初中数学立方根专项练习含答案
苏科版初中数学八年级上册 立方根 同步专题培优训练【含答案】

苏科版初中数学八年级上册 立方根 同步专题培优训练一、单选题1.√64 的立方根是( )A. 2B. 2C. 8D. -82.如果 √x 3=−√y 3 ,则x ,y 的关系是( )A. x =yB. x =±yC. x =−yD. 无法确定3.下列结论正确的是( ).A. 64的立方根是 ±4B. −19 没有立方根 C. 若 √a =√a 3 ,则 a =1 D. √−273=−√273 4.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的( )倍.A. 2B. 3C. 4D. 55.若 √a 3<−2 ,则a 的值可以是( )A. -9B. -4C. 4D. 96.如果 √2.373 ≈1.333, √23.73 ≈2.872,那么 √23703约等于( )A. 287.2B. 28.72C. 13.33D. 133.37.下列计算或命题中正确的有( )①±4都是64的立方根; ② √x 33 =x ; ③ √64 的立方根是2; ④ √(±8)23 =±4 A. 1个 B. 2个 C. 3个 D. 4个8.一个自然数的立方根为a , 则下一个自然数的立方根是( )A. a +1B. √a +13C. √a 3+13D. a 3+19.下式①±3都是9的立方根;② √a 33=a ;③8的立方根是2;④ √(±8)23=±4 ,其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题10.−0.001 的立方根是________.11.若 √23.73≈2.872 , √x 3≈28.72 ,那么 x = ________.12.方程 x 3+1=0 根是 ________.13.一个正方体木块的体积为 1000cm²,现要把它锯成64块同样大小的正方体小木块,则小木块的棱长________cm .14.方程 x 3+64=0 的实数根是________.15.若一个数的立方根为 −13 ,则这个数为________.三、计算题16.1000(x -1)3=-2717.解方程:(5x−2)3+125=018.已知(x﹣1)3+27=0,求x的值.四、解答题19.将一个体积为125cm3的立方体体积增加V,而保持立方体的形状不变,则棱长应该增加多少?(用含有V的代数式表示);若V=875cm3,则棱长应增加多少厘米?20.李师傅打算把一个长、宽、高分别为50cm,8cm,20cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少cm?21.一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.22.已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少?23.如果一个球的体积扩大为原来的8倍,那么它的半径扩大为原来的多少倍?如果一个球的体积扩大为原来的27倍,那么它的半径扩大为原来的多少倍?如果球的体积扩大为原来的1000倍,那么它的半径扩πr3)大为原来的多少倍?(球的体积公式:V=43答案解析部分一、单选题1.【答案】 A解:先根据算术平方根的意义,求得 √64 =8,然后根据立方根的意义,求得其立方根为2. 故答案为:A.0.【答案】 C解:∵ √x 3=−√y 3=√−y 3 , ∴ x =−y ,故答案为:C .3.【答案】 D解:A. 64的立方根是 4 ,不符合题意;B. −19 有立方根,不符合题意;C. 若 √a =√a 3 ,则 a =1 或0,不符合题意;D. √−273=−√273 ,符合题意; 故答案为:D .4.【答案】 B解:设原来正方体的棱长为a ,则原来正方体的体积为 a 3 ,由题意可得现在正方体的体积为 27a 3 ,∵ √27a 33=3a ,∴现在正方体的棱长为3a ,故答案为:B .5.【答案】 A【解析】【解答】A ∵√a 3<−2∴√a 3<√−83∴a <−8故答案为:A .6.【答案】 C解: √23703=√2.37×10003=√2.373×√10003≈1.333×10=13.33 . 故答案为:C.7.【答案】 B解:①4是64的立方根,原式不符合题意;② √x 33 =x , 符合题意;③ √64 =8,8的立方根是2,原式符合题意;④ √(±8)23=√643 =4,原式不符合题意.则正确的个数为2个.故答案为:B .8.【答案】 C解:根据题意得:这个自然数为a 3 ,∴它下一个自然数的立方根是 √a 3+13 .故答案为:C .9.【答案】 B解: √93 是9的立方根,所以①错误;由于 √a 33=a ,所以②正确;8的立方根是2,所以③正确;√(±8)23=√643=4 ,所以④错误. 故答案为:B.二、填空题10.【答案】 -0.1解:因为 (−0.1)3=−0.001 ,所以 −0.001 立方根是 −0.1 .故答案为: −0.1 .11.【答案】 23700解:∵ √23.73≈2.872∴ √237003≈28.72∴ x =23700故答案为:2370012.【答案】 x=-1解:x 3=-1x=-113.【答案】 52解:根据题意得: √1000643=104=52, 则小木块的棱长是 52 cm ,故答案为: 5214.【答案】 x =−4解:方程整理得:x 3=−64,解得:x =−4.故答案为:x =−4.15.【答案】 −127解:∵立方根为-13∴这个数为(-13)3=-127三、计算题16.【答案】 解:两边都除以1000,得(x-1)3= −271000 ,开立方,得x-1= −310 ,移项,得x= 71017.【答案】 解: (5x −2)3+125=0(5x −2)3=−1255x −2=−55x =−3x =−3518.【答案】 解:(x ﹣1)3+27=0(x ﹣1)3=﹣27,则x ﹣1=﹣3,解得:x =﹣2.四、解答题19.【答案】 解:依题意得:棱长应该增加:√125+V 3−√1253=√125+V 3−5 (厘米), 当 V =875 时,√125+V 3−5=√125+8753−5=10−5=5 (厘米).20.【答案】 解:立方体的棱长=√50×8×20=√8000=20cm .答:立方体铁块的棱长为20cm.21.【答案】 解:设书的高为xcm ,由题意得:(4x )3=216,解得:x=1.5.答:这本书的高度为1.5cm .22.【答案】 解:设截去的每个小正方体的棱长是xcm ,则由题意得 1000−8x 3=488 ,解得x =4.答:截去的每个小正方体的棱长是4厘米.23.【答案】 解:∵ V =43πr 3∴当 V 1=8V 时即 8V =43πr 13 ∴ r 1=2r∴当一个球的体积扩大为原来的8倍时,它的半径扩大为原来的2倍,同理,当一个球的体积扩大为原来的27倍时,它的半径扩大为原来的3倍;当球的体积扩大为原来的1000倍时,它的半径扩大为原来的10倍.故答案为:当一个球的体积扩大为原来的8倍时,它的半径扩大为原来的2倍,当一个球的体积扩大为原来的27倍时,它的半径扩大为原来的3倍;当球的体积扩大为原来的1000倍时,它的半径扩大为原来的10倍.。
初中数学冀教版八年级上册第十四章 实数14.2 立方根-章节测试习题(2)

