河北省邯郸市2014-2015学年高二上学期期末教学质量检测数学(理)试题 试题及答案

合集下载

【全程复习方略】2014-2015学年高中数学 第三章 空间向量与立体几何单元质量评估课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 第三章 空间向量与立体几何单元质量评估课时作业 新人教A版选修2-1

"【全程复习方略】2014-2015学年高中数学第三章空间向量与立体几何单元质量评估课时作业新人教A版选修2-1 "(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中不正确的是( )A.平面α的法向量垂直于与平面α共面的所有向量B.一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果a,b与平面α共面且n⊥a,n⊥b,那么n就是平面α的一个法向量【解析】选D.只有当a,b不共线且a∥α,b∥α时,D才正确.2.同时垂直于a=(2,2,1),b=(4,5,3)的单位向量是( )A.B.C.D.或【解析】选D.设所求向量为c=(x,y,z),由c·a=0及c·b=0及|c|=1得检验知选D.3.(2014·金华高二检测)已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c共面,则实数λ等于( )A. B. C. D.【解析】选D.易得c=t a+μb=(2t-μ,-t+4μ,3t-2μ),所以解得故选D.4.(2014·银川高二检测)已知矩形ABCD,PA⊥平面ABCD,则以下等式中可能不成立的是( )A.·=0B.·=0C.·=0D.·=0【解析】选B.选项A,⇒DA⊥平面PAB⇒DA⊥PB⇒·=0;由A可知·=0,C正确;选项D,PA⊥平面ABCD⇒PA⊥CD⇒·=0;选项B,若·=0,则BD⊥PC,又BD⊥PA,所以BD⊥平面PAC,故BD⊥AC,但在矩形ABCD中不一定有BD⊥AC,故B不一定成立.5.已知a=(cosα,1,sinα),b=(sinα,1,cosα),且a∥b,则向量a+b与a-b的夹角是( )A.90°B.60°C.30°D.0°【解析】选A.因为|a|2=2,|b|2=2,(a+b)·(a-b)=|a|2-|b|2=0,所以(a+b)⊥(a-b),故选A.【变式训练】已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则与的夹角为( )A.30°B.45°C.60°D.90°【解析】选 C.=(0,3,3),=(-1,1,0).设<,>=θ,则cosθ===,所以θ=60°.6.(2014·长春高二检测)已知向量e1,e2,e3是两两垂直的单位向量,且a=3e1+2e2-e3,b=e1+2e3,则(6a)·1()2b 等于( )A.15B.3C.-3D.5【解析】选B.(6a)·1()2b=3a·b=3(3e1+2e2-e3)·(e1+2e3)=9|e1|2-6|e3|2=3.7.已知正方体ABCD-A′B′C′D′中,点F是侧面CDD′C′的中心,若=+x+y,则x-y等于( )A.0B.1C.D.-【解析】选A.如图所示,=+,所以=x+y,所以=x+y,因为=+,=,所以x=y=,x-y=0.8.(2014·安庆高二检测)如图,将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足=-+,则||2的值为( )A. B.2 C. D.【解析】选D.过点C作CE垂直于BD,垂足为E,连接AE,则得AC=1,故三角形ABC为正三角形.||2==++-·+·-·=×1+×1+()2-×1×1×cos∠ABC=-=.9.已知A(4,1,3),B(2,-5,1),C是线段AB上一点,且=,则C点的坐标为( )A. B.C. D.【解析】选C.由题意知,2=,设C(x,y,z),则2(x-4,y-1,z-3)=(2-x,-5-y,1-z),即解得即C.10.已知△ABC的顶点A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD的长等于( )A.3B.4C.5D.6【解析】选C.设D(x,y,z),则=(x-1,y+1,z-2),=(x-5,y+6,z-2), =(0,4,-3),因为∥,且⊥,所以解得所以||=5.【一题多解】设=λ,D(x,y,z),则(x-1,y+1,z-2)=λ(0,4,-3),所以x=1,y=4λ-1,z=2-3λ.所以=(-4,4λ+5,-3λ),又=(0,4,-3),⊥,所以4(4λ+5)-3(-3λ)=0,所以λ=-,所以=,所以||==5.11.(2014·绵阳高二检测)如图所示,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E 到平面ACD1的距离为( )A. B. C. D.【解析】选C如图,以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴建立空间直角坐标系,则D1(0,0,1),E(1,1,0),A(1,0,0),C(0,2,0).从而=(1,1,-1),=(-1,2,0),=(-1,0,1),设平面ACD1的法向量为n=(a,b,c),则即得令a=2,则n=(2,1,2).所以点E到平面ACD1的距离为d===.12.(2014·荆州高二检测)如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是( )A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值【解析】选D.因为AC⊥平面BB1D1D,又BE⊂平面BB1D1D.所以AC⊥BE,故A正确.因为B1D1∥平面ABCD,又E,F在直线D1B1上运动,所以EF∥平面ABCD,故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故V A-BEF为定值.①当点E在D1处,点F为D1B1的中点时,建立空间直角坐标系, 如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F,所以=(0,-1,1),=,所以·=.又||=,||=,所以cos<,>===.所以此时异面直线AE与BF成30°角.②当点E为D1B1的中点,点F在B1处时,此时E,F(0,1,1).所以=,=(0,0,1),所以·=1,||==,所以cos<,>===≠,故选D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知正方体ABCD-A′B′C′D′的棱长为a,则<,>= .【解析】=,因为△A′BD为正三角形,所以<,>=120°,即<,>=120°.答案:120°14.已知正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1与B1C所成角的余弦值为.【解析】设上、下底面中心分别为O1,O,则OO1⊥平面ABCD,以O为原点,直线BD,AC,OO1分别为x轴、y轴、z轴建立空间直角坐标系.因为AB=2,A1B1=1,所以AC=BD=2,A1C1=B1D1=,因为平面BDD1B1⊥平面ABCD,所以∠B1BO为侧棱与底面所成的角,所以∠B1BO=60°,设棱台高为h,则tan60°=,所以h=,所以A(0,-,0),D1,B1,C(0,,0),所以=,=,所以cos<,>==,故异面直线AD1与B1C所成角的余弦值为.答案:【变式训练】如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC 所成角的余弦值是.【解析】如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),=(-4,4,0),=(0,4,-2).cos<,>==.所以异面直线D1E与AC所成角的余弦值为.答案:15.在三棱柱ABC-A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD 与平面AA1C1C所成的角为α,则sinα的值是.