4用尺规作角
北师大版数学七年级下册《4 用尺规作角》教案4

北师大版数学七年级下册《4 用尺规作角》教案4一. 教材分析《北师大版数学七年级下册》中的《4 用尺规作角》是学生在学习了直线、射线、角的基础知识后,进一步深入学习角的知识。
这一节内容通过讲解尺规作角的方法,使学生掌握角的作图技巧,培养学生的动手能力和几何思维。
教材通过详细的步骤和生动的图示,让学生在实践中掌握知识,提高学习的兴趣和效果。
二. 学情分析学生在学习这一节内容时,已经具备了直线、射线、角的基本概念和一些基本的几何作图方法。
但是,对于尺规作角这一作图技巧,学生可能还比较陌生,需要通过实践来掌握。
同时,学生在学习过程中,可能对一些作图步骤和技巧的理解和应用存在困难,需要教师的引导和讲解。
三. 教学目标1.让学生了解尺规作角的定义和原理,掌握尺规作角的基本方法。
2.培养学生动手操作能力和几何思维,提高学生解决几何问题的能力。
3.通过小组合作和讨论,培养学生的合作意识和交流能力。
四. 教学重难点1.尺规作角的定义和原理的理解。
2.尺规作角的基本方法的掌握。
3.尺规作角在实际问题中的应用。
五. 教学方法采用“引导式教学法”,教师通过提问、引导、讲解、示范等方式,激发学生的思考,引导学生自主探索和学习。
同时,结合“实践式教学法”,让学生通过动手操作,实践尺规作角的方法,加深对知识的理解和记忆。
六. 教学准备1.准备尺规作角的PPT,包括定义、原理、方法、实例等内容。
2.准备尺规作角的练习题,用于巩固所学知识。
3.准备尺规作角的工具,如直尺、圆规等,供学生实践使用。
七. 教学过程1.导入(5分钟)通过提问方式复习直线、射线、角的基本概念,引导学生思考如何用尺规作角。
2.呈现(10分钟)呈现尺规作角的PPT,讲解尺规作角的定义、原理和方法,让学生了解尺规作角的过程。
3.操练(10分钟)学生分组进行尺规作角的实践,教师巡回指导,解答学生的疑问,帮助学生掌握尺规作角的方法。
4.巩固(10分钟)学生独立完成尺规作角的练习题,检验自己对尺规作角的掌握程度。
北师大版七年级数学下册第四章三角形同步练习4.4用尺规作三角形

课时作业(三十四)[第四章4用尺规作三角形]一、选择题1.下列属于尺规作图的是()A.用量角器和刻度尺画△ABC,使∠A=45°,AB=5 cm,∠B=60°B.用三角尺画△ABC,使∠A=30°,∠B=60°,AB=6 cmC.作△ABC时,用圆规作出∠A等于已知的∠α,∠B等于已知的∠β,用刻度尺截取AB等于已知线段aD.用圆规和无刻度的直尺作△ABC,使AB=c,BC=a,AC=b2.用直尺和圆规作一个角等于已知角,如图K-34-1,能得出∠A′O′B′=∠AOB的依据是()图K-34-1A.SAS B.SSS C.ASA D.AAS3.用尺规作图,下列条件中可能作出两个不同三角形的是()A.已知两边及其夹角B.已知两边及其中一边的对角C.已知两角及其夹边D.已知三条边4.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边D.三角形的三个角二、填空题5.已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下列作法的合理顺序为________.①分别以点B,C为圆心,c,b为半径在BC的同侧作弧,两弧交于点A;②作直线BM,在BM上截取BC=a;③连接AB,AC,则△ABC就是所求作的三角形.三、解答题6.已知:线段a,∠α(如图K-34-2).求作:△ABC,使AB=AC=a,∠B=∠α.图K-34-27.如图K-34-3所示,已知线段a和∠α,求作:△ABC,使BC=a,∠B=∠C=∠α.图K-34-38.如图K-34-4,△ABC中,AB=2.1 cm,AC=1.5 cm,∠B=30°,∠C=45°.请你从中选择适当的数据,画与△ABC全等的三角形,要求至少用三种不同的方法画,不写画法,但要在画出的每一个图中标出方法所用到的数据.图K-34-4操作讨论题已知线段b,c,h,求作△ABC,使AC=b,AB=c,AD⊥BC,D为垂足,且AD=h.这样的三角形你能作出几个?图K-34-5详解详析[课堂达标]1.D 2.B 3.B4.A5.②①③6.解:作法:(1)作∠DBC=∠α;(2)在射线BD上截取BA=a;(3)以点A为圆心,a为半径画弧交BC于另一点C.连接AC.则△ABC即为所求作的三角形(如图).7.[解析] 已知两角及其夹边求作三角形,可以先作夹的线段,而后在线段两端构造角.解:作法:(1)作线段BC=a;(2)以BC为一条边,分别以B,C为顶点,在BC同侧作出∠CBA=∠BCA=∠α,另两条边交于点A,连接AB,AC,则△ABC即为所求(如图).8.解:如图.[素养提升]解:能作出2个.如图所示,△ABC和△ABC′就是所求作的三角形.。
尺规作图作角学案