章节测试题1.【答题】立方根是-8的数是______,的立方根是______.【答案】-512,2【分析】根据平方根以及立方根的定义即可求解.【解答】根据立方根的意义,由(-8)3=-512,所以立方根是-8的数是-512;根据算术平方根的意义可知=8,然后由23=8,可知8的立方根为2,即求得的立方根为2.故答案为:-512;2.方法总结:此题主要考查了求一个数的立方根,根据立方根的意义,一个数的立方等于a,那么这个数就是a的立方根,关键是判断a是谁的立方.2.【答题】9的平方根是______;的立方根是______.【答案】3,-3;-2【分析】根据平方根以及立方根的定义即可求解.【解答】因为3的平方是9,-3的平方是9,所以9的平方根是,因为-2的立方是-8,所以-8的立方根是-2,故答案为: ,-2.3.【答题】已知,则a和b的关系是______.【答案】互为相反数【分析】已知等式利用立方根定义化简,得出a与b关系即可.【解答】因为,所以与互为相反数,则a与b互为相反数,故答案为互为相反数.4.【答题】的算术平方根是______,-8的立方根是______.【答案】2,-2【分析】根据算术平方根以及立方根的定义即可求解.【解答】=4,4算术平方根是2;-8的立方根是-2.故答案为2,-25.【答题】如果一个数的平方根等于这个数的立方根,那么这个数是______.【答案】0【分析】根据平方根与立方根的定义求解.【解答】根据平方根与立方根的定义,可知0的平方根等于0的立方根.故答案为:0方法总结:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:,也考查了平方根.6.【答题】若=-7,则a=______.【答案】-343【分析】根据立方根的定义直接计算.【解答】解:∵,∴a=-343故答案为:-3437.【答题】已知2x+1的平方根是±5,则5x+4的立方根是______.【答案】4【分析】根据平方根的定义即可得到一个关于x的方程求得x的值,进而得到5x+4的值,然后根据立方根的定义即可求解.【解答】解:根据题意得:即2x+1=25,解得:x=12.则5x+4=5×12+4=64,64的立方根是4.故答案为:4.8.【题文】求下列各式中的的值:(1);(2);(3);(4);【答案】(1)或;(2)3或-2;(3)-1;(4)-【分析】(1)两边同时除以4后开平方,然后解一元一次方程可得;(2)直接开平方得2x﹣1=±5,然后解该一元一次方程可得;(3)两边同时除以3后,开立方即可;(4)移项后,再开立方后解方程即可.【解答】解:(1)(2-x)2=,∴x-2=或x-2=﹣,解得:x=或x=;(2)2x﹣1=±5,∴2x﹣1=5或2x﹣1=-5,解得:x=3或-2;(3)由得:(x﹣4)3=-125,∴x﹣4=﹣5,解得:x=﹣1;(4)由得:(2x﹣1)3=-8,∴2x﹣1=-2,解得:.9.【题文】(1)已知2a-1的平方根是±3,3a+b-1的立方根是2,求2a-b的平方根.(2)我们知道时,也成立,若将a看成的立方根,b看成的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.①试举一个例子来判断上述猜测结论是否成立;②若与互为相反数,求的值.【答案】(1) ±4;(2) 结论成立;-1【分析】(1)先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值;将a、b的值代入2a-b,进而得到2a-b的平方根.(2)①结合立方根的概念,可用2与-2来验证;②根据题目中的结论可将与互为相反数转化为1-2x与3x-5互为相反数,由此求出x的值后代入计算.【解答】解(1) ∵2a-1的平方根是±3,∴2a-1=9,a=5, ∵3a+b-1的立方根是2,∴3a+b-1=8,∴b=-6, ∴2a-b=16, ∴2a-b的平方根是±4.(2) ①∵2+(-2)=0,而且,有8+(-8)=0,∴若两个数的立方根互为相反数,则这两个数也互为相反数结论成立;②由(1)验证的结果知, 若两个数的立方根互为相反数,则这两个数也互为相反数,∴(1-2x)+(3x-5)=0,∴x=4, ∴1- =1-2= -1.方法总结:本题主要考查了平方根和立方根的定义, ,根据题中的信息:“若两个数的立方根互为相反数,则这两个数也互为相反数.”答题.解答本题的关键是掌握平方根和立方根的定义.10.【题文】求下列各式中的x:(1) (2)【答案】(1) ;(2) x=【分析】(1)由可得,然后根据立方根的定义求解;(2)由可得,然后根据立方根的定义求解.【解答】解:(1)(2)11.【题文】先判断下列等式是否成立:(1)()(2)()(3)()(4)()……….经判断:(1)请你写出用含的等式表示上述各式规律的一般公式.(2)证明你的结论.【答案】四个结论均成立,(1);(2)见解析.【分析】(1)根据立方根的意义,化简判断,然后根据特点列出规律的式子即可;(2)利用立方根的意义,化简变形,得到证明过程.【解答】解:经判断四个结论均成立.(1) .(2).12.【题文】已知A=是n-m+3的算术平方根,B=是m+2n的立方根,求B-A的立方根.【答案】1【分析】根据算术平方根的意义和立方根的意义,得到方程组,然后求解出m、n 的值,代入求出A、B的值,从而求出B-A的立方根.【解答】解:由题意,得,解得∴A∴∴13.【题文】若2x+19的立方根是3,求3x+4的平方根.【答案】【分析】根据题意,由立方根的意义求出x的值,然后再代入求平方根即可. 【解答】解:∴x=4∴14.【题文】求下列各式的值或x.(1);(2);(3);(4)【答案】(1) ;(2) ;(3) ;(4)x=-6【分析】(1)根据题意,先把带分数化为假分数,然后再根据立方根的意义求解即可;(2)先计算被开方数,然后根据立方根的意义求解;(3)通过移项,系数化为1,再利用立方根求解即可;(4)把x+3看做一个整体,然后移项后利用立方根求解.【解答】解:(1)(2)(3)(4)15.【题文】求下列各式中的x .(1) (2)【答案】(1)x=(2)x=0.4【分析】(1)先移项,再系数化为1,最后再求平方根,(2)先求立方根,再移项. 【解答】(1) ,,,所以x=(2) ,,.16.【题文】小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)【答案】这两个正方体纸箱的棱长为31厘米.【分析】根据题意列出方程,再借助于开立方计算方程的解.【解答】设这两个正方体纸箱的棱长为x厘米,根据题意得,所以,所以≈31(cm ).因此,这两个正方体纸箱的棱长为31厘米.方法总结:本题主要考查立方根和近似数和有效数字等知识点,解题关键是根据正方体的体积公式列出方程求出棱长.17.【题文】求下列各式中x的值(1)(2x﹣1)2=9(2)2x3﹣6=.【答案】(1)x1=2,x2=﹣1,(2)x=【分析】(1)根据平方根的意义,把方程转化为一元一次方程可求解;(2)先移项,系数化为1,再根据立方根的意义,把方程转化为一元一次方程可求解.【解答】解:(1)(2x﹣1)2=92x-1=±3即2x-1=3或2x-1=-3解得x1=2,x2=﹣1(2)移项2x3=6+即2x3=x3=解得x=18.【题文】求下列x的值:(1)(3x+2)2=16(2)(2x﹣1)3=﹣27.【答案】(1)x=,2)x=﹣1【分析】(1)根据平方根的意义,把方程转化为一元一次方程可求解;(2)根据立方根的意义,把方程转化为一元一次方程可求解.【解答】解:(1)(3x+2)2=16,3x+2=±4,∴x=或x=2;(2)(2x﹣1)3=﹣27,2x﹣1=﹣3,∴x=﹣1.19.【题文】已知2a﹣1的平方根是±3,3a+b﹣1的立方根是4,求a+b的平方根.【答案】±【分析】根据平方根可求出2a-1=9,根据立方根可求出3a+b-1=64,然后解方程求出a、b的值即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的立方根是4,∴3a+b﹣1=64,∴b=50,∴a+b=55,∴a+b的平方根是.方法总结:此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.20.【题文】某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米(球的体积V=πr3,π取3.14,结果精确到0.1米)?【答案】这个球罐的半径r约为1.5米.【分析】利用球体的体积公式和立方根的定义计算即可.【解答】解:根据球的体积公式,得:=13.5,解得:r≈1.5.答:这个球罐的半径r为1.5米.方法总结:本题主要考查了立方根在实际生活中的应用,要求学生掌握球的体积公式,熟练进行开立方.。
初中数学-立方根、平方根典型例题及答案

说明 立方根与平方根有相似之处,但也有区别,主要是:一个数的立方根是惟一的, 而正数的平方根有两个,它们互为相反数,不注意这一点,往往容易出错.