【解题指南】建立空间直角坐标系,求出平面AA1C1C的一个法向量n和,计算cos<n,>即可求解sin α.【解析】如图,建立空间直角坐标系,易求点D,平面AA1C1C的一个法向量n=(1,0,0),所以cos<n,>==,即sinα=.答案:16.给出命题:①在□ABCD中,+=;②在△ABC中,若·>0,则△ABC是锐角三角形;③在梯形ABCD中,E,F分别是两腰BC,DA的中点,则=(+);④在空间四边形ABCD中,E,F分别是边BC,DA的中点,则=(+).以上命题中,正确命题的序号是. 【解析】①满足向量运算的平行四边形法则,①正确;·=||·||·cosA>0⇒∠A<90°,但∠B,∠C无法确定,所以△ABC是否是锐角三角形无法确定,②错误;③符合梯形中位线的性质,正确;④如图,=+,+=++=+2=2(+)=2,则=(+),正确.答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,正方体ABCD-A′B′C′D′中,点E是上底面A′B′C′D′的中心,用向量,,表示向量,.【解析】=-=--+.=+=+=+=+(-)=-++.18.(12分)(2014·福州高二检测)如图所示,已知PA⊥平面ABCD,ABCD为矩形,PA=AD,M,N分别为AB,PC的中点.求证:(1)MN∥平面PAD.(2)平面PMC⊥平面PDC.【证明】如图所示,以A为坐标原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系Axyz.设PA=AD=a,AB=b.(1)P(0,0,a),A(0,0,0),D(0,a,0),C(b,a,0),B(b,0,0).因为M,N分别为AB,PC的中点,所以M,N.所以=,=(0,0,a),=(0,a,0),所以=+.又因为MN⊄平面PAD,所以MN∥平面PAD.(2)由(1)可知:P(0,0,a),C(b,a,0),M,D(0,a,0).所以=(b,a,-a),=,=(0,a,-a).设平面PMC的法向量为n1=(x1,y1,z1),则所以令z1=b,则n1=(2a,-b,b).设平面PDC的一个法向量为n2=(x2,y2,z2),则所以令z2=1,则n2=(0,1,1).因为n1·n2=0-b+b=0,所以n1⊥n2.所以平面PMC⊥平面PDC.【知识拓展】用向量证明线面平行的主要方法(1)证明直线的方向向量与平面的法向量垂直.(2)在平面内找到一个向量与直线的方向向量是共线向量.(3)利用共面向量定理,在平面内找到两不共线向量把直线的方向向量线性表示出来.19.(12分)如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°.当的值等于多少时,能使A1C⊥平面C1BD?【解析】不妨设=x,CC1=1,A1C⊥平面C1BD,则A1C⊥C1B,A1C⊥C1D,而=+,=++=++,由·=0,得(++)·(+)=-+·+·=0,注意到·+·=-,可得方程1-x2+=0,解得x=1或x=-(舍).因此,当=1时,能使A1C⊥平面C1BD.20.(12分)(2013·上海高考)如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1,证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.【解析】如图,建立空间直角坐标系,可得有关点的坐标为A(1,0,1),B(1,2,1), C(0,2,1),C′(0,2,0),D′(0,0,0).则=(1,0,1),=(0,2,1),设平面D′AC的法向量n=(u,v,w),由n⊥,n⊥,所以n·=0,n·=0,即解得u=2v,w=-2v,取v=1,得平面D′AC的一个法向量n=(2,1,-2).因为=(-1,0,-1),所以n·=0,所以n⊥.又BC′不在平面D′AC内,所以直线BC′与平面D′AC平行.由=(1,0,0),得点B到平面D′AC的距离d===,所以直线BC′到平面D′AC的距离为.21.(12分)(2014·广东高考)四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF.(2)求二面角D-AF-E的余弦值.【解题指南】(1)采用几何法较为方便,证AD⊥平面PCD⇒CF⊥AD,又CF⊥AF⇒CF⊥平面ADF.(2)采用向量法较为方便,以D为原点建立空间直角坐标系,设DC=2,计算出DE,EF的值,得到A,C,E,F的坐标,注意到为平面ADF的一个法向量.【解析】(1)因为四边形ABCD为正方形,所以AD⊥DC.又PD⊥平面ABCD,AD⊂平面ABCD,所以PD⊥AD,DC∩PD=D,所以AD⊥平面PCD.又CF⊂平面PCD,所以CF⊥AD,而AF⊥PC,即AF⊥FC,又AD∩AF=A,所以CF⊥平面ADF.(2)以D为原点,DP,DC,DA分别为x,y,z轴建立空间直角坐标系,设DC=2,由(1)知PC⊥DF,即∠CDF=∠DPC=30°,有FC=DC=1,DF=FC=,DE=DF=,EF=DE=,则D(0,0,0),E,F,A(0,0,2),C(0,2,0),=,=,=,设平面AEF的法向量为n=(x,y,z),由得取x=4,有y=0,z=,n=(4,0,),又平面ADF的一个法向量=,所以cos<n,>===-,所以二面角D-AF-E的余弦值为.【变式训练】(2014·北京高二检测)如图,四边形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA=2,F,G,H 分别为PB,EB,PC的中点.(1)求证:FG∥平面PED.(2)求平面FGH与平面PBC所成锐二面角的大小.(3)在线段PC上是否存在一点M,使直线FM与直线PA所成的角为60°?若存在,求出线段PM的长;若不存在,请说明理由.【解析】(1)因为F,G分别为PB,BE的中点,所以FG∥P E.又FG⊄平面PED,PE⊂平面PED,所以FG∥平面PED.(2)因为EA⊥平面ABCD,EA∥PD,所以PD⊥平面ABCD,所以PD⊥AD,PD⊥CD.又因为四边形ABCD是正方形,所以AD⊥CD.如图,建立空间直角坐标系,因为AD=PD=2EA=2,所以D,P,A,C,B,E(2,0,1).因为F,G,H分别为PB,EB,PC的中点,所以F,G,H(0,1,1).所以=,=.设n1=(x1,y1,z1)为平面FGH的一个法向量,则即再令y1=1,得n1=(0,1,0).=(2,2,-2),=(0,2,-2).设n2=(x2,y2,z2)为平面PBC的一个法向量,则即令z2=1,得n2=(0,1,1).所以所以平面FGH与平面PBC所成锐二面角的大小为.(3)假设在线段PC上存在一点M,使直线FM与直线PA所成角为60°.依题意可设=λ,其中0≤λ≤1.由=(0,2,-2),则=(0,2λ,-2λ).又因为=+,=(-1,-1,1),所以=(-1,2λ-1,1-2λ).因为直线FM与直线PA所成角为60°,=(2,0,-2),所以=,即=,解得λ=.所以=,=.所以在线段PC上存在一点M,使直线FM与直线PA所成角为60°,此时PM的长度为.22.(12分)四棱锥P-ABCD中,底面ABCD是一个平行四边形,PA⊥底面ABCD,=(2,-1,-4),=(4,2,0),=(-1,2,-1).(1)求四棱锥P-ABCD的体积.(2)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.试计算(×)·的绝对值的值;说明其与四棱锥P-ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义.【解析】(1)设<,>=θ,则cosθ==.所以sinθ=.所以V=S□ABCD||=||||sinθ||=16.(2)=|-4-32+0-0-4-8|=48,它是四棱锥P-ABCD体积的3倍.猜想:在几何上可表示以AB,AD,AP为棱的平行六面体的体积(或以AB,AD,AP为棱的直四棱柱的体积).【技法点拨】向量法在数形结合思想中的应用向量是有效沟通“数”与“形”的桥梁.在学习中我们一定要充分理解向量概念及向量运算的几何意义,从而有效利用向量工具解决实际问题.如对空间直线的向量表示,应明确空间直线是由空间一点及直线的方向向量惟一确定.。

