希菌O157:H7的抑制作用

益生菌对大肠埃希菌O157:H7的抑制作用王晨波【摘要】以11%脱脂牛奶和MRS肉汤作为培养基,在适宜大肠埃希菌O157:H7生长的条件(37℃, 有氧)下, 考察益生菌混合物对大肠埃希菌O157:H7生存生长的影响.前期实验获得了5株益生菌和大肠埃希菌O157:H7各自的生长曲线,确认了酸性条件(培养基pH值为3.8)对大肠埃希菌O157:H7的抑制作用.经过对酸性环境的适应并不能提高大肠埃希菌O157:H7菌株对益生菌的抵抗能力.大肠埃希菌O157:H7(37℃,有氧状态培养8 h) 不能在经过益生菌有氧状态下培养后的培养基澄清液中存活,但将该澄清液的pH值调到6.5(新鲜MRS肉汤培养基的pH值),大肠埃希菌O157:H7又可以在其中生长.结果表明,高浓度的益生菌对大肠埃希菌O157:H7菌株有抑制作用,这一方面是由于益生菌降低了培养环境的pH值,另一方面也是由于益生菌本身在有氧状态下产生了抑制大肠埃希菌O157:H7的代谢产物.【期刊名称】《化学与生物工程》【年(卷),期】2010(027)001【总页数】4页(P67-70)【关键词】益生菌;抑制作用;大肠埃希菌O157:H7;有氧条件【作者】王晨波【作者单位】雀巢研发中心上海有限公司,上海,201812【正文语种】中文【中图分类】Q935双歧杆菌和嗜酸乳杆菌等被称为益生菌,近几年来一直受到广泛的关注。

大量发酵和未经发酵的奶制品,如牛奶、酸奶、冰淇淋和奶酪等都可以为人体提供这种有益菌。

但同时,由于它们对生存环境有着极高的要求(极度厌氧环境下生长和抗酸性环境能力差),很难在产品中保持较高的活菌数。

因此,目前的研究更多地关注于在不适合的生长环境下益生菌的表现,以拓宽益生菌在工业生产中的应用并降低生产过程中的成本。

当有大量活菌存在时,益生菌具有抑制Clostridium perfringens、Salmonella typhimurium、 Listeria monocytogenes、Campylobacter jejuni、Bacteroides vulgatus 和Escherichia coli 等致病菌的作用,许多研究认为这是由于其自身代谢产生的有机酸、过氧化氢、抗菌素和其它抑菌成分所造成的[1] 。

产志贺毒素大肠埃希菌的分子生物学鉴定和耐药性分析

产志贺毒素大肠埃希菌的分子生物学鉴定和耐药性分析1李咏梅,李凡吉林大学基础医学院病原生物学教研室, 1320011E-mail:mayflower380@摘 要:本文采用多重PCR(multiplex PCR, mPCR)法对产志贺毒素大肠埃希菌(Shiga toxin-producing Escherichia coli, STEC)分离株进行毒力基因的分子生物学鉴定;用WHO 推荐的K-B法对分离株进行抗生素的敏感性测定,以了解stx1、stx2、eaeA、hlyA 4种毒力基因的分布情况,以及分离株对18种抗生素的敏感性。

结果显示产志贺毒素的大肠埃希菌共有46株,其中两种毒素均产生的有22株(47.8%);单纯产生stx1的有16株(36.9%),stx2的有8株(17.4%);四种毒力基因均存在的有19株(41.3%),血清型为O157:H7,而非O157:H7血清型的菌株(23/46)中,4种毒力基因同时存在的仅有3株(6.6%),但有13株(56.9%)hlyA基因阳性。

全部STEC对复方新诺明耐药,对链霉素耐药率为28.3%,氨苄西林为30.4%,红霉素为69.6%,而且有5株对至少4种以上抗生素多重耐药,耐药谱为复方新诺明-链霉素-红霉素-氨苄西林。

非O157型 STEC耐药菌次为122, 而O157 型为63。

实验结果证明mPCR法可以快速检测STEC特征性毒力基因,以判定其致病性能。

非O157型STEC对抗生素较易形成耐药性。

关键词:STEC;鉴定; 耐药性1.引言STEC是世界上人类食物中毒的重要致病因子,也是引起大规模食源性食物中毒的主要病原菌[1]。

STEC中有100余个血清型的致病性大肠杆菌可以致病,主要血清型是O157H7,可引起非出血性腹泻,出血性结肠炎(haemorrhagic colitis, HC),溶血性尿毒综合症(haemolytic uraemic syndrome, HUC)。