课题:§2.4 用尺规作角学案
一、课前训练:
(1)用尺规作图时,用画直线、射线和线段,用画弧或圆。
(2)已知∠1=35°,则∠1的余角为度,∠1的补角为度。
(3)如图,已知线段a、b,
求作:(1)线段AB=a+b
(2)线段CD=2a-b
(1) 解:(2) 解:
二、设疑:如果已知一个角,如∠BOC,我们有什么方法可以画一个角和它度数相等呢?
三、例题讲解:用尺规作一个∠E,等于∠BOC
思考:能不能作一个角等于2∠BOC?
四、练习一:
1、读句解画:如图,作一个角等于∠BOA。
在射线O′A′上,
以O′为圆心,以OC长为半径画弧,交O′A′于点C′,再
以点为圆心,长为半径画弧,交前面的弧于点D′,
过点D′作O′B′,则∠B′O′A′就是所作的角。
2、已知∠BOA,利用尺规作∠B′O′A′,使∠B′O′A′=2∠BOA
3、已知∠ABC,D为BC上一点,求作:过点D作∠CDE=∠ABC。
(不写作法,保留作图痕迹)
五、解决课本P76问题,并思考:如何作两线平行?
六、练习二:如图,已知∠α、∠β,求作一个角,使它等于∠α与∠β的和。
七:小结:本节课我有什么收获?学了哪些内容?
八、拓展空间:
1、如图,请你利用三角板,尺规作图作出∠α的余角和补角。
解:作余角:
作补角:
2、已知∠ABC,边AB上有点E,请过点E作一条直线EF,使EF∥BC
至少用两种方法。
只保留作图痕迹,不写作法。
九、作业布置:
课本P79 :1 P81:4。
学习使用尺规作掌握使用尺规作的基本方法

学习使用尺规作掌握使用尺规作的基本方法尺规是一种常见的绘图工具,用于精确测量和绘制直线、角度和距离。
学习掌握使用尺规作的基本方法对于绘图和精确测量非常重要。
本文将介绍使用尺规作的基本步骤和技巧,帮助读者快速掌握这一技能。
一、准备工作在开始使用尺规作之前,确保你有一把优质的尺规和一张干净的纸。
尺规应具备明确的刻度和牢固的结构,以确保准确测量和绘制。
二、测量线段使用尺规测量线段是尺规作的基本技能之一。
下面是测量线段的步骤:1. 选择合适的长度单位,并在纸上标出起点和终点。
2. 将尺规的一端放在起点,用手指固定在该位置。
3. 用另一只手指将尺规的另一端移动到终点,并记住线段的长度。
4. 将线段的长度用尺规的刻度读数表示,如厘米、毫米或英寸。
三、绘制直线尺规也可以用来绘制直线,下面是绘制直线的基本步骤:1. 在纸上选择一点作为起点。
2. 将尺规的一端放在起点,用手指固定在该位置。
3. 用另一只手指将尺规的另一端朝着所需的方向移动,并在纸上划出直线。
四、绘制角度尺规还可以用于绘制角度,下面是绘制角度的步骤:1. 在纸上选择一个点作为角的顶点。
2. 使用尺规绘制一条线段,该线段将成为角的一条边。
3. 使用尺规的一端作为圆心,调整另一端到所需半径上,并划出一个圆弧。
4. 在圆弧上选择一个点作为角的另一条边的端点。
5. 使用尺规绘制一条线段,连接顶点和第二条边的端点,形成所需角度。
五、测量距离除了测量线段,尺规还可以用于测量两点之间的距离,下面是测量距离的步骤:1. 在纸上选择起点和终点。
2. 将尺规的一端放在起点,用手指固定在该位置。
3. 用另一只手指将尺规的另一端移动到终点,并记住两点之间的距离。
4. 将距离用尺规的刻度读数表示,如厘米、毫米或英寸。
六、练习技巧要掌握尺规作的基本方法,需要进行持续的训练和练习。
以下是一些建议的技巧:1. 绘制几何图形:练习绘制不同形状的几何图形,如平行四边形、正方形和三角形。
北师大版七年级数学下册《二章 相交线与平行线 4 用尺规作角》公开课教案_1