河北省邯郸市2014-2015学年高二物理上学期期末教学质量检测试题(扫描版)

河北省邯郸市2014-2015学年高二物理上学期期末教学质量检测试题(扫描版)

河北省邯郸市2014-2015学年高二物理上学期期末教学质量检测试题(扫描版)邯郸市2014-2015学年度第一学期期末教学质量检测高二物理参考答案二、填空题:共2小题,共14分。

15.(1)向左;(3分) (2)高于(3分)16.(1) A 1 ;(2分)(2)外;(2分)(3)2.00(2.00±0.01)(2分)(4)如右图(2分)三、计算题:共3小题,共30分。

解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。

17.(8分)解:(1)由M 到N(2)设棒受到的阻力为f ,当棒中电流I 1=0.5A 时,由平衡条件可得 f L BI =1① 当金属棒中的电流为I 2=0.8A 时,棒做加速运动,加速度为a ,根据牛顿第二定律得ma f L BI =-2② 将①代入②得B=0.4T ③【评分标准:第(1)问2分;第(2)问①、②、③式各2分,共8分】18.(10分) ⑴由x -t 图象可知t =1.5s 后金属棒开始匀速运动,速度为v ==∆∆t x 7m/s ① 此时,杆中电流为rR BLv I += ② 对金属杆:mg sin θ=BIL ③ 解得 B= 0.2T ④ ⑵电荷量为q=r R +∆φ=rR BxL +=2C ⑤ ⑶设该过程中电路产生的总焦耳热为Q ,根据能量转化和守恒定律得:mg x sin θ- Q=21mv 2 ⑥ 解得Q=1.575J 故 J Q rR R Q R 9.0=+= ⑦ 【评分标准:第(1)问5分;第(2)问2分;第(3)问3分。

①③④⑦式各1分;②⑤⑥式各2分,共10分】19.(12分)(1)粒子在电场中运动,由类平抛运动规律及牛顿运动定律得102t v L = ①2121at L =② ma qE = ③ 联立①②③得qL mv E 220=④ (2)设粒子到达O 点速度为v ,与水平方向夹角为α。

河北省邯郸市2024年数学(高考)部编版质量检测(押题卷)模拟试卷

河北省邯郸市2024年数学(高考)部编版质量检测(押题卷)模拟试卷

河北省邯郸市2024年数学(高考)部编版质量检测(押题卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题若,,,则实数a,b,c的大小关系为()A.B.C.D.第(2)题若,则()A.B.C.D.第(3)题一个直角三角形三内角的正弦值成等比数列,其最小内角的正弦值为()A.B.C.D.第(4)题已知直线交椭圆于A,B两点,且线段AB的中点为,则直线的斜率为()A.-2B.C.2D.第(5)题若数列为等比数列,则“”是“”的()A.充要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件第(6)题已知是虚数单位,复数,且,则的最大值为()A.1B.2C.3D.4第(7)题已知直线a,m,n,l,且m,n为异面直线,平面,平面.若l满足,,则下列说法中正确的是()A.B.C.若,则D.第(8)题已知均为正实数,且,若,则下列关系中可能成立的是()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知,若正数满足,则下列不等式可能成立的是()A.B.C.D.第(2)题已知直线与椭圆交于、两点,点为椭圆的下焦点,则下列结论正确的是()A.当时,,使得B.当时,,使C.当时,,使得D.当时,,第(3)题已知函数,其中为自然对数的底数,则()A.若为减函数,则B.若存在极值,则C.若,则D.若,则三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题过原点作圆的两条切线,切点分别为,,则线段的长为_________.第(2)题已知,满足约束条件,则的最大值为___________.第(3)题函数的定义域为__________.四、解答题(本题包含5小题,共77分。