磁珠-化学发光检测Ecoli

2010年第68卷化学学报V ol. 68, 2010第3期, 251~256 ACTA CHIMICA SINICA No. 3, 251~256* E-mail: nyhe1958@Received May 18, 2009; revised August 4, 2009; accepted October 10, 2009.国家自然科学基金(Nos. 90606027, 60801007)、国家“863”计划(No. 2007AA022007)、国家重点基础研究发展计划(“973”计划, No. 2010CB933903)、国家“艾滋病和病毒性肝炎等重大传染病防治”科技重大专项(No. 2009ZX10004-311)、中国博士后科学基金(No. 20080430160)、江苏省博士后科研资助计划(No. 0801004B)和“333高层次人才培养工程”(No. [2007]16)资助项目.†同等贡献.252化学学报V ol. 68, 2010pathogens, but it is time-consuming and hard sledding in preparation of antibody and enzyme conjugated with antibody, especially in detecting multi-antigens simultaneously. In this paper, a system of chemilumi-nescent magnetic enzyme-linked immunoassay was developed. E. coli O157:H7 was sandwiched between rabbit anti-E. coli O157:H7 polyclonal antibody-coated magnetite nanoparticles (immunomagnetic nanopar-ticles or IMNP) and mouse anti-E. coli O157:H7 monoclonal antibody. Alkaline phosphatase conjugated horse anti-mouse immunoglobulin (ALP-Ab) was used to bond with the monoclonal antibody, finally the chemiluminescent signals were detected by adding 3-(2-spiroadamantane)-4-methoxy-4-(3-phosphoryloxy) phenyl-1,2-dioxetane (AMPPD), which was the substrate reagent of ALP. Different solvents of AMPPD were compared to get an optimal chemiluminescent signal. The effect of sodium borohydride and glycine on blocking the aldehyde groups of IMNP was compared either, and the specificity and sensitivity of this sys-tem for detecting E. coli O157:H7 were researched. The results indicated that c buffer was the best solvent of AMPPD, sodium borohydride was better than glycine in blocking immunomagnetic nanoparticles, and this method was of good specificity when using E. coli Top 10f', D-group shigella sonnei, B-group shigella flexneri, Salmonella typhimurium, Staphylococcus aureus and Vibrio cholera as negative controls. The de-tection limit was 103 cells/mL when the antigen solution was 1 mL, and the procedure duration was about 3h.Keywords Escherichia coli O157:H7; enzymoimmunoassay; chemiluminescence; magnetic nanoparticleE. coli O157:H7感染性腹泻是近年来新发现的危害严重的肠道传染病. 该病可引起腹泻、出血性肠炎、继发溶血性尿毒综合症(HUS)、血栓性血小板减少性紫瘫(TTP)等. HUS和TTP病情凶险, 病死率高. 因此, 人们发展了多种方法对O157:H7进行鉴定. 如分离培养、基于PCR的鉴定、酶联免疫鉴定、基因芯片等[1].随着纳米技术的迅速发展, 纳米材料逐渐被应用到生命科学领域, 磁珠(magnetic beads)或磁性纳米颗粒(MNPs)因具有分离速度快、效率高、可重复使用、操作简单、易功能化、易实现自动化以及不影响分离物质的活性等特殊的物理化学性质和生物相容性, 目前已用各种方法合成[2~4]并应用于细胞的分离、免疫测定、蛋白质和酶的固定以及DNA的检测等[5~10]. 与荧光检测手段相比, 化学发光具有高灵敏性、特异性、低背景、容易定量分析和具有宽的线性范围等突出的优点[11~13], 因此成为最近生物分析中的应用热点[14~17].近年来国内外已经有一些利用磁性纳米颗粒结合酶联免疫的方法检测病原体的报道, 如Gehring等[14]设计了基于单抗免疫磁珠和碱性磷酸酶(ALP)标记多抗, 与E. coli O157:H7形成直接“三明治”夹心的检测方法, 通过加入APS-5 产生化学发光进行病原体检测; 他们进而又对该方法进行改进, 利用O157单抗修饰的免疫磁珠、H7单抗和辣根过氧化物酶标记的二抗, 利用间接“三明治”夹心法, 加入底物Lumigen PS-atto, 检测E. coli O157:H7[15]. 朱等[16,17]利用Gehring等的直接“三明治”夹心磁酶免疫法, 用碱性磷酸酶与底物3-(2'-螺旋金刚烷)-4-甲氧基-4-(3''-羟基)苯-1,2-二氧杂环丁烷磷酸(AMPPD)反应, 检测了E. coli O157:H7.虽然前人在利用磁酶免疫的方法上做出了有意义的工作, 但是由于针对相应病原体的抗体筛选和修饰等的步骤耗时费力, 不易获得符合要求的抗体, 不适于对多种病原体进行筛查, 因此本文对上述方法进行了改进, 利用多克隆抗体免疫磁性纳米颗粒(IMNPs), 以O157抗原的单克隆抗体为检测抗体, 然后与商品化的ALP-Ab结合, 最后加入ALP的高效发光底物AMPPD, 通过化学发光读板机检测发光强度, 从而鉴定病原体(图1), 以期建立一种方法可用于多样本位点的检测.图1化学发光和磁性酶联免疫的E. coli O157:H7鉴定原理Figure1Scheme of chemiluminescence and magnetic enzyme- linked immunoassay for E. coli O157:H7 detection1 材料与方法1.1 材料二氧化硅包被的磁性聚甲基丙烯酸甲酯纳米颗粒No. 3 李智洋等:一种实用的基于化学发光和磁性纳米颗粒的E. coli O157:H7免疫鉴定方法253(平均粒径500 nm)的合成和醛基化修饰见文献[2, 3]; 碱性磷酸酶标记马抗鼠IgG (ALP-Ab, 1 mg/mL)购于北京鼎国生物技术有限责任公司; 纯化兔抗E. coli O157:H7多克隆抗体(2 mg/mL)和纯化鼠抗E. coli O157:H7单克隆抗体(2 mg/mL)购于宁波良瑞抗体生物技术公司; 化学发光底物AMPPD购于四川琢新生物材料研究有限公司; 牛肉膏和酪蛋白(Casein Sodium Salt)购于南京生兴生物技术有限公司; E. coli O157:H7, E. coli Top 10f', D 群宋内氏志贺氏菌(D-group Shigella sonnei), B群福氏志贺氏菌(B-group Shigella flexneri), 鼠伤寒沙门氏菌(Salmonella typhimurium), 金黄色葡萄球菌(Staphylococcus aureus)和霍乱弧菌(Vibrio cholerae)菌株, 人工接种了金黄色葡萄球菌和E. coli O157:H7的牛肉膏培养样品均由江苏省疾病预防控制中心提供; 其它试剂均为国产分析纯; 白色低蛋白吸附微孔板(Greiner, GER)及读板机Victor X3 (PerkinElmer, USA)用于化学发光检测.1.2 方法1.2.1 不同反应液体系对ALP与AMPPD化学发光的影响用a, b和c缓冲液(由于技术秘密,缓冲液配方以代号表示)分别溶解AMPPD, 从而获得终浓度为0.25 mmol•L-1 AMPPD底物溶液. 将ALP-Ab用二次蒸馏水(dd H2O)梯度稀释, 分别取2 µL, 与198 µL上述三种AMPPD溶液迅速混合均匀, 使反应体系中ALP-Ab的终浓度为2.5 µg/L. 将这些混合液分别加入到微孔板的一个孔中, 平行3次, 测定各处理的化学发光时间动力曲线.1.2.2 不同酶浓度对化学发光强度的影响将ALP-Ab用dd H2O梯度稀释, 分别取1 µL, 加入199 µL AMPPD溶液, 混合均匀后加入白色低蛋白吸附微孔板中, 使得检测液中酶浓度分别为0.5, 0.625, 1.25, 2.5和5 µg/L, 平行3次, 测定各处理化学发光的时间动力曲线.1.2.3 IMNPs的制备与封闭取400 µL 8 µg/µL醛基化磁珠, 加入用碳酸盐缓冲液(Na2CO3-NaHCO3, pH 9.6) 1∶500稀释的纯化兔抗E. coli O157:H7多克隆抗体5 mL, 37 ℃振荡(确保颗粒不沉淀)反应过夜, 用碳酸盐缓冲液清洗3次, 磁分离后弃上清, 获得IMNPs备用. 为比较IMNPs上的过剩醛基不同封闭方法的差异, 分别进行下列处理, A: 加入5 mL 硼氢化钠溶液(1.3 g NaBH4, 375 mL 1×PBS, 125 mL乙醇)[18], 振荡反应5 min. B: 加入5 mL 1 mol•L-1甘氨酸[19], 室温振荡反应30 min, 封闭未反应的醛基. 将上述封闭过的IMNPs用TTBS-casein (25 mmol•L-1 Tris, 150 mmol•L-1 NaCl, pH 7.4, 0.05% Tween 20, 1% casein)悬浮后磁分离吸去上清, 重复清洗3次后用1% BSA封闭30 min, TTBS-casein清洗3次, 重新分散到400 µL TTBS-casein中. 分别取A和B方法封闭的IMNPs 10 µL, 以未处理的IMNPs为对照(control check, CK)加入1 µL (1∶10000) ALP-Ab, 混匀后室温振荡反应30 min, 用TTBS-casein清洗3次后磁分离弃上清, 加入100 µL AMPPD溶液, 30 min后检测化学发光强度, 确定最佳的封闭方法.1.2.4 特异性实验将E. coli O157:H7, E. coli Top 10f', D群宋内氏志贺氏菌, B群福氏志贺氏菌, 鼠伤寒沙门氏菌, 金黄色葡萄球菌和霍乱弧菌加入LB液体培养基中, 于300 r/min 37 ℃培养12 h至饱和, 用终浓度为0.3%的甲醛溶液室温灭活48 h. 分别取灭活后的细菌溶液, 3000 r/min离心10 min, 弃上清, 用TTBS-casein清洗3次后分散在1 mL TTBS-casein中, 使菌液浓度为108 cell/mL. 以如下步骤进行特异性实验, (1)取80 µg按照1.2.2节选择硼氢化钠溶液处理制备的IMNPs于1.5 mL Eppendorf管中, 加入上述E. coli O157:H7, E. coli Top10f', D群宋内氏志贺氏菌, B群福氏志贺氏菌, 鼠伤寒沙门氏菌, 金黄色葡萄球菌和霍乱弧菌的菌悬液1 mL, 以1 mL TTBS-casein为空白对照(Blank), 每处理重复3次. 涡旋混匀后室温温和振荡反应30 min, TTBS-casein清洗3次后吸去上清.(2)加入20 µL 1∶100稀释的鼠抗E. coli O157:H7单抗, 混匀后室温温和振荡反应30 min, 用TTBS-casein清洗3次后吸去上清. (3)加入20 µL 1∶10000稀释的ALP-Ab, 混匀后室温温和振荡反应30 min. 用TTBS- casein清洗3次后吸去上清. (4)加入200 µL AMPPD溶液充分混匀, 加入微孔板的一个孔中, 反应30 min后检测化学发光强度. (5)将(样品发光强度-空白值)/(阴性对照的发光强度-空白值)记为Q. 当Q>2.1, 结果判定为阳性[20].1.2.5 检测灵敏度实验取灭活后的E. coli O157:H7菌液, 用TTBS-casein 稀释成浓度梯度: 101, 102, 103, 104, 105, 106, 107, 108和109 cell/mL, 以TTBS-casein为空白对照(0 cell/mL), 以108 cell/mL的 E. coli Top10f'为阴性对照(negative control, nCK), 分别取1 mL上述样品加入到装有80 µg 硼氢化钠封闭的IMNPs的1.5 mL离心管中, 涡旋混匀后室温温和振荡反应30 min, TTBS-casein清洗3次后吸去上清, 按照实验1.2.4节中(2)~(5)步骤进行灵敏性评价.1.2.6 人工样品实验取培养了5 h的人工接种金黄色葡萄球菌和E. coli254化 学 学 报 V ol. 68, 2010O157:H7的牛肉膏样品各25 g, 用终浓度为0.3%的甲醛溶液室温灭活48 h. 分别吸取上层含有细菌的样品溶液, 3000 r/min 离心10 min, 弃上清, 用TTBS-casein 清洗3次后分散在1 mL TTBS-casein 中. 以TTBS-casein 为空白对照(Blank), 以108 cell/mL 的 E. coli Top10f'为nCK, 以108 cell/mL 的 E. coli O157:H7为阳性对照(positive control, pCK), 分别取1 mL 上述样品加入到装有80 µg 硼氢化钠封闭的IMNPs 的1.5 mL 离心管中, 涡旋混匀后室温温和振荡反应30 min, TTBS-casein 清洗3次后吸去上清, 按照实验1.2.4节中(2)~(5)步骤进行实测样品试验.2 结果与讨论2.1 不同底物缓冲液体系对化学发光强度的影响针对碱性磷酸酶与AMPPD 的反应体系, 目前应用较多的是a, b 和c 三种. 