《用尺规作角》教学设计用尺规作角是北师版初中数学七年级下册第二章第四节内容,本章主要研究两直线的位置关系;本节要求掌握能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学目标【知识与能力目标】能用尺规作一个角等于已知角;理解文字语言与图形语言的转换;【过程与方法目标】经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识;【情感态度价值观目标】使学生在积极参与探索、交流、推理、归纳等数学活动中,进一步体会数学的严密性,提高自己的逻辑思维能力.重点难点【教学重点】能用尺规作一个角等于已知角;【教学难点】作图步骤和作图语言的叙述.课前准备【教师准备】课件、学案(每生一份);【学生准备】直尺、圆规、铅笔、练习本.教学方法学生动手操作,小组合作交流,微课辅助教学教学过程一、导入【生活情境】设计平行四边形班级布置照片墙,需要长方形、正方形、圆形、平行四边形等各种图形的纸板. 负责设计的班长遇到了难题,平行四边形如何裁出呢?【数学问题】过一点作已知直线平行线班长找来一个长方形木板,准备在上面截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.过C点画出与AB平行的另一条边CD,你有多少种方法?【问题解决】学生尝试多种方法1.用直尺与三角板画平行线.2.用量角器画一个相等的角.(依据:同位角相等两直线平行)有其他做法,只要合理即给予肯定鼓励.小结:过直线外一点作已知直线的平行线,相当于过这点作一个与已知角相等的同位角.【问题变式】摆脱平行四边形的背景,已知一个角,让你作一个角等于这个角(已知角与所求作的角未必在一个平行四边形内,甚至未必在同一平面内),你还能用哪些方法?【问题升级】尺规作图如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?【温馨提示】“尺”“规”各有什么功能?尺—画直线、射线、线段规—画圆、弧、截取线段二、回顾【提出问题】之前的学习中,曾经用尺规作过什么图形?怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?已知:线段a.求作:线段AB ,使A B=a.【尝试练习】学生独立完成,并简单交流.三、新课【学生探究】如果你只有一个圆规和一把没有刻度的直尺,你能作一个角等于已知角吗?已知:∠AOB.求作:∠A'O'B',使∠A'O'B' =∠AOB.学生先尝试独立思考,然后小组内交流探究.【温馨提示】1.为了作出这个角,显然需要先作_________.2.为了作出另一边,只需要确定_________.3.分析刚才作图的方法,如何用尺规达到同样的效果?【汇报展示】找若干小组代表上台展示,并讲解作图步骤.附:作法与示范:(1)作射线O'A' ;(2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D;(3)以点O' 为圆心,以OC 为半径画弧,交O'A' 于点C' ;(4)以点C' 为圆心,以CD 长为半径画弧,交前面的弧于点D' ;(5)过点D' 作射线O'B'. ∠A'O'B' 就是所求作的角.【视频总结】【问题解决】用尺规过点C作CD∥AB.四、练习【练习1】已知∠1,∠2,利用尺规作图,比较它们的大小.口述作法、保留作图痕迹.【练习2】已知∠1,∠2. 求作:∠AOB,使得∠AOB= ∠1+∠2.变式:你会作两个角的差吗?【练习3】已知∠AOB,利用尺规作∠A'O'B',使∠A'O'B' =2∠AOB.五、应用打台球时,球的反射角总是等于入射角.反弹之后,红球能被击入右下角的袋中吗?(用尺规作图检验)六、拓展【尺规作图的历史】中国--“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字。
2.4用尺规作角(教案)

三、教学难点与重点
1.教学重点
-理解并掌握尺规作图的基本方法和技巧,包括作等边三角形内角、等腰三角形内角、角的等分线等。
-学会运用尺规作图解决实际问题,如构造特定角度的角、等分已知角度等。
-掌握尺规作图中的几何定理和性质,如等边三角形的内角都是60度,等腰三角形的底角相等等。
举例解释:
-作等边三角形内角的步骤和技巧,强调每次作图都需要保持பைடு நூலகம்和规的使用规范,确保作图准确。
-在解决实际问题时,如何选择合适的尺规作图方法,例如在构造一个角等于已知角时,应先确定已知角的度数,然后通过尺规作图准确复制。
2.教学难点
-理解尺规作图中的精确度要求,确保作图过程中不产生误差。
-掌握角的平分线的作图方法,特别是如何准确地从一点出发作出角的平分线。
-理解并应用几何定理进行尺规作图,如等腰三角形的性质在作图中的应用。
举例解释:
-对于精确度的难点,学生会发现即使是很小的误差也可能导致整个图形的不准确。教学中需强调如何通过多次检查和校准来减少误差。
-在作角的平分线时,学生可能会困惑于如何保证平分线正好经过角的顶点。这里需要详细讲解如何使用尺规工具,以及如何通过几何性质确保平分线的准确性。
-对于几何定理的应用,难点在于如何将理论知识转化为实际操作。例如,在作等腰三角形内角时,学生需要理解等腰三角形的底角相等这一性质,并学会如何在作图中应用它。
四、教学流程
3.能够运用所学尺规作角的方法解决实际几何问题,提高几何作图能力。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
7年级数学北师大版 下册教案第4章《用尺 规作三角形》