河北省邯郸市永年二中高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

河北省邯郸市永年二中高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

某某省某某市永年二中2014-2015学年高二上学期期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)命题“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0D.对任意x∈Z使x2+2x+m>02.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<3.(5分)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.4.(5分)抛物线y=﹣的准线方程为()A.x=B.y=C.x=D.y=5.(5分)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10 C.12 D.146.(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}”为递增数列的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值X围是()A.B.C.[﹣1,6] D.8.(5分)若不等式x2+px+q<0的解集为(﹣)则不等式qx2+px+1>0的解集为()A.(﹣3,2)B.(﹣2,3)C.(﹣)D.R9.(5分)已知双曲线C:=1(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=±2x B.C.y=±4x D.10.(5分)设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA,则sinA:sinB:sinC为()A.4:3:2 B.5:6:7 C.5:4:3 D.6:5:411.(5分)若数列{a n}满足=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A.2 B.4 C.6 D.812.(5分)已知命题p:△ABC所对应的三个角为A,B,C.A>B是cos2A<cos2B的充要条件;命题q:函数的最小值为1;则下列四个命题中正确的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q二、填空题(每小题5分,共20分)13.(5分)若△ABC的两个顶点坐标A(﹣4,0)、B(4,0),△ABC的周长为18,则顶点C 的轨迹方程为.14.(5分)在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列,则通项公式a n=.15.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c.已知bcosC+ccosB=2b,则=.16.(5分)已知a>0,b>0,若不等式≤0恒成立,则m的最大值为.三、解答题17.(10分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求角A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)已知p:﹣2≤x≤10;q:x2﹣2x+1≤m2(m>0);若¬p是¬q的必要非充分条件,某某数m的取值X围.19.(12分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n•b n}的前n项和T n.20.(12分)已知二次函数.f(x)=x2+(2a﹣1)x+1﹣2a(1)判断命题:“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程(2)若y=f(x)在区间(﹣1,0)及内各有一个零点.某某数a的X围.21.(12分)正项数列{a n}的前n项和为S n,且.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,数列{b n}的前n项和为T n,求证:.22.(12分)已知圆A:(x+2)2+y2=,圆B:(x﹣2)2+y2=,动圆P与圆A、圆B均外切.(Ⅰ)求动圆P的圆心的轨迹C的方程;(Ⅱ)过圆心B的直线与曲线C交于M、N两点,求|MN|的最小值.某某省某某市永年二中2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)命题“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0D.对任意x∈Z使x2+2x+m>0考点:命题的否定.分析:根据命题“存在x∈Z使x2+2x+m≤0”是特称命题,其否定命题是全称命题,将“存在”改为“任意的”,“≤“改为“>”可得答案.解答:解:∵命题“存在x∈Z使x2+2x+m≤0”是特称命题∴否定命题为:对任意x∈Z使x2+2x+m>0故选D.点评:本题主要考查全称命题与特称命题的转化.注意:全称命题的否定是特称命题.2.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等式比较大小;不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.点评:本题考查不等式比较大小,特值法有效,导数计算正确.3.(5分)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:解三角形.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题4.(5分)抛物线y=﹣的准线方程为()A.x=B.y=C.x=D.y=考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:抛物线方程化为标准方程,求出p,即可得到抛物线的准线方程.解答:解:抛物线方程y=﹣,可化为x2=﹣6y,∴2p=6,∴=,∴抛物线的准线方程为y=.故选B.点评:本题考查抛物线的几何性质,考查学生的计算能力,将抛物线方程化为标准方程是关键.5.(5分)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10 C.12 D.14考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质和已知可得a2,进而可得公差,可得a6解答:解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.点评:本题考查等差数列的通项公式和求和公式,属基础题.6.(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}”为递增数列的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;等比数列.专题:等差数列与等比数列;简易逻辑.分析:根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.解答:解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但“{a n}”不是递增数列,充分性不成立.若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}”为递增数列的既不充分也不必要条件,故选:D.点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.7.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值X围是()A.B.C.[﹣1,6] D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的X围解答:解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A点评:本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.解题的关键是准确理解目标函数的几何意义8.(5分)若不等式x2+px+q<0的解集为(﹣)则不等式qx2+px+1>0的解集为()A.(﹣3,2)B.(﹣2,3)C.(﹣)D.R考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分析:由条件可得,﹣,是方程x2+px+q=0的两个实根,运用韦达定理求出p,q,再由二次不等式的解法,即可得到.解答:解:由条件可得,﹣,是方程x2+px+q=0的两个实根,则﹣=﹣p,且=q,即p=,q=﹣,则不等式qx2+px+1>0,即为﹣x2+x+1>0,即为x2﹣x﹣6<0,解得,﹣2<x<3.故选B.点评:本题考查二次不等式的解法,考查韦达定理和运用,考查运算能力,属于中档题.9.(5分)已知双曲线C:=1(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=±2x B.C.y=±4x D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用离心率公式,令c=t,a=2t,则b==t,再由渐近线方程,即可得到结论.解答:解:双曲线的离心率为,则=,令c=t,a=2t,则b==t,则双曲线的渐近线方程为y=x,即为y=±2x,故选A.点评:本题考查双曲线的方程和性质,考查离心率公式和渐近线方程,考查运算能力,属于基础题.10.(5分)设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA,则sinA:sinB:sinC为()A.4:3:2 B.5:6:7 C.5:4:3 D.6:5:4考点:正弦定理的应用.专题:解三角形.分析:由题意可得三边即 a、a﹣1、a﹣2,由余弦定理可得 cosA=,再由3b=20acosA,可得 cosA=,从而可得=,由此解得a=6,可得三边长,根据sinA:sinB:sinC=a:b:c,求得结果.解答:解:由于a,b,c 三边的长为连续的三个正整数,且A>B>C,可设三边长分别为a、a﹣1、a﹣2.由余弦定理可得 cosA===,又3b=20acosA,可得 cosA==.故有=,解得a=6,故三边分别为6,5,4.由正弦定理可得 sinA:sinB:sinC=a:b:c=a:(a﹣1):( a﹣2)=6:5:4,故选D.点评:本题主要考查正弦定理、余弦定理的应用,求出a=6是解题的关键,属于中档题.11.(5分)若数列{a n}满足=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A.2 B.4 C.6 D.8考点:数列递推式.专题:等差数列与等比数列;不等式的解法及应用.分析:由新定义得到数列{b n}为等比数列,然后由等比数列的性质得到b50=2,再利用基本不等式求得b8+b92的最小值.解答:解:依题意可得b n+1=qb n,则数列{b n}为等比数列.又,则b50=2.∴,当且仅当b8=b92,即该数列为常数列时取等号.故选:B.点评:本题是新定义题,考查了等比数列的性质,训练了利用基本不等式求最值,是中档题.12.(5分)已知命题p:△ABC所对应的三个角为A,B,C.A>B是cos2A<cos2B的充要条件;命题q:函数的最小值为1;则下列四个命题中正确的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q考点:复合命题的真假.