图2比较不同反应体系对化学发光强度的影响, 可以看出化学发光强度随时间的增加逐渐升高, 30 min 后达到稳定, 而稳定后的化学发光强度, 也以在c 缓冲液的反应体系中的最高. 因此在今后的实验中, 我们选择c 缓冲液体系作为AMPPD 的溶解液.图2 不同缓冲液反应体系的化学发光时间动力学曲线 Figure 2 The chemiluminescent intensity of different AMPPD solutions2.2 不同酶浓度对化学发光强度的影响由图3可知, 化学发光强度随着ALP-Ab 浓度的增加而增加. 当酶浓度为 5 µg/L 时化学发光强度虽然最高, 但是随着反应时间的增加先升高后降低, 说明随着反应的进行, 大量的酶将底物迅速消耗完. 而当酶浓度在0~2.5 µg/L 时, 化学发光强度在30 min 后保持恒定. 利用微孔板的检测方法, 在检测每孔的样品时需要一定的读板时间, 如果在高通量或多位点检测实验中, 对整板样品进行检测则需要的累计时间更长, 因此样品的发光值要保持恒定, 才能保证检测的准确性. 图3的结果对今后的实验提供了指导意义. 当实验过程中化学发光强度出现衰减时, 需要对实验方案进行改进, 通过提高反应体系中底物的量使发光强度保持恒定.图3 不同ALP-Ab 浓度的化学发光时间动力学曲线Figure 3 The chemiluminescent intensity of different concen- trations of ALP-Ab2.3 IMNPs 上的过剩醛基封闭方法的比较免疫磁珠表面很可能有未结合蛋白的活性醛基, 醛基37 ℃易和氨基发生反应形成希夫碱. 因此需要封闭免疫磁珠表面的醛基; 同时由于磁珠比表面积大, 对蛋白分子有很强的吸附能力[21], 所以有必要对磁珠的空白处进行封闭.实验中对免疫磁珠进行了两种封闭处理, 实验结果如图4所示, 用硼氢化钠处理后磁珠化学发光背景明显比用甘氨酸处理的背景值底, 并且前者所需反应时间仅需 5 min, 节省了操作时间, 在以后的试验中我们都采用硼氢化钠处理免疫磁珠.图4 磁珠表面醛基不同封闭方法对化学发光强度的影响 Figure 4 The chemiluminescent intensity of different blocking methods on IMNPs2.4 特异性实验结果本检测方法的磁珠用量、各试剂加入量和温育时间参考贺[17]的硕士论文, 虽然在其论文中磁珠用量从30No. 3李智洋等:一种实用的基于化学发光和磁性纳米颗粒的E. coli O157:H7免疫鉴定方法255µg 后化学发光强度达到平台期, 但鉴于磁珠粒径不同, 同时磁珠用量太少不利于收集洗涤等步骤, 在本论文中将磁珠用量从30 µg 提高到了80 µg.临床上常见的D 群宋内氏志贺氏菌, B 群福氏志贺氏菌, 鼠伤寒沙门氏菌, 金黄色葡萄球菌和霍乱弧菌都可引起与E. coli O157:H7相似的腹泻症状, 本实验利用这些病原菌为对照, 检验了该方法的特异性. 由图5可见, 空白对照, E. coli Top10f', D 群宋内氏志贺氏菌, B 群福氏志贺氏菌, 鼠伤寒沙门氏菌, 金黄色葡萄球菌, 霍乱弧菌和E. coli O157:H7处理的化学发光强度分别为170, 300, 194, 192, 185, 212, 180和1966. 由于Q >2.1, E. coli O157:H7样品呈显著阳性反应, 而E. coli Top10f', D 群宋内氏志贺氏菌, B 群福氏志贺氏菌, 鼠伤寒沙门氏菌, 金黄色葡萄球菌和霍乱弧菌样品呈阴性反应(Q <2.1), 说明该方法的特异性良好. 从实验步骤1.2.4节可以看出, 整个实验可以在3 h 内检测完成.图5 化学发光磁酶联免疫检测E. coli O157:H7Figure 5 Chemiluminescent magnetic enzyme-linked immuno-assay detection of E. coli O157:H7Blank means blank control; the meaning of other letters are as follows: (a) E. coli Top 10f'; (b) D-group Shigella sonnei ; (c) B-group Shigella flexneri ; (d) Salmonella typhimurium ; (e) Staphylococcus aureus ; (f) Vibrio cholerae and (g) E. coli O157:H72.5 检测限以E . coli O157:H7浓度的对数作为横坐标, 以相对化学发光强度(样品的化学发光强度值-空白对照的化学发光强度值, RCI)为纵坐标作图, 图6显示nCK, 0, 1, 2和3的RCI 分别为130, 0, 5, 62和306, 即当E. coli O157:H7浓度为103 cell/mL 时, Q =2.35>2.1, 反应呈阳性. 因此检出限应为103 cell/mL. 而由于IMNPs 的富集作用, 如果将检测体积由1 mL 扩大至10 mL, 应该可以获得更好的检测限结果.Gehring 等[14]以商业化多抗免疫磁珠及ALP 标记单抗与E . coli O157:H7形成三明治夹心, 加入ALP 底物APS-5进行化学发光检测, 检测限约7.6×103 cells/mL, 继而又用商品化的单抗免疫磁珠(抗O157抗原)及单抗(抗H7抗原)与E . coli O157:H7形成三明治夹心, 加入了图6 化学发光磁酶联免疫检测E. coli O157:H7的灵敏度实验Figure 6 Chemiluminescent magnetic enzyme-linked immuno-assay detection of E. coli O157:H7 serially diluted in buffered saline (TTBS-casein)E. coli Top 10f' was negative control (nCK); TTBS-casein was blank control (0); E. coli O157:H7 were serially diluted and the numbers of 1 to 9 in this graph mean the Log E. coli O157:H7 concentration (cells•mL -1)辣根过氧化物酶(HRP)标记的二抗(特异的与抗H7抗原单抗结合), 然后加入HRP 底物PS-atto, 检测化学发光强度, 检测限约1×105~1×106 cells/mL [15]. 朱等[16]以自行制备的单抗免疫磁珠及另一ALP 标记单抗与 E. coli O157:H7形成三明治夹心, 采用小牛血清白蛋白(BSA)封闭磁珠表面过剩醛基后, 利用AMPPD 进行化学发光检测, 检测限为8.5×104 cell/mL. 可见我们利用ALP 与AMPPD 的化学发光体系检测E. coli O157:H7具有更好的检测灵敏度. 2.6 人工样品E . coli O157:H7常见于污染的食品中, 实验分别利用人工接种金黄色葡萄球菌和E. coli O157:H7的牛肉膏样品, 检验了该方法在实际样本检测中的可行性. 结果见图7, 可以看出, 阳性对照(pCK)和接种了E . coli O157:H7的牛肉膏样本化学发光强度的Q >>2.1, 而接种金黄色葡萄球菌的样品则与阴性对照无显著差异, 说明本方法是一种实用的E . coli O157:H7检测技术.3 结论本文改进了基于化学发光和磁性纳米颗粒的E. coli O157:H7免疫鉴定方法, 不仅简便快速, 特异性好, 而且检测限优于目前的化学发光磁酶免疫方法. 该方法用多克隆抗体和单克隆抗体分别作为捕获抗体及检测抗体, 避免了可用成对单抗的筛选过程; 利用ALP 标记的二抗省去了繁琐的酶标记单抗的过程, 只要有病原体的多克隆抗体和一个单抗就可以利用本实验方法进行检测, 所用试剂较易从市面获得, 而且借助微孔板及其检256化学学报V ol. 68, 2010图7化学发光磁酶联免疫检测人工样品中的E. coli O157:H7 Figure 7 Chemiluminescent magnetic enzyme-linked immuno- assay detection of E. coli O157:H7 in culture beef extractBlank means blank control. E. coli Top 10f' is negative control (nCK). E. coli O157:H7 is positive control (pCK). The bacteria in the culture beef extract samples are (a) Staphylococcus aureus and (b) E. coli O157:H7测设备, 在实现多样本、多位点检测方面, 具有广泛的应用前景.References1 Deisingh, A. K.; Thompson, M. J. Appl. Microbiol. 2004,96, 419.2 Wang, Z.-F.; Guo, Y.-F.; Li, S.; Sun, Y.-M.; He, N.-Y. J.Nanosci. Nanotechnol. 2008, 8, 1797.3 Guo, Y.-F.; Wang, Z.-F.; Li, Z.-Y.; He, N.-Y.; Shi, Z.-Y.;Wang, H. Chin. J. Appl. Chem. 2008, 25, 1022 (in Chinese).(郭雅飞, 王志飞, 李智洋, 何农跃, 史智扬, 汪华, 应用化学, 2008, 25, 1022.)4 Du, H.-Y.; Zhang, J.-H. Acta Chim. Sinica 2009, 67, 665 (inChinese).(杜海燕, 张军华, 化学学报, 2009, 67, 665.)5 Koh, I.; Wang, X.; Varughese, B.; Isaacs, L.; Ehrman, S. H.;English, D. S. J. Phys. Chem. B2006, 110, 1553.6 Fang, C.-Y.; Wang, S.; Liu, Q.-P.; Yan, G.-Q.; Lu, H.-J.;Yang, P.-Y. Acta Chim. Sinica 2008, 66, 2174 (in Chinese).(方彩云, 王胜, 刘清萍, 晏国全, 陆豪杰, 杨芃原, 化学学报, 2008, 66, 2174.)7 Wang, X.-X.; Wang, S.; Yang, W.-S.; Shan, Z. Acta Chim.Sinica 2009, 67, 54 (in Chinese).(王显祥, 王森, 杨婉身, 单志, 化学学报, 2009, 67, 54.)8 Horak, D.; Babic, M.; Mackova, H.; Benes, M. J. J. Sep. Sci.2007, 30, 1751.9 Bruce, I. J.; Sen, T. Langmuir2005, 21, 7029.10 Palecek, E.; Fojta, M. Talanta 2007, 74, 276.11 Roda, A.; Guardigli, M.; Pasini, P.; Musiani, M.; Baraldini,M. In Luminescence Biotechnology: Instruments and Appli-cations, Eds.: Van Dyke, K.; Van Dyke, C.; Woodfork, K., CRC Press, Boca Raton, 2002, p. 481.12 Yin, D.-G.; He, Y.-F.; Luo, Z.-F.; Liu, Y.-B.; Jiao, Z.; Shen,D.-C.; Han, S.-Q.; Wu, M.-H. Acta Chim. Sinica 2008, 66,223 (in Chinese).(尹东光, 贺佑丰, 罗志福, 刘一兵, 焦正, 沈德存, 韩世泉, 吴明红, 化学学报, 2008, 66, 223.)13 Nan, H.-Y.; Zheng, X.-W.; Li, G.-X. Acta Chim. Sinica2008, 66, 2384 (in Chinese).(南红燕, 郑行望, 李桂新, 化学学报, 2008, 66, 2384.)14 Gehring, A. G.; Irwin, P. L.; Reed, S. A.; Tu, S.-I.; An-dreotti, P. E.; Akhavan-Tafti, H.; Handley, R. S. J. Immunol.Methods2004, 293, 97.15 Gehring, A. G.; Albin, D. M.; Irwin, P. L.; Reed, S. A.; Tu,S-I. J. Microbiol. Methods2006, 67, 527.16 Zhu, G.-H.; He, Y.-F.; Guo, X.-Y.; Liu, H.-P. Chem. J.Chin. Univ. 2006, 27, 1453 (in Chinese).(朱广华, 贺艳峰, 郭小英, 刘和平, 高等学校化学学报,2006, 27, 1453.)17 He, Y.-F. M.S. Thesis, Southeast University, Nanjing, 2007(in Chinese).(贺艳峰, 硕士论文, 东南大学, 南京, 2007.)18 Fuentes, M.; Mateo, C.; Guisán1, J. M.; Fernández-Lafuente, R. Biosens. Bioelectron. 2005, 20, 1380.19 Kavun, E. M.; Kolibo, D. V.; Romanyuk, S. I. UkrainskiiBiokhimicheskii Zhurnal. 2001, 73, 101.20 Zhao, Z.-J.; Liu, X.-M. J. Hygiene Res. 2003, 32, 606 (inChinese).(赵志晶, 刘秀梅, 卫生研究, 2003, 32, 606.)21 Bronstein, I.; Voyta, J. C.; Edwards, B. Anal. Biochem.1989, 180, 95.(A0905181 Ding, W.)。