7.∵ 25 5 ,∴ 本题结论也是错误的.
8.∵ 9 是 81 的算术平方根,不是 81 的立方根,∴ 本题的结论是错误的.
9.∵ (0.5)3 0.125 ,本题结论正确.
10.∵ (3)3 27 ,∴本题结论正确.
说明: ①命题目的:这组判断很好,它从各个侧面考查学生掌握立方根与平方根的概 念.
典型例题四
例 04 有下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一
个正数或负数的立方根和这个数同号,0 的立方根是 0;④如果一个数的立方根是这个数本
身,那么这个数必是 1 和 0.
其中错误的是
A.①②③ B.①②④ C.②③④
D.①③④
分析 一个正数的立方根是一个正数,一个负数的立方根是一个负数;0 的立方根是
②解题关键:对概念的灵活运用.
③错解剖析:如认为 25 5 是正确的,产生这种原因的主要问题在于对 25 的意义
理解不透.
典型例题二
例 02.阅读下面语句:
① 1 的 3k 次方(k 是整数)的立方根是 1 .
②如果一个数的立方根等于它本身,那么这个数或者是 1,或者是 0.
③如果 a 0 ,那么 a 的立方根的符号与 a 的符号相同.
见①不正确;3 (1) 1,这说明一个数的立方根等于它本身时,这个数有可能行装于 1 ,
初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。
学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。
下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。
练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。
2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。
3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。
练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。
2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。
3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。
练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。
2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。
3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。
通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。
不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。
6.2 立方根 人教版数学七年级下册分层作业(含答案)

人教版初中数学七年级下册6.2 立方根同步练习夯实基础篇一、单选题:1.下列说法正确的是( )A.2的平方根是B.3是的一个平方根C.负数没有立方根D.立方根等于它本身的数是【答案】B【分析】根据平方根、算术平方根、立方根的定义逐项进行判断即可.【详解】A.的平方根为,因此选项A不符合题意;B.由于的平方根是,因此是的一个平方根,因此选项B符合题意;C.任意一个实数都有立方根,因此选项C不符合题意;D.立方根等于它本身的数是,因此选项D不符合题意;故选:B.【点睛】本题考查平方根、算术平方根、立方根,理解算术平方根、平方根、立方根的定义是正确判断的前提.2.的立方根是()A.2B.2C.8D.-8【答案】A【详解】先根据算术平方根的意义,求得=8,然后根据立方根的意义,求得其立方根为2.故选A.3.下列计算正确的是()A.B.C.D.【答案】D【分析】本题只要根据算术平方根、平方根以及立方根的计算法则即可得出答案.【详解】解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项不符合题意;D、正确,故该选项符合题意;故选:D.【点睛】本题主要考查的就是立方根、平方根、算术平方根的计算,属于基础题型.一个非负数的平方根有两个,他们互为相反数;表示a的算术平方根,表示a的平方根.4.下列各组数中,不相等的一组是()A.和B.和C.和D.和【答案】C【分析】先求出每个式子的值,再比较即可.【详解】解:A、,相等,故此选项不符合题意;B、,,相等,故此选项不符合题意;C、,,不相等,故此选项符合题意;D、,相等,故此选项不符合题意.故选:C.【点睛】此题考查了立方根,算术平方根,有理数的乘方,以及绝对值,熟练掌握相关定义和运算法则是解本题的关键.5.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;②的算术平方根是a;③的立方根是;④的算术平方根是4;其中,不正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据立方根和平方根,算术平方根的性质,逐项判断即可求解.【详解】解:①如果一个实数的立方根等于它本身,这个数只有0或1或,故本选项错误;②当时,的算术平方根是a,故本选项错误;③的立方根是,故本选项错误;④因为,所以的算术平方根是2,故本选项错误;所以不正确的有4个.故选:D【点睛】本题主要考查了立方根和平方根,算术平方根的性质,熟练掌握立方根和平方根,算术平方根的性质是解题的关键.6.若,,()A.0.716B.7.16C.1.542D.15.42【答案】D【分析】根据小数点位置移动引起数的大小变化规律可知:一个数的小数点向右移动三位,它的立方根的小数点应向右移动一位,据此解答即可.【详解】解:一个小数的小数点向右移动三位,这个小数就扩大了1000倍,它的立方根的小数点就向右移动一位,,,故选:D.【点睛】本题考查了立方根的性质,熟练掌握和运用求一个数的立方根的方法是解决本题的关键.7.若,则的值为()A.5B.15C.25D.-5【答案】D【分析】直接利用算术平方根以及绝对值的性质得出x,y的值,进而代入得出答案.【详解】解:∵,∴x-5=0,y+25=0,∴x=5,y=-25,∴===-5,故选D.【点睛】此题主要考查了算术平方根以及绝对值的性质,立方根的求法,正确得出x,y的值是解题关键.二、填空题:8.算术平方根是本身的数是_________,平方根是本身的数是_________,立方根是本身的数是________.【答案】 0,1 0 0,±1【分析】根据算术平方根、平方根、立方根的定义即可解答.【详解】解:算术平方根是本身的数是0、1,平方根是其本身的数是0,立方根是其本身的数是0,±1.故答案为0,1;0,1;0,±1.【点睛】本题主要考查了算术平方根、平方根、立方根的定义等知识点,掌握特殊数的算术平方根、平方根、立方根是解答本题的关键.9.计算:(1)________;(2)________;(3)________;(4)________;(5)________;(6)________.【答案】【分析】根据平方根、算术平方根、立方根的定义逐项进行计算即可.【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4),故答案为:;(5),故答案为:;(6).故答案为:本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a 称为被开方数).10.计算________.【答案】-1【分析】根据立方根的定义和有理数的乘方法则进行计算,再相加即可.【详解】解:故答案为:-1.【点睛】本题考查了实数的混合运算,解题的关键是掌握立方根的定义和有理数的乘方运算法则.11.如果一个正数的两个平方根是a+1和2a﹣22,这个正数的立方根是_____.【答案】【分析】根据一个正数的两个平方根互为相反数,可得出关于的方程,解出即可.【详解】解:∵一个正数的两个平方根是和,∴,解得,∴这个正数是,∴这个正数的立方根是,故答案为:.【点睛】本题考查了平方根的定义和性质,立方根的定义,熟练掌握一个正数的两个平方根互为相反数是解题的关键.12.的算术平方根是3,的立方根是2,则的算术平方根为___________.【答案】6【分析】根据算术平方根的定义和立方根的定义,先求出a和b的值,再将a和b的值代入求解即可.【详解】解:∵的算术平方根是3,的立方根是2,∴,,∴,,∴,∴的算数平方根为:.故答案为:6.