专题:简易逻辑.分析:利用三角恒等变换证明在△ABC中,A>B是cos2A<cos2B的充要条件;利用基本不等式求函数的最小值,证明命题q为真命题,再根据复合命题真值表依次判断可得答案.解答:解:∵在△ABC中,cos2B>cos2A⇔1﹣2sin2B>1﹣2sin2A⇔sin2B<sin2A⇔sinA>sinB⇔A>B故A>B是cos2A<cos2B的充要条件,即命题p为真命题;∵x∈(0,),∴函数y=+tanx+2﹣1≥2﹣1=1,∴命题q为真命题;由复合命题真值表知,p∧q为真命题;p∧(¬q)为假命题;¬p∧q为假命题;¬p∧¬q 为假命题,故选A.点评:本题借助考查复合命题的真假判定,考查基本不等式的应用及充要条件的判定,解题的关键是判断命题p,q的真假.二、填空题(每小题5分,共20分)13.(5分)若△ABC的两个顶点坐标A(﹣4,0)、B(4,0),△ABC的周长为18,则顶点C 的轨迹方程为(y≠0).考点:轨迹方程.专题:圆锥曲线的定义、性质与方程.分析:根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.解答:解:(1)∵△ABC的两顶点A(﹣4,0),B(4,0),周长为18,∴AB=8,BC+AC=10,∵10>8,∴点C到两个定点的距离之和等于定值,∴点C的轨迹是以A,B为焦点的椭圆,∵2a=10,2c=8,∴b=3,所以椭圆的标准方程是(y≠0).故答案为:(y≠0)点评:本题考查直线与圆锥曲线的综合应用能力,综合性强,是2015届高考的重点.本题具体涉及到轨迹方程的求法,注意椭圆的定义的应用.14.(5分)在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列,则通项公式a n=,n∈N*.考点:等比数列的通项公式;等差数列的通项公式.专题:等差数列与等比数列.分析:设,代入4a2=4a1+a3,能求出结果.解答:解:设,代入4a2=4a1+a3,解得q=2,∴,n∈N*.故答案为:,n∈N*.点评:本题考查数列的通项公式的求法,是基础题,解题时要注意等差数列和等比数列的性质的合理运用.15.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c.已知bcosC+ccosB=2b,则=2.考点:正弦定理.专题:解三角形.分析:已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.解答:解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2点评:此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.16.(5分)已知a>0,b>0,若不等式≤0恒成立,则m的最大值为16.考点:函数恒成立问题.专题:不等式的解法及应用.分析:依题意,得m≤(+)(3a+b)=9+++1恒成立,构造函数g(a,b)=9+++1,利用基本不等式可求得g(a,b)min=16,从而可求m的最大值.解答:解:∵不等式≤0恒成立,∴≤+,又a>0,b>0,∴m≤(+)(3a+b)=9+++1恒成立,令g(a,b)=9+++1,则m≤g(a,b)min,∵g(a,b)=9+++1≥10+2=16(当且仅当a=b时取“=”),∴g(a,b)min=16,∴m≤16,∴m的最大值为16,故答案为:16.点评:本题考查函数恒成立问题,考查构造函数的思想与等价转换的思想的综合应用,突出考查基本不等式的应用,属于中档题.三、解答题17.(10分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求角A;(2)若a=2,△ABC的面积为,求b,c.考点:正弦定理;余弦定理的应用.专题:计算题.分析:(1)把已知的等式利用正弦定理化简,根据sinC不为0,得到一个关系式,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用特殊角的三角函数值求出A的度数即可;(2)由A的度数求出sinA和cosA的值,由三角形ABC的面积,利用面积公式及sinA的值,求出bc的值,记作①;由a与cosA的值,利用余弦定理列出关系式,利用完全平方公式变形后,把bc的值代入求出b+c的值,记作②,联立①②即可求出b与c的值.解答:解:(1)由正弦定理==化简已知的等式得:sinC=sinAsinC﹣sinCcosA,∵C为三角形的内角,∴sinC≠0,∴sinA﹣cosA=1,整理得:2sin(A﹣)=1,即sin(A﹣)=,∴A﹣=或A﹣=,解得:A=或A=π(舍去),则A=;(2)∵a=2,sinA=,cosA=,△ABC的面积为,∴bcsinA=bc=,即bc=4①;∴由余弦定理a2=b2+c2﹣2bccosA得:4=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣12,整理得:b+c=4②,联立①②解得:b=c=2.点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.18.(12分)已知p:﹣2≤x≤10;q:x2﹣2x+1≤m2(m>0);若¬p是¬q的必要非充分条件,某某数m的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:由命题p成立得x的X围为A,由命题q成立求得x的X围为B,由题意可得A⊊B,可得关于m的不等关系式,由此求得实数m的取值X围.解答:解:由p:﹣2≤x≤10,记A={x|p}={x|﹣2≤x≤10}.由q:x2﹣2x+1≤m2即x2﹣2x+(1﹣m2)≤0(m>0),得 1﹣m≤x≤1+m.…(6分)记B={x|1﹣m≤x≤1+m,m>0},∵¬p是¬q的必要不充分条件,∴p是q的充分不必要条件,即 p⇒q,且 q不能推出 p,∴A⊊B.…(8分)要使A⊊B,又m>0,则只需,…(11分)∴m≥9,故所某某数m的取值X围是[9,+∞).…(12分)点评:本题主要考查分式不等式的解法,充分条件、必要条件、充要条件的定义,体现了等价转化的数学思想,属于中档题.19.(12分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n•b n}的前n项和T n.考点:数列的求和;等差关系的确定;等比关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)由S n=2n2+n可得,当n=1时,可求a1=3,当n≥2时,由a n=s n﹣s n﹣1可求通项,进而可求b n(Ⅱ)由(Ⅰ)知,,利用错位相减可求数列的和解答:解:(Ⅰ)由S n=2n2+n可得,当n=1时,a1=s1=3当n≥2时,a n=s n﹣s n﹣1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1而n=1,a1=4﹣1=3适合上式,故a n=4n﹣1,又∵a n=4log2b n+3=4n﹣1∴(Ⅱ)由(Ⅰ)知,2T n=3×2+7×22+…+(4n﹣5)•2n﹣1+(4n﹣1)•2n∴=(4n﹣1)•2n=(4n﹣1)•2n﹣[3+4(2n﹣2)]=(4n﹣5)•2n+5点评:本题主要考查了数列的递推公式在数列的通项公式求解中的应用,数列求和的错位相减求和方法的应用.20.(12分)已知二次函数.f(x)=x2+(2a﹣1)x+1﹣2a(1)判断命题:“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程(2)若y=f(x)在区间(﹣1,0)及内各有一个零点.某某数a的X围.考点:命题的真假判断与应用;二次函数的性质;函数的零点.专题:计算题.分析:(1)“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”是真命题.依题意:x2+(2a﹣1)x﹣2a=0有实根,△=(2a﹣1)2+8a=(2a+1)2≥0对于任意的a∈R(R 为实数集)恒成立,得到f(x)=1必有实根.(2)依题意:要使y=f(x)在区间(﹣1,0)及内各有一个零点,只须,由此能求出实数a的X围.解答:(本大题12分)解:(1)“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”是真命题;…(3分)依题意:f(x)=1有实根,即x2+(2a﹣1)x﹣2a=0有实根∵△=(2a﹣1)2+8a=(2a+1)2≥0对于任意的a∈R(R为实数集)恒成立即x2+(2a﹣1)x﹣2a=0必有实根,从而f(x)=1必有实根…(6分)(2)依题意:要使y=f(x)在区间(﹣1,0)及内各有一个零点只须…(9分)即…(10分)解得:.(多带一个等号扣1分)…(12分)点评:本题考查命题的真假判断,某某数a的取值X围,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)正项数列{a n}的前n项和为S n,且.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,数列{b n}的前n项和为T n,求证:.考点:数列的求和.专题:综合题.分析:(Ⅰ)根据求得a 1,进而根据4S n=(a n+1)2和4S n﹣1=(a n﹣1+1)2(n≥2)两式相减整理得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,进而可得a n﹣a n﹣1=2判断出数列{a n}是首项为1,公差为2的等差数列.求得其通项公式.(Ⅱ)把(1)中求得的a n代入中,即可求得b n,进而可用裂项法进行求和,得T n=根据使原式得证.解答:解:(Ⅰ)∵,∴a1=1.∵a n>0,,∴4S n=(a n+1)2.①∴4S n﹣1=(a n﹣1+1)2(n≥2).②①﹣②,得4a n=a n2+2a n﹣a n﹣12﹣2a n﹣1,即(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,而a n>0,∴a n﹣a n﹣1=2(n≥2).故数列{a n}是首项为1,公差为2的等差数列.∴a n=2n﹣1.(Ⅱ).T n=b1+b2++b n==.点评:本题主要考查了数列的求和问题.数列的求和问题是2015届高考中常考的题目,所以我们平时的时候应注意多积累数列求和的方法.22.(12分)已知圆A:(x+2)2+y2=,圆B:(x﹣2)2+y2=,动圆P与圆A、圆B均外切.(Ⅰ)求动圆P的圆心的轨迹C的方程;(Ⅱ)过圆心B的直线与曲线C交于M、N两点,求|MN|的最小值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(Ⅰ)设椭圆P的半径为r,则|PA|﹣|PB|=2,从而得到点P的轨迹是以A,B为焦点、实轴长为2的双曲线的右支,由此能求出动圆P的圆心的轨迹C的方程.(Ⅱ)设MN的方程为x=my+2,代入双曲线方程,得(3m2﹣1)y2+12my+9=0,由此利用根的判别式、韦达定理、弦长公式,结合已知条件能求出|MN|的最小值.解答:解:(Ⅰ)设椭圆P的半径为r,则|PA|=r+,|PB|=r+,∴|PA|﹣|PB|=2,故点P的轨迹是以A,B为焦点、实轴长为2的双曲线的右支,∴动圆P的圆心的轨迹C的方程为.(Ⅱ)设MN的方程为x=my+2,代入双曲线方程,得(3m2﹣1)y2+12my+9=0,由,解得﹣,设M(x1,y1),N(x2,y2),则|MN|=|y1﹣y2|==,当m2=0时,|MN|min=2(4﹣1)=6.点评:本题考查动点的轨迹方程的求法,考查弦的最小值的求法,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