实验室验证大肠杆菌在土壤中的热耐受性及其影响因素-土壤污染论文-农学论文

实验室验证大肠杆菌在土壤中的热耐受性及其影响因素-土壤污染论文-农学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——随着人们生活水平的提高,公众对食品安全的关注越来越高,土壤的生物安全性也逐渐进入人们的视野.细菌感染性疾病有许多是因为食用了被污染的新鲜水果或蔬菜而造成的[1-3].其中与土壤相关的病原体,如病原性大肠杆菌,特别是血清型为O157:H7 的大肠杆菌(Escherich coli O157:H7),可能给人们的身体健康带来严重的威胁[4-5].Wang 等人发现,E.coli O157 能在牛粪便存活长达70 天[6],而牛粪等制成的堆肥施用于土壤,有可能造成土壤污染.目前,对 E.coliO157 的研究主要都集中在医学、水环境和有机废物上,但对土壤肠杆菌生存状况的研究则较少[7-9].本研究用环境污染指标菌--大肠杆菌作为研究对象,在实验室验证大肠杆菌在土壤中的热耐受性及其影响因素, 以评估E.coli K12和E.coli O157 的生存条件.1 材料与方法1.1 供试土壤采集的土壤在105℃下干燥10 h,在干燥器中通过孔径1mm 的筛子过筛后,放入试剂瓶中,在121℃高压锅中灭菌15 min,最后储存在4℃的冷藏柜中以供使用.为了获得均匀稳定含水率的供试土壤,使接菌均匀,在大肠杆菌接种的前一天,在土壤中定量加入无菌蒸馏水,分别获得含水率70%和40%的两种供试土壤.1.2 菌液的调制以E.coli K12 菌株(非病原性,来自于日本佐贺大学农学部土壤环境研究室)和E.coli O157 菌株(病原性,来自于日本产业医科大学产业保健院微生物研究室)作为供试菌株.接种前一天,将保存的 E.coli K12 和E.coli O157 菌株接种在NB(Nutrient broth)培养基上,在37℃下经18 h 和24 h 培养后,分别得到对数生长期(OD 660,0.35 mmol)和稳定生长期(OD660,0.50 mmol)的菌液.上述菌液用离心机(9000g,12000 rpm)离心10 min 后,除去菌液中的培养基,加入无菌生理食盐水(0.85% NaCl )制成菌体的悬浮液,调整至恰当的浓度(约109cfu/mL).1.3 接种和细菌计数取100mLE.coliK12或E.coli O157的悬浮液(109cfu/mL),分别接种到0.9 mL 无菌生理盐水溶液、0.9 g 含水率为70%和40%的土壤中,浸入60℃恒温水浴中,受热时长分别为0、1、2、3、6 和10 min,进行热耐受性测定.热处理过的样品加入10 mL 无菌生理盐水,分散处理(15000 rpm,15 min)后,用无菌生理盐水稀释到适宜的浓度,接种到NA (NutrientAgar)培养基,在37℃下培养18~24 h,计算菌数.2 结果与讨论2.1 不同条件下大肠杆菌的热耐受性接种到无菌生理盐水溶液土壤中的E.coli K12 和E.coliO157 在60℃条件下热耐受性如图 1 所示.E.coli K12 在对数生长期的情况下,从初始浓度108cfu/g 下降到100cfu/g,在无菌生理盐水约需要 2 min,在含水率70%土壤中下降更慢,约需3 min,而在含水率40%的土壤中,即使经过热处理10min 后,仍有103cfu/g 菌体存活(图1. A).类似的结果也发生在稳定生长期的菌体中,但是稳定生长期的E.coli K12菌体热耐受性明显高于相同的条件下的对数生长期菌体(图1. B).E.coli O157 热耐受性的情况与E.coli K12 相似,但其热耐受性比E.coli K12 强,即E.coli O157 的存活率更高(图1. C、D).综其结果,在高温条件下,大肠杆菌在含水率低的土壤中比在含水率高的土壤中热耐受性强,在稳定生长期的大肠杆菌比在对数生长期的热耐受性更强,E.coliO157 菌株比E.coli K12 菌株热耐受性更高.结果表明,含水率大小是大肠杆菌热耐受性的重要影响因素,显示了在高温环境下,对大肠杆菌来说,土壤含水率越低,存活率就越高.2.2 D 值的计算D 值(Decimal reduction time,DRT)是指一定的热力致死温度条件下细菌密度降低至初始密度的1/10 所需的时间(即90%所需时间).根据图1 所示的热耐受性曲线,计算出E.coli K12 和E.coli O157 的D 值如表1.在生理盐水、70%含水率土壤和40%含水率土壤中,60℃下对数生长期 E.coli K12 的 D 值分别为15.0、15.4 和109.9sec,E.coli O157 的D 值分别为17.2 、40.0 和136.4 sec.同样,在同一温度下的稳定生长期E.coli K12 的D 值分别为22.1、29.0 和122.4 sec,E.coli O157 为30.4、61.6 和215.9 sec.40%含水率土壤中的大肠杆菌 D 值远高于在盐水中和70%含水率土壤中的大肠杆菌 D 值,稳定生长期大肠杆菌的 D 值比在对数生长期高.结果表明,含水率40%土壤中的 E.coliO157 的 D 值是含水率70%土壤中的 3 倍,而 E.coli K12 则是3~6 倍,换言之,在低含水率土壤中可以提高大肠杆菌的热耐受性,这表明温度以外,适当的水分管理也同样重要.据报道,60℃致死温度下杀灭大肠杆菌的必要时间介于15~20 min,55℃下需要 1 h[10].从上述得到的 D 值计算,大肠杆菌从108cfu/g 下降到100cfu/g,E.coli K12 需时16.3min,E.coli O157 需时28.8 min,与已有的报道大体一致.因此在理论上,所有的大肠杆菌细胞在土壤温度高于55℃时应该在几个小时后被杀灭,然而事实上,一些土壤环境中的大肠杆菌,即使温度高达54℃~67℃仍然能够存活下来[11],这用土壤含水率低和处在稳定生长期等理由还不能完全解释,可能还有其他影响因素,比如VBNC 状态而导致大肠杆菌残存于土壤.3 结论在热处理过程中,高含水率土壤中的大肠杆菌比低含水率土壤中的大肠杆菌热耐受性低,对数期大肠杆菌比稳定期的热耐受性低,E.coli K12 比E.coli O157 的热耐受性低.基于D 值计算,E.coli K12 和E.coli O157 的完全致死时间分别是16.3 min 和28.8 min.参考文献:[1] Cieslak P R, Barrett T J, Griffin P M, et al. Escherichia coli O157:H7infection from a manured garden[J]. The Lancet, 1993(342):367.[2] Chapman P A, Siddons C A, Manning J, et al. An outbreak of infection due toverocytotoxin-producing Escherichia coli O157 in four families: the influenceof laboratory methods on the outcome of the investigation[J]. Epidemiol.Infect, 1997(119):113-119.[3] Itoh Y, Sugita-Konishi Y, Kasuga F, et al. Enterohemorrhagic Escherichiacoli O157:H7 present in radish sprouts[J]. Appl. Environ. Microbiol,1998( ):1532-1535.[4] Coia J E. Clincal, microbiological and epidemiological aspects of Escherichiacoli O157 infection[J]. FEMS Immunology and Medical Microbiology,1998(20):1-9.[5] Konuma H. The condition of microbiological contamination in vegetables andpreventive measurement[J]. Jpn. J. Food Microbiol., 2000(17):37-41.[6] Wang G, Zhao T, Doyle M P. Fate of enterohemorrhagic E.coli O157:H7 inbovine feces[J]. Appl Environ Microbiol, 1996(62):2567-2570.[7] Gafliardi J V, Karns J S. Leaching of Escherichia coli O157:H7 in diversesoils under various agricultural management practices[J]. Applied andEnvironmental Microbiology, 2000(66):877-883.[8] Maule A. Survival of verocytotoxigenic Escherichia coli O157 in soil, waterand on surfaces[J]. Journal of Applied Microbiology Symposium Supplement,2000(88): 71-78.[9] 孙玉焕,杨志海.施污泥土壤中粪大肠菌群的动态变化及其环境卫生风险[J],青岛科技大学学报,2008(29):310-312.[10] Deportes I, Benoit-Guyod J-L, Zmirou D. Hazard to man and theenvironment posed by the use of urban waste compost: a review[J]. TheScience of the Total Environment, 1995(172):197-222.[11] Gong C M. Survival of pathogenic bacteria in compost with special referenceto Escherichia coli[J].Journal of Environmental Sciences,2005(17):770-774.[12] McDougald D, Rice S A, Weichart D et al. Nonculturability: adaptation ordebilitation?[J]. FEMS Microbiology Ecology, 1998(25):1-9.。