【点睛】本题主要考查了算术平方根和立方根的定义,解题的关键是熟练掌握算术平方根和立方根的定义.13.已知实数a,b满足,则的立方根是______.【答案】【分析】利用绝对值与算术平方根的非负性求解得到从而可得答案.【详解】解:∵,∴解得:∴∴的立方根是故答案为:【点睛】本题考查的是绝对值与算术平方根的非负性的应用,立方根的含义,掌握“算术平方根的非负性”是解本题的关键.14.如果,则________;,则________;如果,,则________;,则________.【答案】 395.22 1562 0.2872【分析】根据立方根和算术平方根的定义找出他们之间的规律即可得出答案.【详解】解:如果,则,,则;如果,,则;,则;故答案为:①395.22,②1562;③0.2872,④.【点睛】此题考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.三、解答题:15.求下列各数的立方根.(1)64(2)(3)(4).【答案】(1)4(2)(3)(4)【分析】(1)根据立方根的定义,求解即可;(2)根据立方根的定义,求解即可;(3)根据立方根的定义,求解即可;(4)根据立方根的定义,求解即可.【详解】(1)解:64的立方根是4;(2)解:,立方根是;(3)解:的立方根是;(4)解:的立方根是.【点睛】本题考查了立方根的知识,解题的关键是掌握开立方的运算.16.求下列各式中x的值.(1);(2).【答案】(1),;(2).【分析】(1)直接利用平方根定义计算即可求出解;(2)方程变形后,利用立方根定义开立方即可求出解.【详解】(1)解:;开方得:,移项得,,系数化1得,,,;(2)解:方程变形得:,开立方得:,解得:.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.17.已知:的平方根是与,且.(1)求,的值;(2)求的值;(3)求的立方根.【答案】(1),(2)(3)2【分析】(1)根据一个数的两个平方根互为相反数可得答案;(2)求出或者的平方即可得出答案;(3)将的值代入中,求其立方根即可.【详解】(1)解:的平方根是与,,解得,,;(2)的平方根是与,;(3).【点睛】本题考查了平方根以及立方根,熟知一个数的两个平方根互为相反数是解本题的关键.18.已知M=是m+12的算术平方根,N=是n-30的立方根,试求的值.【答案】M-N=7【分析】根据算术平方根及立方根的定义,求出m和n的值,进而求出M、N的值,代入可得出M−N的平方根.【详解】解:∵M=是m+12的算术平方根,N=是n−30的立方根,∴5−n=2,m−1=3,解得:m=4,n=3,把m=4,n=3代入m+12=16,n−30=−27,∴M=,N=,把M=4,N=−3代入可得:M−N=7.【点睛】本题考查了立方根、算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.能力提升篇一、单选题:1.已知x﹣1,则x2﹣1的值为()A.0和1B.0和2C.0、﹣1或3D.0或±1【答案】C【分析】根据立方根的定义,求得的值,代入代数式即可求解.【详解】∵x﹣1的立方根等于它本身,∴x﹣1=±1或0,∴x=0,1或2,∴当x=0时,原式=﹣1;当x=1时,原式=0;当x=2时,原式=3.故选:C.【点睛】本题考查了立方根,掌握立方根的定义与求法是解题的关键.2.若a是的平方根,b是的立方根,则a+b的值是()A.4B.4或0C.6或2D.6【答案】C【分析】由a是的平方根可得a=±2,由b是的立方根可得b=4,由此即可求得a+b的值.【详解】∵a是的平方根,∴a=±2,∵b是的立方根,∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、b=4是解决问题的关键.3.下列各式中,不正确的是()A.B.C.D.【答案】B【分析】根据平方根和立方根的特点求出各数,再根据实数的大小比较的法则进行解答即可.【详解】解:、,,,故本选项正确;B、,,,故本选项错误;C、,,故本选项正确;D、,,,故本选项正确;故选:.【点睛】此题考查了实数的大小比较,掌握实数的大小比较的法则是本题的关键.二、填空题:4.将一个体积为的立方体木块锯成个同样大小的小立方体木块,则每个小立方体木块的表面积_____.【答案】【分析】根据题意求得每个小正方体的体积,继而求得小正方体的棱长为,即可求解.【详解】解:每个小正方体的体积为:∴小正方体的棱长为∴每个小立方体木块的表面积.故答案为:.【点睛】本题考查了立方根的应用,求得小正方体的棱长为是解题的关键.5.已知﹣2x﹣1=0,则x=_____.【答案】0或﹣1或﹣【分析】将原方程变形得到=2x+1,根据一个数的立方根等于它本身得到这个数是0或1或-1,由此化成一元一次方程,解方程即可得到答案.【详解】∵﹣2x﹣1=0,∴=2x+1,∴2x+1=1或2x+1=﹣1或2x+1=0,解得x=0或x=﹣1或x=﹣.故答案为:0或﹣1或﹣.【点睛】此题考查立方根的性质,解一元一次方程,由立方根的性质得到方程是解题的关键.6.观察下列各式:用字母n表示出一般规律是__________.(n为不小于2的整数)【答案】(n为不小于2的整数)【分析】分析被开方数的变换规律即可求得【详解】解:1、观察4个等式左边根号内分数的特点:①整数部分与分数部分的分子相等,即2=2,3=3,4=4,5=5,②整数部分与分数部分的分母有下列关系:,2、观察四个等式右边的立方根前的倍数正好是等式左边被开方数的整数部分,立方根里的分数正好是左边被开方数的分数部分,所以其中的规律可以表示为(n为不小于2的整数)故答案为:(n为不小于2的整数).【点睛】本题考查了立方根的规律探究,分析被开方数的变换规律是解题关键.三、解答题:7.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了,小燕量得小水桶的直径为,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式,r为球的半径.)【答案】3cm.【分析】设球的半径为r,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r,小水桶的直径为,水面下降了,小水桶的半径为6cm,下降的水的体积是π×62×1=36π(cm3),即,解得:,,答:铅球的半径是3cm.【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r的方程.8.已知为有理数,且,求的平方根.【答案】【分析】根据题意得:,解出,代入,求出平方根.【详解】解:,,解得,.【点睛】本题主要考查平方根、立方根,熟练掌握其定义及性质是解题关键.。
初中数学七年级下数学立方根同步专项练习题含答案

初中数学七年级下数学立方根同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若√a3<−2,则a的值可以是()A.−9B.−4C.4D.92. 若√a3<−2,则a的值可以是()A.4B.−4C.9D.−93. −8的立方根是()A.−2B.2C.±2D.−44. −8的立方根是()A.−2B.2C.12D.−125. 如图,某同学利用计算器中的三个按键设置计算程序,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,程序将按照以下步骤进行,依次按照从第一步到第三步循环计算.若一开始输人的数据为10,那么第2021步之后,显示的结果是( )A.√1010B.100C.0.1D.0.016. 用计算器求√44.86的值为(结果精确到0.01位)( )A.6.69B.6.7C.6.70D.±6.707. 现将体积是125cm 3的正方体木块锯成8块同样大小的小正方体木块,准备从中选取n 个小正方体木块,排放在一块长方形的木板上,已知此长方形木板的长是宽的4倍,面积是36cm 2,若只排放一层,n 的最大值是 ( )A.2B.3C.4D.58. 若√0.3673=0.176,√3.673=1.542,则√3673=( )A.15.42B.7.16C.154.2D.71.69. 如果x 2=2,有x =±√2;当x 3=3时,有x =√33,想一想,从下列各式中,能得出x =±√220的是( )A.x 2=±20B.x 20=2C.x ±20=20D.x 3=±2010. 已知√5.283=1.738,√a 3=0.1738,则a 的值为( )A.0.528B.0.0528C.0.00528D.0.000528 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 一个数的立方根是−32,这个数是________.12. 