河北省邯郸市2013-2014学年高二物理上学期期末考试试题新人教版

河北省邯郸市2013-2014学年高二物理上学期期末考试试题新人教版

邯郸市2013—2014学年度第一学期期末教学质量检测高二物理试题 2014、01一、选择题:本题共14小题,每小题4分,共56分。

在每小题给出的四个选项中,第1题~第10题只有一个选项正确,第11题~第14题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。

1. 在物理学发展过程中,许多科学家做出了突出贡献。

下列说法正确的是 A.奥斯特发现了磁场对电流的作用规律 B.安培提出了分子电流假说C.楞次发现了电磁感应定律D.法拉第发现电流了电流磁效应2. 关于磁感应强度,下面说法正确的是A.由IL FB可知,B 与F 成正比,与IL 成反比B.一小段通电导线在某处不受磁场力作用,该处的磁感应强度一定为零C.磁感应强度是矢量,方向与通过该点的磁感线的切线方向相同D.磁场中某处磁感应强度的方向,与直线电流在该处所受磁场力方向相同 3. 关于磁感应强度的单位T ,下列表达式中不正确的是 A.1T=1Wb/m2 B.1T=1Wb·m2C.1T=1N·s/(C·m)D.1T=1N/(A·m)4. 如图,电路为欧姆表原理图,电池的电动势E =1.5V ,G 为电流 表,满偏电流为200μA 。

当调好零后,在两表笔间接一被测电阻 Rx 时,电流表G 的指针示数为50μA ,那么Rx 的值为 A.7.5 k Ω B.22.5 k Ω C.15 k Ω D.30 k Ω5. 如图,一火警器的一部分电路示意图,其中Rt 为半导体热敏材料制成的传感器(其电阻值随温度的升高而减小),电流表为值班室的显示器,a 、b 之间接报警器。

当传感器Rt 所在处出现火情时,电流表的电流I 及a 、b 两端的电压U 的变化情况是A.I 变大,U 变大B.I 变小,U 变小C.I 变小,U 变大D.I 变大,U 变小6. 如图,A 、B 都是很轻的铝环,分别吊在绝缘细杆的两端,杆可绕中间竖直轴在水平面内转动,环A 是闭合的,环B 是断开的。

绵阳市高中2014-2015学年第一学期高二期末教学质量测试数学试题(理科)(含详细解答)

绵阳市高中2014-2015学年第一学期高二期末教学质量测试数学试题(理科)(含详细解答)