MacConkey Sorbitol Agar 产品说明书

MacCONKEY SORBITOL AGAR- For in vitro use only - Catalogue No. PM19Our MacConkey Sorbitol Agar is a selective, differential medium used in the detection of sorbitol-negative Escherichia coli such as serotype O157:H7.The majority of outbreaks of hemorrhagic colitis have been caused by Escherichia coli serotype O157:H7. Our MacConkey Sorbitol Agar is a modification on the formulation of Rappaport and Henig and its usefulness for differentiating E. coli O157:H7 from other non-hemorrhagic E. coli was later confirmed by March and Ratnam.Escherichia coli serotype O157:H7 rapidly ferments lactose and is indistinguishable from most other E. coli on traditional lactose-containing media. However, unlike approximately 80% of other E. coli, nearly all isolates of serotype O157:H7 ferment D-sorbitol slowly, or not at all. Sorbitol-MacConkey Agar was developed to take advantage of this characteristic by substituting the carbohydrate sorbitol for lactose in MacConkey agar and is the medium of choice for the isolation of E. coli O157:H7. E. coli O157:H7 does not ferment sorbitol and forms opaque, colorless colonies on the medium while most other E. coli strains ferment sorbitol to form typical pink colonies.Like classical MacConkey agar the selectivity of the medium is due to the presence of bile salts and crystal violet. These two selective agents are potent inhibitors of gram-positive bacteria including staphylococci and enterococci. Other more selective formulations are also available for testing foods such as MacConkey Sorbitol Agar with Cefixime and Tellurite [CTSMAC] (Dalynn PM22). Formula per Litre of MediumPancreatic digest of gelatin ............................... 15.5 gPancreatic digest of animal tissue ...................... 3.0 g D-Sorbitol .......................................................... 10.0 g Bile Salts ............................................................. 1.5 gSodium chloride .................................................. 5.0 gAgar ................................................................... 15.0 gNeutral red ........................................................ 0.03 gCrystal violet ................................................... 0.001 gpH 7.1 ± 0.2Recommended Procedure1.Allow medium to adjust to room temperatureprior to inoculation.2.Inoculate fecal specimens and rectal swabson a small area and streak for isolation.3. A nonselective medium should also beinoculated to increase the chance of recoveryof gram-negative organisms (when present inlow numbers) and to characterize otherorganisms present in the sample.4.Incubate plates aerobically at 35°C.5.Examine plates after 18 to 24 hours. Interpretation of ResultsEscherichia coli serotype O157:H7 does notferment sorbitol and therefore producescolorless colonies on MacConkey Sorbitol Agar.Other E. coli strains will ferment sorbitoland produce pink colonies.Additional biochemical and/or serologicaltests should be performed on isolated coloniesfrom pure culture in order to completeidentification.•Prolonged incubation can result in fading of pink-colored sorbitol-positive coloniesmaking interpretation more difficult •Upon prolonged incubation, some strains ofE. coli O157:H7 can ferment sorbitol andproduce pink colored colonies•Although most non-O157:H7 E. coli ferment sorbitol, about 6% of the isolates do not.These atypical strains along with othersorbitol non-fermenting bacteria such asMorganella and Hafnia appear identical toO157:H7 colonies and thereforeconfirmatory tests may be necessaryQuality ControlAfter checking for correct pH, colour, depth, and sterility, the following organisms are used to determine the growth performance of the completed medium.Organism Expected Result Escherichia coliATCC 35150 (O157:H7)Growth, colorless coloniesEscherichia coliATCC 25922Growth, pink coloniesStaphylococcus aureusATCC 25923InhibitionStorage and Shelf LifeOur MacConkey Sorbitol Agar should be stored away from direct light at 4°C to 8°C. The medium side should be uppermost to prevent excessive accumulation of moisture on the agar surface. Under these conditions this medium has a shelf life of 12 weeks from the date of manufacture. Ordering InformationCat# Description Format PM19 MacConkey Sorbitol Agar[Standard 15x100-mm plate]10/pkgReferences1.Rappaport F, Henig E. Media for theisolation and differentiation of pathogenic Escherichia coli (serotypes 0111 and 055). J Clin Path 1952; 5:361-2.2.March SB, Ratnam S. Sorbitol-MacConkeymedium for detection of Escherichia coliO157:H7 associated with hemorrhagic colitis.J Clin Micro 1986; 23:869-72.3.Ritchie M, Partington S, Jessop J, Kelly MT.Comparison of a direct fecal shiga-like toxin assay and sorbitol-MacConkey agar culture for laboratory diagnosis of enterohemorrhagic Escherichia coli infection.J Clin Microbiol 1992; 30:461-4.4.Isenberg HD, Ed. Clinical microbiologyprocedures handbook, Vol 1. Washington, DC: ASM, 1992.5.Zadik PM, Chapman PA, Siddons CA. Useof tellurite for the selection of verocytotoxigenic Escherichia coli O157. J Med Microbiol 1993; 39:155-8.6.Stapp Jr, Jelacic S, Yea YL et al.Comparison of Escherichia coli O157:H7 antigen detection in stool and broth cultures to that in sorbitol-MacConkey agar stool cultures. J Clin Microbiol 2000; 38:3404-6.7.Fey PD, Wickert RS, Rupp ME, Safranek TJ,Hinrichs SH. Prevalence of non-O157:H7 shiga toxin-producing Escherichia coli in diarrheal stool samples from Nebraska.Emerg Infect Dis 2000; 6:530-3.8.FDA. Bacteriological analytical manual,2002. Retrieved January 27, 2003, from FDA website: / ~ebam/bam-toc.htmlOriginal: Jan 2003Revised / Revisited: October 2014。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Detection of Escherichia coli O157:H7virulence genes in isolates from beef,pork,water,human and animal species in the northwest province,South Africa:public health implicationsCollins Njie Ateba *,Moses Mbewe 1Dale Beighle Centre for Animal Health Studies,School of Agricultural Sciences,North-West University e Mafikeng Campus,P .Bag X2046,Mmabatho 2735,South AfricaReceived 6October 2010;accepted 8November 2010Available online 25January 2011AbstractThe aim of theandidentify Escherichia coliO157:H7from pigs,cattle,andwatersamplestheir by A total of 220samples coli O157:H7were for the by PCR and 130isolates was pigs and pork 88(67.7%)than in cattle water 3(2.3%)or was more frequently isolated from faecal (16.9%e 43.1%)than from meat samples (10.8%e 24.6%).A large proportion d 73isolates possessed the hlyA gene,while 48(36.9%)harboured the eaeA gene.Although there were no major differences in the number of isolates harbouring the stx 1and stx 2genes,respectively,only a small proportion 13(10%)harboured both shiga toxin genes.Despite this,the proportion of isolates that possessed the stx 129(22.3%)was higher the stx 2gene.None of the E.coli O157:H7isolates harboured all four shiga-toxin producing E.coli (STEC)virulence genes When comparing the proportion of isolates obtained from the different sample sources and/or stations,significant positive between isolates from Mafikeng and Lichtenburg (r ¼0.981,p <0.05)and those from Mafikeng and Rustenburg (r ¼0.991,p <0.05).These results therefore indicate that meat and faeces samples obtained from major cities in the northwest province were contaminated with E.coli O157:H7.We suggest that there is a need for improving the sanitary conditions of farms,abattoirs and butcher shops.This could reduce transmission of E.coli O157:H7to humans.Ó2011Institut Pasteur.Published by Elsevier Masson SAS.All rights reserved.Keywords:Escherichia coli O157:H7;rfb O157;fliC H7;Cattle;Pigs;Humans1.IntroductionShiga-toxin-producing Escherichia coli are food-borne pathogens that cause diseases in humans (Bell,2000;Leelaporn et al.,2003;Nunes et al.,2003;Maruzumi et al.,2005;Sugiyama et al.,2005).Serotype O157:H7,in particular,has attracted significant attention due to its ability to cause disease even when only a few bacterial cells are present in food and/or water(Armstrong et al.,1996;Buchanan and Doyle,1997).Diseases caused by E.coli O157:H7in humans include watery and/or bloody diarrhoea,haemorrhagic colitis (HC),haemolytic urae-mic syndrome (HUS)and thrombotic thrombocytopenic purpura (TTP)(Griffin and Tauxe,1991;Armstrong et al.,1996;Weir,2000;Sugiyama et al.,2005).These infections are usually severe in young children,elderly subjects and immunocom-promised individuals (Riley et al.,1983;Duffy et al.,2006;Razzaq,2006;Walch et al.,2006).The ability of E.coli O157:H7to cause disease is associated with production of potent toxins.Shiga toxin genes designatedstx 1and stx 2are the major virulence factors (Pie´rard et al.,1997;Law,2000).Alongside shiga toxins,other variants of stx 2,eaeA ,*Corresponding author.Tel.:þ27183892247;fax:þ27183892134.E-mail addresses:atebacollins1@ (C.N.Ateba),moses.mbewe@nwu.ac.za (M.Mbewe).1Tel.:þ27183892702,þ27728657464(mobile);fax:þ27183892748.Research in Microbiology 162(2011)240e 248/locate/resmic0923-2508/$-see front matter Ó2011Institut Pasteur.Published by Elsevier Masson SAS.All rights reserved.doi:10.1016/j.resmic.2010.11.008本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2010,版权所有,仅供试用。