一个数的立方根是,那么这个数的平方根是________.13. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.0036703=________.14. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).15. 利用计算器,在求√273时,正确的按键顺序应为________.16. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.00036703=________.17. −8的立方根是________.18. 已知x 满足(x +3)3+27=0,则x 等于________.19. 已知√8.9663=2.078,√y 3=0.2708,则y =________.20. 已知√103=a ,则√−100003=________.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 , )21. 计算:(1)|−5|+√16−32;(2)√4+√225−√−273.22. 计算:√303403(结果精确到1)23. 计算:(1)−22+√25+√643÷2;(2)√−273+|√3−6|−(−√3).24. 已知第一个正方体玩具的棱长是6cm ,第二个正方体玩具的体积要比第一个玩具的体积大127cm ,试求第二个正方体玩具的棱长.25. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.26. 求x 的值:64(x +1)3−27=0.27. 观察下列各式,然后探索下列问题:∵ √13=1,√−13=−1∴ √−13=√13∵ √83=2,√−83=−2∴ √−83=−√83∵ √273=3,√−273=−3∴ √−273=−√273…∵ √n 33=(________),√−n 33=(________)∴ (________)=(________)(1)在上面的“( )上填空,并猜测互为相反数的两个数的立方根有何关系;(2)计算√−13+√−83+√−273+...+√(−n)33(其中n =100)28. 解方程:(3x −1)3+64=0.29. 用计算器求下列各式的值(结果保留四个有效数字)(1)−√39.2473(2)√41.834(3)√12.4(4)√71800330. 已知球的半径为rcm ,球的体积为850cm 3,根据球的体积公式V 球=43πr 3,求r 的值(精确到0.01).31. 求x 的值:14x 3+3=5.32. 已知√x 3−73=x 2,求x 3−√7.33. 已知2x −1的平方根是±5,3x +y −1的平方根是±3,求x +y 的值.34. 解方程:(1)(2)35. 求下式中x的值:8(x−1)3=27 .36. (1)计算:; 36.(2)已知=4,求x的值.37. 有一正方体盒子的容积是27cm3,问做这样一个正方体盒子(无盖)需要多少平方厘米的纸板?38. 利用计算器计算:√32−355113+2π−√2(精确到0.01)39. 一个正数的平方根分别是2a+5和2a−1,b−30的立方根是−3,求:(1)求a,b的值,(2)求a+b的算术平方根.40. 已知x的立方根是3,求2x−5的平方根.参考答案与试题解析初中数学七年级下数学立方根同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选A.2.【答案】D【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选D.3.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据立方根的定义:若x3=a,那么x叫做a的立方根,即可得出答案【解答】解:.(−23=−8−8的立方根是−2.故答案为:A.4.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据题意先求出−8的立方根,即可得出结果【解答】解:.√83=−2∴ 8的立方根是−2.故答案为:A .5.【答案】B【考点】计算器—数的开方【解析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.【解答】解:根据题意,得102=100,1100=0.01,√0.01=0.1; 0.12=0.01,10.01=100,√100=10;⋯,∵ 2021=6×336+5,∴ 按了第2021下后荧幕显示的数是100.故选B .6.【答案】C【考点】计算器—数的开方【解析】根据计算器的使用方法进行计算即可得解.【解答】解:√44.86≈6.69776≈6.70.故选C .7.【答案】C【考点】立方根的应用【解析】1【解答】解:√12583=52,∴ 立方体棱长为52cm ,设长方形宽为x ,可得 4x 2=36,∴ x 2=9.∵ x >0,∴ x =3,12÷52=245,横排可放4个,竖排只能放1个,4×1=4个,∴ 所以最多可放4个.故选C .8.【答案】B【考点】立方根的实际应用立方根的应用【解析】根据立方根,即可解答.【解答】解:∵ √0.3673=0.176,√3.673=1.542,∴ √3673=7.16,故选B .9.【答案】B【考点】立方根的实际应用【解析】结合题意,可知x =±√220,即x 的指数是20,x 20的结果是2,即可解决问题.【解答】解:根据题意,可知x 20=2,能得出x =±√220.故选B .10.【答案】C【考点】立方根的实际应用【解析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案.【解答】解:∵ √5.283=1.738,√a 3=0.1738,∴ a =0.00528;故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】−278【考点】立方根解析:因为−278立方根是−32,所以这个数是−278. 【解答】解:因为−278立方根是−32, 所以这个数是−278.故答案为:−278.12.【答案】±1【考点】立方根的性质【解析】根据立方跟乘方运算,可得被开方数,根据开方运算,可得平方根.【解答】13=1,±√1=±1故答案为:±13.【答案】7.160,−0.1542【考点】立方根的实际应用立方根的应用立方根的性质【解析】利用立方根性质判断即可得到结果.【解答】解:∴ √0.36703=0.7160 √3.6703=1.542√3673=7.160 √−0.0036703=−0.154 故答案为:7.160;−0.154214.【答案】0.464【考点】计算器—数的开方【解析】用计算器计算出√13的值后,再来计算所求代数式的值即可.【解答】解:原式=3.6056−3.142≈0.464.故答案是:0.464.15.【答案】2,÷,7,2nd 键,√x 3,=计算器—数的开方【解析】是2÷7,切换三次根号时需要用到切换键2nd.一般使用科学型的计算器,注意27【解答】3,=.解:按键顺序依次为2,÷,7,2nd键,√x(由于计算器的类型很多,可根据计算器的说明书使用)16.【答案】7.160,−0.07160【考点】立方根的实际应用立方根的应用【解析】被开方数367由0.367小数点向右移动3位得到,故开立方的结果向右移动1位即可得到结果;被开方数−0.0003670由0.3670小数点向左移动3位得到,故立方的结果向左移动1为即可得到结果.【解答】3=0.7160,解:∵√0.3670被开方数367由0.367小数点向右移动3位得到3=7.160,∴√367被开方数−0.0003670由−0.3670小数点向左移动3位得到3=−0.07160.∴√−0.0003670故答案为:7.160;−0.07160.17.【答案】−2【考点】立方根的应用立方根的性质【解析】3=−2.√−8【解答】3=−2.解:√−8故答案为:−2.18.【答案】−6【考点】立方根的实际应用【解析】先移项,再用立方根得定义即可得出结论.【解答】解:(x +3)3+27=0,移项得,(x +3)3=−27,开立方得,x +3=−3,移项得,x =−6,故答案为:−6.19.【答案】0.008966【考点】立方根的实际应用【解析】根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.【解答】解:∵ √8.9663=2.078,√y 3=0.2708,∴ y =0.008966,故答案为:0.008966.20.