绵阳市高中2014-2015学年第一学期高二期末教学质量测试数学试题(理科)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、刘徽是我国古代最伟大的数学家之一,他的 是极限思想的开始,他计算体积的思想是积分学的萌芽.( )A .割圆术B .勾股定理C .大衍求一术D .辗转相除法2、在极坐标系中,极坐标方程4sin ρθ=表示的曲线是( )A .圆B .直线C .椭圆D .抛物线3、直线l 310y +-=,则直线l 的倾斜角为( )A .30B .60C .120D .1504、下列关于统计的说法正确的是( )A .一组数据只能有一个众数B .一组数据可以有两个中位数C .一组数据的方差一定是非负数D .一组数据中的每一个数据都加上同一非零常数后,平均数不会发生变化5、有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .至少有1件次品与都是正品C .至少有1件次品与至少有1件正品D .恰有1件次品与恰有2件正品6、某市要对辖区内的中学教师的年龄进行调查,现从中随机抽出200名教师,已知抽到的教师年龄都在[)25,50岁之间,根据调查结果得出教师的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市辖区内中学教师的年龄的中位数大约是( )A .37.1岁B .38.1岁C .38.7岁D .43.1岁7、执行右图的程序框图,任意输入一次x (x ∈Z ,22x -≤≤)与y (y ∈Z ,22y -≤≤),则能输出数对(),x y 的概率为( )A .725 B .825 C .925D .258、已知O 为坐标原点,F 为抛物线C :2y =的焦点,P 为C 上一点,若F ∆PO 的面积为F P =( )A .B .C .D .92x m =+有实数解,则实数m 的取值范围是( )A .)[)2,⎡+∞⎣B .)(0,3⎡⎤⎣⎦C .([),2,-∞+∞D .(][),22,-∞-+∞10、已知点P 是椭圆221135x y +=(0x ≠,0y ≠)上的动点,1F ,2F 为椭圆的两个焦点,O 是坐标原点,若M 是以线段1F P 为直径的圆上一点,且M 到12F F ∠P 两边的距离相等,则OM 的取值范围是( )A .(B .(0,C .D .(3,二、填空题(本大题共5小题,每小题4分,共20分.)11、设()3,2,1A ,()1,0,5B ,则AB 的中点M 的坐标为 .12、右面算法最后输出的结果是 . 13、质检部门对某超市甲、乙、丙三种商品共750件进行分层抽样检查,抽检员制作了如下的统计表格:表格中甲、丙商品的有关数据已被污染看不清楚(分别用1x ,2x ,3x ,4x 表示),若甲商品的样本容量比丙商品的样本容量多6,则根据以上信息可求得丙商品数量2x 的值为 .14、已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,以线段1F O 为边作正三角形1F OM ,若顶点M 在双曲线上,则双曲线的离心率是 .15、已知椭圆22221x y a b+=(0a b >>)及内部面积为S ab π=,1A ,2A 是长轴的两个顶点,1B ,2B 是短轴的两个顶点,在椭圆上或椭圆内部随机取一点P ,给出下列命题:①12∆PA A 为钝角三角形的概率为1;②12∆PB B 为钝角三角形的概率为b a ; ③12∆PA A 为钝角三角形的概率为b a ; ④12∆PB B 为锐角三角形的概率为a b a -. 其中正确的命题有 .(填上你认为所有正确的命题序号)三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)16、直线l 经过两直线240x y -+=与50x y -+=的交点,且与直线1:l 60x y +-=平行.()1求直线l 的方程;()2若点(),1a P 到直线l 的距离与直线1l 到直线l 的距离相等,求实数a 的值.17、甲、乙两个竞赛队都参加了10场比赛,比赛得分情况记录如下(单位:分): 甲队:57,41,51,40,49,39,52,43,45,53乙队:30,50,67,47,66,34,46,30,64,66()1根据得分情况记录,请将茎叶图补充完整,并求乙队得分的中位数;()2如果从甲、乙两队的10场得分中,各随机抽取一场不小于50分的得分,求甲的得分大于乙的得分的概率.18、已知圆C :22230x y x ++-=.()1求过点()1,3P 且与圆C 相切的直线方程;()2问是否存在斜率为1的直线l ,使以l 被圆C 截得的弦AB 为直线的圆经过原点?若存在,请求出的方程;若不存在,请说明理由.19、已知椭圆C :22221x y a b+=(0a b >>)的左焦点为()F 1,0-,O 为坐标原点,点G 1,2⎛ ⎝⎭在椭圆上,过点F 的直线l 交椭圆于不同的两点A 、B .()1求椭圆C 的方程;()2求弦AB 的中点M 的轨迹方程;()3设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,P 为x 轴上一点,若PA 、PB 是菱形的两条邻边,求点P 横坐标的取值范围.。

河北省邯郸市2014学年度高二第一次教学质量检测-语文

河北省邯郸市2014学年度高二第一次教学质量检测-语文

河北省邯郸市2014学年度高二第一次教学质量检测-语文高考语文2014-04-03 1706河北省邯郸市08-2014学年高二第一次质量检测语文试题注意:1.本试卷满分150分,时间120分钟;2.请将所有答案写在答题纸上,试题部分不变。

第Ⅰ卷(选择题,共36分)一、(15分,每小题3分)1. 下列各组词语中加点字的读音和字形,完全正确的一组是()A. 落寞(mî)浸渍(zé)歆羡(xīn)载笑载言(zài)B. 蓬蒿(hāo)坍(tān)弛倒溯(sù)羽扇纶巾(guān)C. 租赁(lìn)编纂(zuǎn)偌(ruî)大损身不恤(yǔn)D. 尸骸(hái)寥落(liáo)愆期(qiān)愤世疾俗(jí)2. 依次填入下面横线处的词语,恰当的一组是()①作为一名心理医生,读着这样的来信,我常常为某些年轻人的和苦闷深感不安。

②北美人民经过独立战争的艰苦抗战,从英国殖民统治下出来,赢得了民族独立。

③最近,世界上有些人把国际油价的上涨于中国经济的快速发展,这是毫无道理的。

A.徘徊摆脱归罪 B.徘徊解脱归咎C.彷徨摆脱归咎 D.彷徨解脱归罪3.下列句子中,加点的成语使用恰当的一项是()A.榴莲是一种很奇特的南方水果,刚开始接触,很多人不喜欢它的气味,但时间长了,耳濡目染,慢慢地就会习惯,甚至嗜好品尝。