and hlyA genes have been found to play roles in the development of disease(Jerse et al.,1990;Pie´rard et al.,1997;Law,2000).Cattle represent the principal reservoir of E.coli O157:H7 (Langreid et al.,1999;Cobbold and Desmarchelier,2000). However,the pathogen has also been isolated from the faeces of other species of domestic animals that include pigs,goats,cats, deer and sheep(Heuvelink et al.,1996;Leung et al.,2001; Mu¨ller et al.,2002;Botteldoorn et al.,2003;Rey et al.,2003; Tutenel et al.,2003;Nagano et al.,2004;Ju-Yeon et al.,2006; Ateba et al.,2008).Failure to implement proper farm manage-ment techniques and/or strict sanitary conditions during the production process,handling and marketing of meat usually facilitates transfer of E.coli O157:H7to the meat and its asso-ciated food products(Samadpour et al.,1994;Bouvet et al., 2001;Radu et al.,2001;Botteldoorn et al.,2003;Tutenel et al.,2003).Food products such as chicken,lamb,pork,beef, mince,vegetables and water contaminated with E.coli O157:H7 are the principal sources of infection(Chapman et al.,1993; Samadpour et al.,1994;Richert et al.,2000;LeJeune et al., 2001;Guan and Levin,2002).It is therefore important to cook these food products properly before they are consumed.Although we reported the prevalence of this pathogen in cattle and pigs in some areas of the northwest province of South Africa(Ateba et al.,2008),the prevalence of E.coli O157:H7in food products such as pork and beef in South Africa,and the northwest province in particular,is unknown. Given the increasing demand for beef and pork in South Africa,such an investigation is needed.In the present study, we expanded our investigation with the aim of reporting the occurrence of E.coli O157:H7in cattle,pigs,humans,water, pork and beef samples in some major cities in the northwest province of South Africa.This was designed to determine the level of contamination of meat at sale points,which does not exclude contamination at the abattoirs.The objectives of the study were to isolate and identify E.coli O157:H7from humans,animals,water and some food products purchased at supermarkets in major cities in the northwestern province of South Africa and to characterise isolates for the presence of shiga toxin virulence genes using PCR.2.Materials and methods2.1.Sample collectionOne-hundred faecal samples were collected from cattle,pigs and humans,while40water samples each were collected from taps and river catchments in the northwestern province of South Africa.Meat samples consisted of40pork and40beef samples purchased at supermarkets in major cities in the province.The meat samples were placed in sterile plastic bags and labelled based on sample type and area of collection.Human faecal samples were collected from20patients presenting at the Mafikeng provincial hospital for diarrhoea.The hospital does not perform routine screening for E.coli O157:H7and thus,the impact of this pathogen in diarrhoeal cases in the area is unknown.The isolation of E.coli O157:H7from human stool samples was performed at the microbiology laboratory of Mafikeng Provincial Hospital.Samples were handled with care and all ethical procedures were enforced during isolation of E. coli O157:H7.They were obtained without any indication of patient identity,used only for bacterial isolation and properly disposed of by the laboratory staff of the hospital immediately after analysis.Animal samples were collected directly from the rectum of animals using sterile arm-length gloves and were placed in sterile sample collection bottles.Water samples were collected in100ml collection bottles.Meat,faeces and water samples were immediately transferred on ice to the laboratory for analysis.Upon arrival in the laboratory,all samples were analysed immediately or held at4 C for not more than48h before analysis.Table1A and B indicate the numbers of different samples collected from the stations sampled.2.2.Isolation of E.coli O157:H72.2.1.Human stool and animal faecal samplesTwo grams of faecal samples were dissolved in5ml of modified triptycase soy broth(Merck Diagnostics e UK) supplemented with novobiocin(2m g/ml)and cefixime(50ng/ ml).The broth was incubated at37 C for24h(Meichtri et al., 2004).Tenfold serial dilutions of pre-enriched samples were performed using2%peptone water.Aliquots of100m l from each dilution was plated onto sorbitol e MacConkey agar (SMAC)supplemented with cefixime(50ng/ml)and Table1Area of collection,source,nature and number of samples collected during the study. Sample source Sampling area Nature of sample Number ofsamples Pigs Koster Faecal sample8Lichtenburg Faecal sample8Mafikeng Faecal sample8Rustenburg Faecal sample8Zeerust Faecal sample8Pigs Koster Pork8Lichtenburg Pork8Mafikeng Pork8Rustenburg Pork8Zeerust Pork8 Bovine Koster Faecal sample8Lichtenburg Faecal sample8Mafikeng Faecal sample8Rustenburg Faecal sample8Zeerust Faecal sample8 Bovine Koster Beef8Lichtenburg Beef8Mafikeng Beef8Rustenburg Beef8Zeerust Beef8Water Koster Water8Lichtenburg Water8Mafikeng Water8Rustenburg Water8Zeerust Water8 Human Mafikeng Provincial5HospitalFaecal sample20241C.N.Ateba,M.Mbewe/Research in Microbiology162(2011)240e248potassium tellurite(25mg/ml).Plates were incubated at37 C for24h(Meichtri et al.,2004).2.2.2.Meat samplesFor isolation of E.coli O157:H72g of beef or pork was washed in5ml of modified triptycase soy broth(Merck Diag-nostics,U.K),supplemented with novobiocin(2m g/ml)and cefixime(50ng/ml).The broth was incubated at37 C for24h (Meichtri et al.,2004).Tenfold serial dilutions of the pre-enriched samples were made using2%peptone water.Aliquots of100m l from each dilution were plated onto sorbitol e MacConkey agar (SMAC)supplemented with cefixime(50ng/ml)and potassium tellurite(25mg/ml).The plates were incubated at37 C for24h (Meichtri et al.,2004).2.2.3.Water samplesFive hundred millilitres of water were collected from each source per collection.Aliquots of100ml from each of the samples wasfiltered through0.45m m Gridfilter-units(Type HA)using a Gelman Little Gaint pressure/vacuum pump machine(model13156,GelmanSciences,MI,USA).The filters were placed on sorbitol e MacConkey agar(SMAC) supplemented with cefixime(50ng/ml)and potassium tellurite (25mg/ml).The plates were incubated at37 C for24h (Mu¨ller et al.,2001).Presumptive E.coli O157:H7colonies were colourless on CT e sorbitol e MacConkey agar and56of these from each sample were subcultured onto CT e sorbitol e MacConkey agar. The plates were incubated at37 C for24h(Meichtri et al., 2004).The isolates were cultured on nutrient agar and plates were incubated at37 C for24h.The plates were stored at room temperature until the isolates were identified and char-acterized for the presence of STEC virulence genes by PCR.2.3.E.coli control strainsE.coli O157:H7(ATCC43889)that possessed the stx2, stx1,eae and hlyA genes was used as positive controls,while E.coli O157:H7(NCTC12900)that is a non-pathogenic strain and does not harbour any of the targeted genes was used asa negative control.2.4.Extraction of genomic DNAGenomic DNA was extracted from all5600presumptive E.coli O157:H7isolates using the alkaline lysis method (Sambrook et al.,1989).2.5.Quantification of genomic DNA extractedDNA extracted from E.coli O157:H7isolates and control strains was quantified using a UV Visible Spectrophotometer (model S-22,Boeco,Germany).A one-in-ten dilution of the DNA extracted was prepared in glass cuvettes(Sigma)using sterile distilled nuclease-free water.Sterile distilled nuclease water was used as a blank and the optical density(OD)of the diluted samples was determined at wavelengths of260nm and 280nm(Sambrook et al.,1989).OD at260nm was used to determine the concentration of DNA in the solution.The concentration of DNA was determined using the standard that an OD of1corresponds to approximately50m g/ml of double-stranded DNA.Furthermore,the ratio of the OD at260nm versus that at280nm was used to estimate the purity of the DNA extracted.Readings ranged from 1.8to 2.0,which indicated that the DNA was relatively pure.2.6.Identification of suspected E.coli O157:H7isolates by PCRBacterial16S rRNA gene fragments were amplified as an internal control for all isolates(Muyzer et al.,1995).The identities of the suspected E.coli O157:H7isolates were confirmed through amplification of rfbO157gene fragments (Morin et al.,2004)and E.coli H7fliC H7gene fragments (Reischl et al.,2002),respectively.PCRs were performed using oligonucleotide primer combinations and cycling conditions that appear in Table2.Amplifications were per-formed using a Peltier Thermal Cycler(model-PTC-220 DYADÔDNA ENGINE).The reactions were prepared in 25m l volumes that constituted1m g/m l of the template DNA, 50pmol of each oligonucleotide primer set,1X PCR master mix,1U Taq DNA polymerase and RNase free distilled water. All PCR reagents used were Fermentas,USA products supplied by Inqaba Biotec Ltd,Sunnyside South Africa. Amplification conditions for16S rRNA gene fragments, rfb O157and thefliC H7gene fragments,are shown in Table2. All PCR products were stored at4 C.2.7.Detection of E.coli O157:H7virulence genes byPCRAll E.coli O157:H7isolates were screened for the presence of STEC virulence genes that included stx1,stx2,eae and hlyA. The reactions were prepared in25m l volumes and amplifi-cations were performed using a Peltier thermal cycler(model-PTC-220DYADÔDNA ENGINE).PCR products were stored at4 C.2.8.Electrophoresis of PCR productsPCR products were separated by electrophoresis on1% (w/v)agarose gel.Electrophoresis was conducted in a hori-zontal Pharmacia biotech