【答案】−10a【考点】立方根的实际应用立方根的应用立方根的性质【解析】根据立方根的性质进行开立方计算得到答案即可.【解答】解:√100003=−103√103=−10a三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:(1)原式=5+4−9=0.(2)原式=2+15+3=20.【考点】绝对值有理数的乘方算术平方根立方根【解析】无无【解答】解:(1)原式=5+4−9(2)原式=2+15+3=20.22.【答案】3≈31.解:√30340【考点】计算器—数的开方【解析】3的值是多少;然后应用四舍首先根据用计算器求一个数的立方根的方法,求出√30340五入法,将结果精确到1即可.【解答】3≈31.解:√3034023.【答案】解:(1)原式=−4+5+4÷2=−4+5+2=3;(2)原式=−3+6−√3+√3=3.【考点】立方根的应用实数的运算算术平方根绝对值【解析】【解答】解:(1)原式=−4+5+4÷2=−4+5+2=3.(2)原式=−3+6−√3+√3=3.24.【答案】第二个正方形玩具的棱长为7cm【考点】立方根的实际应用【解析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm33=7cm.第二个正方体的棱长为:√343【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】已知第一个等式变形得到立方根等于本身确定出x 的值,再利用相反数之和为0列出等式,将x 的值代入即可求出y 的值.【解答】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.26.【答案】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764,∴ x +1=34, 解得x =−14.【考点】立方根的应用【解析】(2)根据立方根的含义和求法,求出x 的值是多少即可.【解答】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764, ∴ x +1=34,解得x =−14.27.【答案】n ;−n ;√n 33;−√n 33(1)互为相反数的两个数的立方根互为相反数;(2)原式=−1−2−3−...−n =−n(n+1)2.【考点】立方根的实际应用【解析】观察各式,填写即可;(1)猜测得到互为相反数的两个数的立方根互为相反数;(2)利用得出的结论化简,计算即可得到结果.【解答】解:∵ √n 33=n ,√−n 33=−n ,∴ √n 33=−√n 33;(2)原式=−1−2−3−...−n =−n(n+1)2.28.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.29.【答案】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.【考点】计算器—数的开方【解析】有效数字就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,根据定义即可确定.【解答】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.30.【答案】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .【考点】立方根的实际应用【解析】根据球的体积表示出r 3,然后利用立方根的定义解答.【解答】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .31.【答案】∵ 14x 3+3=5,∴ 14x 3=2,则x 3=8,∴ x =2.【考点】立方根的性质【解析】先移项、合并,再两边都乘以4,最后依据立方根的定义求解可得.【解答】∵ 14x 3+3=5, ∴ 14x 3=2,则x 3=8,∴ x =2.32.【答案】解:∵ √x 3−73=x 2,∴ x 3−7=(x 2)3, ∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.【考点】立方根的实际应用【解析】根据立方根的定义得出方程,求出x 的值,代入求出即可.【解答】解:∵ √x 3−73=x 2, ∴ x 3−7=(x 2)3,∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.33.【答案】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.【考点】立方根的应用列代数式求值平方根【解析】根据平方根的定义列方程求出x ,y 的值,然后代入代数式进行计算即可得解.【解答】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.34.【答案】(1)x 1=5x 2=−3;(2)x =0【考点】立方根的性质【解析】(1)把16移到方程右边,再两边开平方,最后解一元一次方程即可得答;(2)把含x 的项放在方程的左边,常数项放右边,两边开立方,再解一元一次方程即可.【解答】(1)∴ (x −1)2−16=0(x −1)2=16x −1=±4解得,x 1=5x 2=−3(2)∵ 1−(2x −3)3=28(2x −3)3=−272x −3=−3解得,x =035.【答案】解:(x −1)3=278,x −1=32, x =52.【考点】立方根的实际应用【解析】(1)把(x −1)3看作一个整体并求出其值,再根据立方根的定义解答;【解答】解:(x −1)3=278,x −1=32,x =52.36.【答案】(1)−13; (2)x 1=3,x 2=−1【考点】立方根的性质【解析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.【解答】(1)√(−2)2−√83+√−1273=2−13=31 (2)(x −1)2=4x −1=±2x −1=2,x −1=−2解得:x 1=3,x 2=−137.【答案】解:设正方体的棱长为a ,根据题意得:a 3=27,则a =3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm 2.【考点】立方根的实际应用【解析】设正方体的棱长为a ,可求得正方体的棱长,然后再求得5个面的面积即可.【解答】解:设正方体的棱长为a,根据题意得:a3=27,则a=3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm2.38.【答案】2.59.【考点】计算器—数的开方【解析】首先熟练应用计算器计算结果,然后对计算器给出的结果,根据有效数字的概念即可求出结果.【解答】解:原式≈0.866−2.669+6.283−1.414≈2.59,故39.【答案】由题意可知:(2a+5)+(3a−1)=0,b−30=(−6)3=−27,解得a=−1,b=8;∵a+b=−1+3=7,∴a+b的算术平方根是.【考点】算术平方根立方根的性质平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.【考点】立方根的性质平方根【解析】首先根据x的立方根是3,求出x的值是多少;然后根据平方根的含义和求法,求出2x−5的平方根是多少即可.【解答】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.。
人教版初中数学七年级下册《6.2立方根》同步练习(含答案)