B.黄昏时分,暮色苍茫,朝山海关方向望去,只见一抹如烟似雾的淡影和四野的炊烟暮霭融合在一起,像三春烟雨中的景色一样扑朔迷离。

C.大多数人都赞同这个建议,我也就因势利导,说了表示赞同的话。

D.李白在《拟古》中喊出了两句石破天惊的话:“日月终销毁,天地同枯槁。

”他说出了一个无可争议的事实:无论人生还是宇宙都有一个悲剧的结局。

4.下列句子中,没有语病的一句是()A. 只有深刻认识祖国传统文化的现实价值,继承和弘扬中华民族的优秀文化传统,才能在历史提供的高起点上创造出更高层次的和谐文化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邯郸市2014-2015学年第一学期教学质量检测
高二数学理科答案
三、解答题
17、 解:(1) ∵312S =∴2312a =∴24a =又∵12a =∴2d
=
∴1(1)22(1)2n a a n d n n =+-=+-= 即数列{}n a 的通项公式为2n a n =.4分
(2)∵424n n n n b a n =+=+, ∴12(24)(44)(24)n n S n =++++
++
12(242)(444)n n =++
++++
+
2(22)4(14)4
(41)2143
n n n n n n +-=+=++--.
10分
18、解一:(1)∵
2cos cosA c a
B b
-=
, ∴2sin sin cos sin cosA C A B B
-=,…………………………………………2分 ∴sin cos 2sin cos sin cos B A C B A B =-,
整理得sin()2sin cos A B C B +=…………………………………………4分 即sin 2sin cos C C B =,
解得1
cos 2B =,
∴3
B π
=.…………………………………………6分
(2)由(1)及余弦定理得222b a c ac =+-①,………………………………8分
又a c +=,∴22227a c ac ++=②,
由①②得2273b ac =-③. …………………………………………10分
∵1sin 2ABC S ac B ∆=
==
∴6
ac=代入③得3
b=.…………………………………………12分
解二:∵
2
cos
cosA c a
B b
-
=,

222
222
()22
()2
b c a ac c a
a c
b b
c b
+--
=
+-
,…………………………………………2分
整理得222
a c
b ac
+-=,

2221
cos
222
a c
b ac
B
ac ac
+-
===,…………………………………………4分

3
B
π
=.…………………………………………6分
(2)由(1)及余弦定理得222
b a
c ac
=+-①,………………………………8分又a c
+=,∴22227
a c ac
++=②,
由①②得2273
b ac
=-③. …………………………………………10分

1
sin
2
ABC
S ac B

===
∴6
ac=代入③得3
b=.…………………………………………12分
19、解:(1)由题意得
30
(5)(203)
y s s x
s
=+-+-,…………………2分

3
4
2
s
x
=-
+
代入化简得:
6
18(0)
2
y x x
x
=-->
+
.…………………………6分(2)
66
1820[(2)]2020
22
y x x
x x
=--=-++≤-=-
++
………………………………………………………9分
当且仅当
6
2
2
x
x
=+
+
,即2
x=-时等号成立.…………11分
2
-万元时,厂家的销售利润最大为20-
…………………12分注:如果学生用求导的方式得到该结果,请根据学生的解答情况给分.
20、(1)
证明:易知CD,CB,CE两两垂直,如图建立C为坐标原点,CD,CB,CE所在直线为x,y,z轴的空间直角坐标系,则
A,
B()
0,0,0
C,D,(0,0,2)
E,
F
………………2分
∴(AE =
,DF =,(2,0,1)BF =
而(0(210AE DF ⋅=⨯+⨯=
,
((0210AE BF ⋅=+⨯+⨯=,………………………………4分 ∴AE DF ⊥,AE BF ⊥即AE DF ⊥,AE BF ⊥
又DF ,BF ⊂平面BDF
∴AE ⊥平面BDF …………………………………………6分 (2)解:由(1
)知(2,1)EF =- 设平面DEF 的一个法向量为11(,,1)m x y =,
由00
m DF m EF ⎧⋅=⎪⎨⋅=⎪
⎩,
解得11x y ⎧=⎪⎨=⎪⎩
∴(2,m =…………………………………………8分 同理设平面BEF 的一个法向量为22(,,1)n x y =,
由00
n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩
,
解得22x y ⎧=⎪⎨⎪=⎩,
∴2
(,n =-
…………………………………………10分
∴2cos ,7||||m n m n m n ⨯<>===-⨯
∴二面角D EF B --的余弦值为
7
2
.…………………………12分 21、解:(1)∵2a =时,2()12ln 31816f x x x x =+-+
∴126(1)(2)
()618x x f x x x x
--'=
+-=
,…………………………………………2分
令()0f x '=,解得11x =,22x =
.
……………
……………………………4分
∴当1x =时,()f x 有极大值,并且极大值为(1)1f =;
当2x =时,()f x 有极小值,并且极小值为(2)812ln 2f =-+.………………6分 (2)若对任意的(0,4]x ∈,()4f x a <恒成立,则当(0,4]x ∈时,max ()4f x a <恒成立. …………………………………………7分
由(1)知当1x =时,()f x 有极大值(1)158f a =-+,当2x =时,()f x 有极小值
(2)2412ln 28f a =-++,(4)2424ln 28f a =-++,
所以对任意的(0,4]x ∈,max ()2424ln 28f x a =-++,……………………… 10分 所以2424ln 284a a -++<,解得66ln 2a <-.…………………………12分
22、解:(1)设点M 坐标为(,)x y , ∵点A ,B 的坐标分别为(0,3)-,(0,3), ∴直线AM ,BM 的斜率分别为3(0)AM y k x x +=≠、3
(0)AN y k x x
-=≠.……2分 ∴由题有
33
3(0)y y x x x
-+⨯=-≠, 化简得点M 的轨迹方程为22
1(0)93
y x x +=≠.…………………………4分
(2)设11(,)C x y ,22(,)D x y ,直线l :1y kx =+.
联立方程221
1(0)9
3y kx y x x =+⎧⎪
⎨+=≠⎪⎩,整理得22(3)280k x kx ++-=,………………6分
则12223k x x k -+=
+,122
8
3
x x k -=+. 又∵1212121212
333()9
AC AD y y y y y y k k x x x x +++++⋅=
⋅=,……………………………8分 而21212122226
11()2233
k y y kx kx k x x k k -+=+++=++=+=++,
2222
12121212222
8293
(1)(1)()11333
k k k y y kx kx k x x k x x k k k ---+=++=+++=++=+++,…………………………………………10分
∴2222229318
993189(3)336883
AC AD k k k k k k k k -+++-++++++⋅=
==---+,为定值……12分。

相关文档
最新文档