equipment system(model Hoefer HE99X;Amersham Pharmacia biotech,Sweden)for5h at 60V using1x TAE buffer(40mM Tris,1mM EDTA and 20mM glacial acetic acid,pH8.0).Each gel contained a100bp DNA molecular weight marker(Fermentas,USA). The gels were stained in ethidium bromide(0.1m g/ml)for 15min and amplicons were visualised under UV light (Sambrook et al.,1989).A Gene Genius Bio imaging system (Syngene,Synoptics;UK)was used to capture the image using GeneSnap(version 6.00.22)software.Images were analysed using GeneTools(version 3.07.01)software242 C.N.Ateba,M.Mbewe/Research in Microbiology162(2011)240e248(Syngene,Synoptics;UK)to determine the relative sizes of the amplicons.2.9.Statistical analysisStatistical analysis was done using SPSS software (version 14.0).Pearson’s correlation product of the moment was used to determine the correlation between E.coli O157:H7isolated from the different sample sources and/or stations.The two-tailed test of significance (p <0.05)was used.3.Results and discussion3.1.Detection of E.coli O157:H7isolates from animal faecal samples,human stool samples,beef,pork and water samplesA total of 220samples were collected from two animal species that included cattle and pigs,humans,meat (beef and pork)and water during the study.These samples were ana-lysed for the presence of E.coli O157:H7using modifiedTable 2Oligonucleotide primers used for amplification of the various targeted genes in E.coli O157:H7and the different cycling conditions utilized.Primer Sequence (50e 30)Targeted gene Amplicon size (bp)References PCR cycling conditions GM5F TACGGGAGGCAGCAG16S ribosomal genes550Muyzer et al.,199535x a95 C for 30s 62C for 1min 72 C for 1min 907R CCGTCAATTCCTTTGAGTTT RfbE F GCGCGAATTCGTGCTTTTGA TATTTTTCCGAGTACATTGG rfbE O157239Morin et al.,200445x b94 C for 30s 60 C for 90s 72 Cfor 90s RfbE R GCGCGAATTCTTTATATCAC GAAAACGTGAAATTGCTGAT FliCH7F GCTGCAACGGTAAGTGAT fliC H7984Reischl et al.,200245x b94 C for 30s 60C for 90s 72 C for 90s FliCH7R GGCAGCAAGCGGGTTGGT Eae F GACCCGGCACAAGCATAAGC eae 384Paton and Paton,199835x c94 C for 1min 59 C for 1min 72 C for 1min Eae R CCACCTGCAGCAACAAGAGG HlyAF GCATCATCAAGCGTACGTTCC hlyA 534Paton and Paton,199835x c94 C for 1min 59 C for 1min 72 C for 1min HlyAR AATGAGCCAAGCTGGTTAAGCT Stx 1F ATAAATCGCCATTCGTTGACTAC A subunit of stx 1180Paton and Paton,199840x c94 C for 1min 63 C for 1min 72 C for 1min Stx 1R AGAACGCCCACTGAGATCATC Stx 2F GGCACTGTCTGAAACTGCTCC A subunit of stx 2255Paton and Paton,199840x c94 C for 1min 63 C for 1min 72Cfor1minStx 2RTCGCCAGTTATCTGACATTCTa,b,cInitial denaturing steps of (95 C for 10min),respectively,and final strand extension steps of (72 C for 10min).Fig.1.Agarose gel (1%)of 16S rRNA gene fragments that were amplified from DNA extracted from the E .coli O157:H7isolated from samples obtained from the different sources and E.coli control ne 1¼DNA marker (100base pairs);Lanes 2e 10¼16S rRNA fragments amplified from DNA of E .coli O157:H7isolates obtained from cattle,pigs,beef,pork,water and human stool samples;Lanes 11and 12¼16S rRNA fragments amplified from DNA of obtained from E .coli O157:H7(ATCC 43889)and E .coli O157:H7(NCTC 2900),respectively.243C.N.Ateba,M.Mbewe /Research in Microbiology 162(2011)240e 248selective media.Only those isolates that fermented sorbitol (colourless on CT e SMAC agar)were used.A total of 12320presumptive isolates were obtained.The identities of these isolates were later investigated based on the presence of rfb O157and the fliC H7gene fragments using PCR.The 16S rRNA gene fragments are shown in Fig.1,while the rfb O157gene fragments that were amplified are depicted in Fig.2.The results in Table 3indicate the number of E.coli O157:H7isolated from faeces and meat samples of the different species and water samples investigated.A total of 130(1.1%)E.coli O157:H7isolates were positively identified by PCR in this study.A larger proportion d 88(67.7%)d of E.coli O157:H7was isolated from pigs than from cattle (36(27.7%)),river catchments (3(2.3%)),tap water (2(1.5%))or humanstool samples (1(0.77%)).Generally,the proportion of E.coli O157:H7isolated was higher in faeces (16.9%e 43.1%,respectively)than in meat samples (10.8%e 24.6%,respec-tively)for both animal species sampled.The proportion of E.coli O157:H7isolated was higher in both faeces samples of pig (23.2%e 35.7%,respectively)and pork samples (28.1%e 37.5%,respectively)obtained from Mafikeng and Rustenburg when compared to the other stations and/or species sampled.Despite the fact that E.coli O157:H7was not isolated from beef samples obtained from Zeerust,the pathogen was identified in both faeces samples of cattle and in beef samples obtained from all other stations sampled.There was no major difference in the number of isolates obtained from either the cattle faeces or beef samples investigated.We therefore suggest that isolates in the GIT of cattle are transmitted via contamination during the production process.E.coli O157:H7was not isolated from water samples obtained from a large proportion of the stations (Table 3).Despite this,the pathogen was identified in water used for domestic purposes by residents of an informal settle-ment in Koster.This was a cause for concern.3.2.Molecular characterisation of E.coli O157:H7isolated from animal faecal samples,human stool samples,beef,pork and water samplesA total of 130E.coli O157:H7isolates obtained in the study were screened for the presence of STEC virulence genes by PCR.The proportions of the various genes detected in E.coli O157:H7isolated from the different species and/or sources are shown in Table 4.The isolates were further ana-lysed for combinations of the various virulence genes detected per isolate.A summary of data indicating the different geno-types obtained for isolates from the different species and/or sources is also shown in Table 4.Eight major genotypes were identified.As shown in Table 4,73(56.2%)of the isolates investigated possessed the hlyA gene fragment with or without a combination of the other genes tested;53of these isolates (40.8%)harboured the hlyA gene alone.This gene fragment was more prevalent in isolates obtained from pig faeces and pork (49,or 37.7%)than from cattle faeces andbeefFig.2.Agarose gel (1%)of 16S rRNA gene fragments that were amplified from DNA extracted from the E .coli O157:H7isolated from samples obtained from the different sources and E.coli control ne 1¼DNA marker (100base pair);Lane 2¼rfb O157gene fragments amplified from E .coli O157:H7(ATCC 43889)control strain;Lanes 3e 4:rfb O157gene fragments amplified from E.coli O157:H7isolated.Table 3Number of E.coli O157:H7identified from samples obtained from the different species and/or sources through PCR amplification of the rfb O157and fliC H7gene fragments.SourceHumans Pigs CattleWaterTotalFaecesFaeces Pork Faeces Beef Taps Rivercatchment Mafikeng 12012760046Lichtenburg NT 117640028Koster NT 83212319Rustenburg NT 139530030Zeerust NT 4120007Total15632221423130NT ¼Not tested.Table 4Characterization of E.coli O157:H7for the presence of shiga toxin virulence genes using PCR.SpeciesNature of sampleNo.and percentage of E.coli O157:H7that possessed the virulence genes amplified stx 1stx 2eaeA hlyA PigsFaeces 14132231Pork491218Cattle Faeces105611Beef1359Water Tap0002River catchments0021Humans Faeces0111Total number of different genes amplified29314873244 C.N.Ateba,M.Mbewe /Research in Microbiology 162(2011)240e 248(21,or16.2%),water (5,or 3.8%)or human stool samples (1,or 0.8%).The eaeA gene was also identified in 48(36.9%)of the isolates tested.Generally,the prevalence of this gene fragment was higher in isolates from pig faeces and pork (34,or 26.2%)than in those from cattle faeces and beef samples (11,or 8.5%).Although there was no major difference in the number of isolates obtained in this study that possessed the stx 1and stx 2genes respectively,only 13of them (10%)harboured both shiga toxin genes.Despite this,the number of isolates that possessed the stx 1gene,i.e.29(22.3%),was higher than those with the stx 2gene (Table 4).None of the E.coli O157:H7isolates obtained harboured all four STEC virulence genes investigated.Only 12of them (9.2%)possessed the stx 2gene in combination with the two accessory virulence gene deter-minants (eaeA and hlyA )(Table 5).4.DiscussionThe primary objective of this study was to isolate E.coli O157:H7from pig and cattle faeces samples,pork,beef,water and human stool samples.An investigation of the extent to which isolates from pigs and cattle may contaminate food products (pork and beef),and water cannot be overemphasized.Microbes in the GIT tract of animals can contaminate the environment used for slaughtering,machines used for cutting and the personnel.These pathogens can be transferred to meat if proper hygiene is not implemented,especially at the sale points (Bouvet et al.,2001;Tutenel et al.,2003;Yilmaz et al.,2006).Meat contaminated with E.coli O157:H7has been identified as a potential source of transmission of these pathogens in humans (Tsuji et al.,2002;Maruzumi et al.,2005).The demand for beef and pork in South Africa is high.Despite the fact that we had reported that the prevalence of E.coli O157in pigs was higher (44.2%e 50%)than in cattle (5.4%e 20.0%)and humans (7.5%)(Ateba et al.,2008),an investigation aimed at determining the proportion of this pathogen and its virulence determinants in pork and beef may serve as a means of investigating the degree to which public health regulations are implemented in the meat production process in the northwest province of South Africa.In the present study,E.coli O157:H7was