《立方根》同步练习1课堂作业1.下列说法正确的是()A.一个正数有两个立方根,它们的和为0B.负数没有立方根C.如果一个数没有平方根,那么它一定没有立方根D.一个数的立方根与这个数同号2的结果为()A.±2B.-2C.2D.3.有一个正方体的水晶砖,体积为100cm3,则它的棱长在()A.4~5cm范围内B.5~6cm范围内C.6~7cm范围内D.7~8cm范围内4.一个数的算术平方根与它的立方根相同,这个数是________.5.2,那么x=________.的平方根是±2,那么x=________.6.求下列各数的立方根:(1)343;(2)8 125;.7.求下列各式的值:(1)(2);课后作业8的立方根是()A.-1B.0C.1D.±19.下列等式成立的是()=±A1=B15=-C5=-D310.若x3=1000,则x=________;若x3=-216,则x=-________;若x3=-(-9)3,则11.已知 1.038≈, 2.237≈, 4.820≈,则________≈,________≈.12.若两个连续的整数a 、b 满足a b <<,则1ab的值为________. 13.求下列各式中x 的值: (1)125x 3=64; (2)(x -1)3-0.343=0: (3)398127x +=-; (4)31(23)544x +=.14.若2(2015)0x -=,求x +y 的立方根.15.某农户原计划利用现有的一面墙再修三面墙,建造如图所示的长方体池塘,用来培育鱼苗,长方体长9m 、宽8m 、高3m ,后听从建筑师的建议改为建造等体积的正方体池塘,则待建的三面墙的总长度是多少(不考虑墙的厚度)?答案[课堂作业] 1.D 2.C 3.A 4.0或1 5.64 64 6.(1)7 (2)25(3)-0.1 (4)3 7.(1)±8 (2)43 (3)54(4)1 [课后作业] 8.C 9.C10.10 -6 9 11.10.38 -0.482 12.12013.(1)45x =(2)x =1.7 (3)53x =- (4)32x =14.∵(x -2021)2≥00,2(2015)0x -=.∴(x -2021)2=0,0=.∴x =2021,y =-2021.∴x +y =-1.∴x +y 的立方根为-115.设正方体池塘的棱长为xm 由题意,得9×8×3=x 3.∴6x ===,即此正方体池塘的棱长为6m.∴待建的三面墙的总长度是6×3=18(m)《立方根》同步练习21. 的立方根是( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )A.B.-27C.D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15的.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.5__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216;(2)0;(3)-21027;(4)-5.8.求下列各式的值:(1(2(3)9.的值约为( )A.3.049B.3.050C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.≈__________(精确到百分位).12.已知=1.038,=2.237,=4.820,则=__________,=__________.13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:______________________________.(3)根据你发现的规律填空:=1.442,;0.07696,=__________.参考答案1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是00;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43=-43;(4)-5.8.(1)0.1;(2)-75;(3)-2 3 .9.B10.C11.2.9212.10.38-0.482013.(1)0.010.1110100(2)被开方数扩大1000倍,则立方根扩大10倍(3)14.420.14427.696《立方根》同步练习31.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根D2.( )A.7B.-7C.±7D.无意义3.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )A.2倍B.3倍C.4倍D.5倍4.-27__________.5.计算:=__________=__________.6.已知2x+1的平方根是±5,则5x+4的立方根是__________.7.求下列各式的值:(1) (2)-; (3)-+; (4)-+8.比较下列各数的大小:(1 (2与-3.4.9.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.10.(b-27)2的立方根.11.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?参考答案1.D2.B3.B4.0或-65.-4 -346.47.(1)-10;(2)4;(3)-1;(4)0.8.(1;(2<-3.4.9.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.10.由题意知a=-8,b=27,5.11.(1)8倍;(2.。
(完整版)立方根习题精选及答案(二)

立方根习题精选(二)1.-35是的立方根。
2.当x3.立方根等于本身的数有。
4.若m是a的立方根,则-m是的立方根。
56.若x3=a,则下列说法正确的是()7.-7的立方根用符号表示应为()ABCD.84a=-成立,那么a的取值范围是()A.a≤4B.-a≤4C.a≥4D.任意实数9.下列四种说法中,正确的是()①1的立方根是1;②127的立方根是±13;③-81无立方根;④互为相反数的两个数的立方根互为相反数。
A.①②B .①③C .①④D .②④10.a <0,那么a 的立方根是()AB .CD11.下列各数有立方根的有()①27,②5,③0,④12,⑤-16,⑥-10-6 A .3个B .4个C .5个D .6个12.求下列各数的立方根:(1)21027; (2)-0.008(3)(-4)314)x 3<的立方根是。
15。
16.下列式子中不正确的是()A 235=B 6=±C0.4=D1 5 =17A.正数B.负数C.非正数D.非负数184=的值是()A.-3B.3C.10D.-1019.当a<0得()A.-1B.1C.0D.±120.求下列各式的值:(1(2(3)21.若x 是64。
22.求下列各式中x 的值。
(1)(x-3)3-64=0(2325x 116=-23x y的值。
(一)新型题24是一个整数,那么最大的负整数a 是多少?252a 1=-,求a 的值.(二)课本习题变式题26.(课本P103第4题变式题)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,求这个正方体的表面积.(三)易错题27.(2)当x(四)难题巧解题28.若a 、b 互为相反数,c 、d 1的值.(五)一题多变题29的平方根是。
的平方根是±3,则a =。
的立方根是2,则a =。
[数学在学校、家庭、社会生活中的应用]30.要用体积是125cm 3的木块做成八个一样的小正方体,那么这八个小正方体的棱长是多少?[数学在生产、经济、科技中的应用]31.要用铁皮焊制正方体水箱,使其容积为1.728m3,问至少需要多大面积的铁皮?[自主探究]32.(1)观察下表,你能得到什么规律?≈(2) 2.22[潜能开发]33.请分别计算下列各式的值:,.从中你能发现什么规律?能用数学符号表示出来吗??[信息处理]34.在一次设计比赛中,两位参赛者每人得到1m3的可塑性原料,甲把它塑造成一个正方体,乙把它塑造成一个球体(损耗不计).比赛规定作品高度不超过1.1m,请你利用所学知识,分析说明哪一个人的作品符合要求?[开放实践]35.如果A a+3b的算术平方根,B=2a-1-a2的立方根,并且a、b满足关系式a-2b+3=2,求A+B的立方根.[中考链接]36.(2004·山东济宁()A.2B.-2D37.(2004·福州)如果x 3=8,那么x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根专项练习一.选择题(共20小题)1.下列计算正确的是()A.=B.=±5C.﹣=﹣8D.﹣=22.下列各式正确的是()A.B.=3C.=﹣4D.=±5 3.有理数﹣8的立方根为()A.﹣2B.2C.±2D.±44.下列计算正确的是()A.=±3B.(﹣1)0=0C.+=D.=2 5.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根6.下列说法中正确的是()A.9的平方根是3B.4平方根是±2C.的算术平方根是4D.﹣8的立方根是±27.右边运算中错误的有()①=4;②;③=﹣4;④=4;⑤±=4.A.1个B.2个C.3个D.4个8.若x3=8,则x的值为()A.﹣2B.2C.4D.9.如图为洪涛同学的小测卷,他的得分应是()A.25分B.50分C.75分D.100分10.下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是011.平方根和立方根都是本身的数是()A.0B.0和1C.±1D.0和±1 12.8的立方根等于()A.﹣2B.2C.﹣4D.4 13.已知x,y为实数,且+(y+2)2=0,则y x的立方根是()A.B.﹣8C.﹣2D.±2 14.下列说法不正确的是()A.的平方根是±B.﹣9是81的一个平方根C.3.6的算式平方根是0.6D.﹣27的立方根是﹣315.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若,则a=b D.若,则a=b 16.下列说法正确的是()A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.﹣2是4的一个平方根17.﹣8的立方根是()A.±2B.2C.﹣2D.24 18.下列说法中,错误的是()A.4的算术平方根是2B.的平方根是±3C.8的立方根是±2D.﹣1的立方根等于﹣1 19.已知+|b﹣1|=0,那么(a+b)2018的立方根为()A.0B.﹣1C.1D.±120.下列计算:①=0;②=﹣3;③=2;④(﹣)2=2,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共15小题)21.求值:=_______.22.16的平方根是_______;8的立方根是_______.23.有一个数值转换器,原理如图:当输入的x为﹣83时,输出的y是_______.24.已知a,b满足a3b3=27,当﹣3<a<1时,b的取值范围是_______.25.一个容积是125dm3的正方体棱长是_______dm.26.﹣64的立方根是_______,的平方根是_______.27.的平方根是_______,125的立方根是_______,的立方根是_______.28.=_______.29.若a+7的算术平方根是3,2b+2的立方根是﹣2,则b a=_______.30.64的平方根是_______,立方根是_______,算术平方根是_______.31.16的算术平方根是_______.﹣27的立方根是_______.的平方根_______.32.若=2.938,=6.329,则=_______.33.计算:﹣()﹣1=_______.34.已知某正数的两个平方根分别是m+4和2m﹣16,则这个正数的立方根为_______.35.若一个数的算术平方根与它的立方根相等,那么这个数是_______.三.解答题(共5小题)36.已知一个正数的平方根是a﹣3和a﹣11,a+2b﹣3的立方根是2,求2a+b的算术平方根.37.解决以下问题:(1)若的平方根是±2,2x+y+1的算术平方根是5,求2x﹣3y+18的立方根;(2)若与的值互为相反数,与互为相反数,求a,b,c的值.38.求下列各式中的x.(1)x2﹣121=0(2)(x﹣5)3+8=039.已知2的平方等于a,2b﹣1是27的立方根,±表示3的平方根.(1)求a,b,c的值;(2)化简关于x的多项式:|x﹣a|﹣2(x+b)﹣c,其中x<4.40.求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.立方根专项练习参考答案与试题解析一.选择题(共20小题)1.解:A.,故本选项符合题意;B.,故本选项不合题意;C.,故本选项不合题意;D.,故本选项不合题意;故选:A.2.解:A、原式=﹣2,符合题意;B、原式不能化简,不符合题意;C、原式=|﹣4|=4,不符合题意;D、原式=5,不符合题意,故选:A.3.解:有理数﹣8的立方根为.故选:A.4.解:A、=3,故此选项错误;B、(﹣1)0=1,故此选项错误;C、+无法计算,故此选项错误;D、=2,正确.故选:D.5.解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.6.解:A、9的平方根是±3,不符合题意;B、4的平方根是±2,符合题意;C、=4,4的算术平方根是2,不符合题意;D、﹣8的立方根是﹣2,不符合题意,故选:B.7.解:①,①正确,②,②正确,③没有意义,③错误,④,④正确,⑤,⑤错误,运算错误的有两个,故选:B.8.解:∵x3=8,∴x==2,故选:B.9.解:①2的相反数是﹣2,正确;②倒数等于它本身的数是1和﹣1,正确;③﹣1的绝对值是1,正确;④8的立方根是2,正确;故选:D.10.解:A.5是25的算术平方根,此选项说法正确;B.1的立方根是1,此选项说法错误;C.﹣1没有平方根,此选项说法正确;D.0的平方根与算术平方根都是0,此选项说法正确;故选:B.11.解:平方根和立方根都是本身的数是0.故选:A.12.解:∵23=8,∴8的立方根是2.故选:B.13.解:∵+(y+2)2=0,∴x﹣3=0,y+2=0,解得:x=3,y=﹣2,则y x=(﹣2)3=﹣8的立方根是:﹣2.14.解:A、的平方根是,选顶A正确;B、﹣9是81的一个平方根,选顶B正确;C、0.36的算式平方根是0.6,选顶C不正确;D、﹣27的立方根是﹣3,选顶D正确;本题选择不正确的,故选:C.15.解:A、若|m|=|n|,则m=±n,故本选项判断错误,不符合题意;B、若a2>b2,则|a|>|b|,当a<0时,a<b,故本选项判断错误,不符合题意;C、若,则a=b,故本选项判断正确,符合题意;D、若,则|a|=b,故本选项判断错误,不符合题意;故选:C.16.解:A、立方根是它本身的数有﹣1、0和1,故错误,不符合题意;B、负数有立方根但没有平方根,故错误,不符合题意;C、16的平方根是±4,故错误,不符合题意;D、﹣2是4的一个平方根,正确,符合题意,故选:D.17.解:﹣8的立方根是﹣2.故选:C.18.解:A、4的算术平方根是2,说法正确,故本选项错误;B、的平方根是±3,说法正确,故本选项错误;C、8的立方根是2,原说法错误,故本选项正确;D、﹣1的立方根等于﹣1,说法正确,故本选项错误;故选:C.19.解:∵+|b﹣1|=0,∴a+2=0,b﹣1=0,∴a=﹣2,b=1,∴(a+b)2018=(﹣2+1)2018=1,∴(a+b)2018的立方根为1,20.解:①,故①计算正确;②,故②计算正确;③=2,故③计算正确;④=2,故④计算正确;共四个,故选:D.二.填空题(共15小题)21.解:=﹣2019,故答案为:﹣2019.22.解:16的平方根是,8的立方根是.故答案为:±4;223.解:将x=﹣83代入得:=﹣8将x=﹣8代入得:=﹣2,将x=﹣2代入得:,则输出y的值为:.故答案为:.24.解:由a3b3=(ab)3=27,得ab=3,∵﹣3<a<1∴b=∴b<﹣1或b>3故答案为:b<﹣1或b>325.解:设棱长为a,则a3=125,∴a==5,故答案为5.26.解:﹣64的立方根是﹣4=4,4的平方根是±2,即的平方根是±2,故答案为:﹣4,±2.27.解:的平方根是,125的立方根是5,,则的立方根是2,故答案为:,5,2.28.解:∵0.33=0.027,∴.故答案为0.3.29.解:由题意知a+7=9,2b+2=﹣8,解得:a=2,b=﹣5,∴b a=(﹣5)2=25,故答案为:25.30.解:64的平方根是±8,立方根是4,算术平方根是8;故答案为:±8;4;8.31.解:16的算术平方根是4,﹣27的立方根是﹣3,∵=9,∴9的平方根为:±3,故答案为:4,﹣3,±3;32.解:==×100=2.938×100=293.8.故答案为:293.8.33.解:﹣()﹣1=﹣3﹣2=﹣5.故答案为:﹣5.34.解:∵正数的两个平方根分别是m+4和2m﹣16,∴m+4+2m﹣16=0.∴m=4.∴m+4=8.∴这个正数为64.∴这个正数的立方根为4.故答案为:4.35.解:0的算术平方根和立方根都是0,1的算术平方根和立方根都是1,故答案为:0和1.三.解答题(共5小题)36.解:由题意,得(a﹣3)+(a﹣11)=0,∴2a=14,∴a=7,又∵a+2b﹣3的立方根是2∴a+2b﹣3=8,∴a+2b=11,∵a=7,∴b=2,∴2a+b=16,∴2a+b的算术平方根是4.37.解:(1)根据题意得2x﹣1=16,2x+y+1=25,则2x=17,y=7,所以2x﹣3y+18=17﹣3×7+18=14,所以2x﹣3y+18的立方根为;(2)∵与的值互为相反数,与互为相反数,∴2a+b=0,c﹣b=0,1﹣3b+b+1=0,解得:a=,b=1,c=1.38.解:(1)方程整理得:x2=121,开方得:x=±11;(2)方程整理得:(x﹣5)3=﹣8,开立方得:x=3.39.解:(1)由题意知a=22=4,2b﹣1=3,b=2;c﹣2=3,c=5;(2)∵x<4,∴|x﹣a|﹣2(x+b)﹣c=|x﹣4|﹣2(x+2)﹣5=4﹣x﹣2x﹣4﹣5=﹣3x﹣5.40.解:(1)∵4x2﹣81=0,∴4x2=81,则x2=,∴x =±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x =.第1页(共1页)。