successfully iso-lated from faeces,meat samples,water and human stoolsamples tested.Similar to our previous observation (Ateba et al.,2008),in the present study,the proportion of E.coli O157:H7isolated was higher in pigs than in cattle,water or human stool samples.Moreover,the prevalence of this path-ogen was higher in pork than in beef samples.Similar studies have also been conducted to determine the prevalence of this pathogen in both these animal species,carcasses in abattoirs and their corresponding food products worldwide (Bouvet et al.,2001;Guyon et al.,2001;Johnsen et al.,2001;Botteldoorn et al.,2003;Mu ¨ller et al.,2003;Tutenel et al.,2003;Jo et al.,2004;Ellingson et al.,2005;Villani et al.,2005;Yilmaz et al.,2006;Lim et al.,2007;Mu ¨ffling et al.,2007).Although the prevalence rates obtained in these studies varied,it was reported that the proportion of E.coli O157:H7was often higher in pigs and/or pork than cattle and/or beef samples (Lim et al.,2007).Similar observations were seen in the present study.However,it had also been reported that the proportion of isolates obtained from faeces samples of cattle and beef samples was higher than those obtained from faeces samples of pigs and pork samples (Jo et al.,2004).Moreover,in the previous study,this pathogen was not isolated from faeces samples from chicken or chicken meat samples.Based on results presented herein,we suggest that the prevalence of E.coli O157:H7in animals and meat sold in supermarkets largely depends on hygiene conditions on the farms,that of equipment used in abattoirs,the surrounding environment and among the personnel.This may account for the high contamination with E.coli O157:H7identified in meat samples obtained from Mafikeng and Rustenburg.These cities are more heavily populated,and sales attendants in some supermarkets usually have to serve more than one person at a given time.This can result in poor hygiene and handling practices.It is thus important to cook meat products properly before they are consumed so as to limit human infection.Moreover,implementation of such control measures at the farms,in the abattoirs or when cooking meat may reduce food-borne infections in humans.A further objective of the study was to characterise E .coli O157:H7isolated from the different species and/or sources for the presence of STEC virulence gene determinants using PCR analysis.A total of 130isolates and control strains wereTable 5Proportion of eight different gene combinations (genotypes)identified in E.coli O157:H7isolated.The notations G1to G8indicate gene combinations of these eight genotypes.Gene combinations for E.coli O157:H7isolatedProportion of E.coli O157:H7isolates with the different gene combinations per specie and/or sample source.HumansPigs Cattle Water Total (%)rfbE O157fliC H7stx 1stx 2eaeA hlyA Faeces Faeces Pork Faeces Beef Tap River catchments þþG1ÀÀþþ06200008(6.2%)þþG2þÀÀÀ081700016(12.3)þþG3Àþþþ153210012(9.2%)þþG4ÀÀÀþ020********(40.8%)þþG5ÀÀþÀ097130222(16.9%)þþG6þþÀÀ04300007(5.4%)þþG7þþþÀ02031006(4.6%)þþG8ÀþÀÀ2316(4.6%)þ¼Gene present,À¼gene absent,G1e G8¼eight different genotypes identified in the study.245C.N.Ateba,M.Mbewe /Research in Microbiology 162(2011)240e 248analysed.Contrary to our previous report in which none of the isolates from pigs,cattle or humans possessed the shiga toxin genes(Ateba and Bezuidenhout,2008),these gene fragments were detected in13(10%)of the isolates tested in the present study.The stx genes are known to be the primary virulence factors of E.coli O157:H7,but the stx2gene is usually more prevalent in E.coli O157:H7isolates(Paton and Paton,1998; Johnsen et al.,2001;Villani et al.,2005).However,in the present study,a larger proportion of the isolates d16 (12.3%)d possessed the stx1gene compared to stx2.Previous reports indicated that the stx2gene rather than stx1was more strongly associated with disease in humans(Bidet et al.,2005). Similarly,in our study,the stx2gene was detected in the isolate obtained from an individual suffering from diarrhoea.The high prevalence of hlyA and eae genes in a large proportion of E.coli O157:H7isolates from pigs without diarrhoea was cause for concern.hlyA is a plasmid-encoded gene(Schmidt et al.,1999)that confers haemolytic activity upon the host bacteria on5%sheep blood agar(Beutin et al., 1998).This may explain its high prevalence in the bacterial populations analysed.The eae gene encodes for intimin that facilitates intimate attachment of E.coli O157:H7to the host cell by producing attaching and effacing intestinal lesions (Knutton et al.,1989).Generally,this gene was more prevalent in isolates from non-diarrhoeal pigs and pork than cattle and beef,water or humans.Although stx genes are considered the primary virulence genes,there exists co-association with the eae gene(Johnsen et al.,2001;Omisakin et al.,2003).Similar observations were obtained in the present study. E.coli O157:H7isolated from an individual with diarrhoea possessed stx2together with eae and hlyA genes.Although the eae gene is usually present in E.coli O157:H7isolated from diseased cases,its role in the pathogenesis of human disease requires further elucidation(Beutin et al.,2004).In a previous study, we identified an E.coli O157:H7isolate from a human subject suffering from diarrhoea that did not harbour any of the stx genes(Ateba and Bezuidenhout,2008).We therefore suggest that the ability of an E.coli O157:H7isolate to cause disease in humans depends on its ability to produce different virulence gene determinants,and on a number of physiological factors in the host.In the present study,eae and hlyA genes were more prev-alent in E.coli O157:H7isolated from non-diarrhoeal pigs than cattle,and more prevalent in pork than in beef or human samples.Similar observations had previously been reported (Frydendahl,2002;Hornitzky et al.,2002;Ateba and Bezuidenhout,2008).Based on data obtained from our previous study coupled with those presented herein,it is our view that pigs rather than cattle are easily colonised by E.coli O157:H7in the study area and are a potential host for this pathogen in the northwest province of South Africa.Thus, pork rather than beef can potentially transmit E.coli O157:H7 to humans.This indicates the need to implement proper hygiene on farms and meat processing plants.E.coli O157:H7that possess different gene combinations have been isolated from food and environmental sources (Galland et al.,2001)worldwide.However,in the present study,we identified isolates with eight different genotypes. None of the isolates possessed all the virulence genes tested, and only a few isolates possessed up to three of the genes tested.Despite this,detection of the stx,eaeA and hlyA gene fragments in an isolate obtained from human stool samples indicated that these genes facilitate the development of human disease.However,E.coli O157:H7isolates that do not possess the shiga toxin genes,but possess one or more of the accessory virulence genes,have been found to cause disease in humans (Ateba and Bezuidenhout,2008).This indicates the need to limit the prevalence of this pathogen in animals and food products and to develop sensitive methods for detecting E.coli O157:H7in food.This will ensure food safety and proper clinical treatment of its associated infections.In conclusion,detection of E.coli O157:H7from beef, pork,water and human stool samples in the northwest prov-ince of South Africa not only indicates that there exists contamination of meat bought at sale points but it also raises the question of hygiene practices both on farms and at abat-toirs.Moreover,the presence of this pathogen,even at low levels,is highly significant,since it can survive unfavourable conditions in frozen and refrigerated food products.It is important that measures be implemented to prevent contact between the hides and intestinal contents of animals and the carcass.This may reduce transmission of these pathogens to meat and limit human infection.We recommend that humans who suffer from diarrhoea in the study area should report cases to the hospital so that the actual incidence of infections caused by E.coli O157:H7is known.AcknowledgementsThe authors would like to thank the North-West University and,in particular,the Faculty of Agriculture,Science and Technology for funding this project.We also thank Dr.E. Mu¨ller,previously with the Department of Medical Virology, University of Pretoria e South Africa,for providing control strains used in this study.The assistance received from Ms.N.D.Lesaoana and Mr.Beleng is hereby acknowledged. ReferencesArmstrong,G.L.,Hollingsworth,J.,Morris Jr.,J.M.,1996.Emerging food-borne pathogens:Escherichia coli O157:H7as a model of entry of a new pathogen into the food supply of the developed world.Epidemiol.Rev.18, 29e51.Ateba, C.N.,Mbewe,M.,Bezuidenhout, C.C.,2008.The prevalence of Escherichia coli O157strains in cattle,pigs and humans in the North-West Province,South Africa.SAJS104,7e8.Ateba,C.N.,Bezuidenhout,C.C.,2008.Characterisation of Escherichia coli O157strains from humans,cattle and pigs in the Northwest Province, South Africa.Int.J.Food Microbiol.128,181e188.Bell,C.,2000.Approach to the control of entero-haemorrhagic Escherichia coli(EHEC).Int.J.Food Microbiol.78,197e216.Beutin,L.,Geier, D.,Zimmermann,S.,Aleksic,S.,Gillespie,H.A., Whittam,T.S.,1998.Epidemiological relatedness and clonal types of natural populations of Escherichia coli strains producing shiga-toxins in separate populations of cattle and sheep.Appl.Environ.Microbiol.63, 2175e2180.246 C.N.Ateba,M.Mbewe/Research in Microbiology162(2011)240e248。

相关文档
最新文档