教学设计用尺规作三角形么办?边和角是三角形的基本元素,那么你能利用尺规做一个三角形与已知三角形全等吗?【做一做】已知三角形的两边及其夹角,求作这个三角形.已知:线段a, c, ∠α.a c求作:△ABC,使BC=a AB=c, ∠ABC=∠α.作法:(1)作一条线段BC=a;(2)以B为顶点,以BC为一边作∠DBC=∠α;(3)在射线BD上截取线段BA=c;(4)连接AC,△ABC就是所求作的三角形.将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?回顾刚才作三角形的顺序还有没有其他的作法?还有没有其他的作法?作法:____________________________________________ _____________________________________________________________________ ________________________________________________________________________ ____________________________将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?二、提炼概念利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“____SAS____”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“____ASA____”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“___SSS_____”.三、典例精讲例已知三角形的两角及其夹边,求作这个三角形. 已知:∠α,∠β,线段c(如图).αβ求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.作法与示范(1)作∠DAF=∠α;(2)在射线AF上截取线段AB=c;(3)以B为顶点,以BA为一边,作∠ABE=∠β,BE 交AD于点C.△ABC就是所求作的三角形.【小组讨论】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?试一试.已知三角形的三条边,求作这个三角形.已知:线段a,b,c (如图).a b c求作:△ABC,使AB=c,AC=b,BC=a. (1)请写出作法并作出相应的图形.作法与示范(1)作一条线段BC=a;(2)分别以B,C为圆心,以c,b为半径画弧,两弧交于A点;(3)连接AB,AC,△ABC就是所求作的三角形.【小组讨论】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?课堂检测四、巩固训练1.利用基本作图方法,不能作出唯一三角形的是(C)A.已知两边及其夹角B.已知两角及其夹边C.已知两边及一边的对角D.已知三边2.如图,用尺规作出∠OBF=∠AOB,作图痕迹弧线MN是()A.以点B为圆心,OD长为半径的弧B.以点B为圆心,DC长为半径的弧C.以点E为圆心,OD长为半径的弧D.以点E为圆心,DC长为半径的弧D3.你能用尺规作一个直角三角形,使其两条直角边分别等于已知线段a,b吗?并写出作法。
北师大版数学七年级下册第二章4用尺规作角(共28张PPT)

栏目索引
解答题 (2019河北保定十七中期中,29,★★☆)如图2-4-4甲,OA⊥OB,OC⊥OD. (1)∠AOC与∠BOD有何数量关系?依据是什么? (2)小明做完(1)后受到启发,在图2-4-4乙中用尺规作出了OD⊥OC,请你也 试一试.
图2-4-4
4 用尺规作角
解析 (1)∠AOC=∠BOD. 依据是同角的余角相等. (2)如图(在∠AOB外部作∠BOD=∠AOC即可).
4 用尺规作角
2.用尺规作一个角等于已知角 尺规作图一般有以下四步: 已知,求作,作法,写出结论. 如图2-4-1,已知∠AOB,求作∠A'O'B',使∠A'O'B'=∠AOB.
栏目索引
图2-4-1
图2-4-2
作法:①作射线O'A';
②以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D;
4 用尺规作角
A.以点F为圆心,OE长为半径画弧 B.以点F为圆心,EF长为半径画弧 C.以点E为圆心,OE长为半径画弧 D.以点E为圆心,EF长为半径画弧 答案 D
4 用尺规作角
栏目索引
如图2-4-6所示,用尺规作出∠OBF=∠AOB,作图痕迹弧MN是 ( )
图2-4-6 A.以点B为圆心,OD长为半径的弧 B.以点B为圆心,OC长为半径的弧 C.以点E为圆心,OD长为半径的弧 D.以点E为圆心,DC长为半径的弧
答案 D 圆规有两只脚,一只脚固定,另一只脚旋转.
4 用尺规作角
栏目索引
2.(2017广西南宁中考,7,★☆☆)如图2-4-5,△ABC中,AB>AC,观察图中尺规 作图的痕迹,则下列结论错误的是 ( )
图2-4-5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情境导入 如图,要在长方形木板上截一个平行四边形, 使它的一组对边在长方形木板的边缘上,另一 组对边中的一条边为AB.
(1)请过C点画出与AB平行的另一条边. (2)如果你只有一个圆规和一把没有刻度的直
尺,你能解决这个问题吗? B
A
C
B
D
A
C
E
“过直线外一点作已知直线的平行线”相当于
“过点C作∠ECD等于已知∠CAB.”
【解析】作弧必须有圆心和半径,缺一不可.
2.如图,已知∠A,∠B,求作一个角,使它等于 ∠A-∠B(不用写作法,保留作图痕迹).
【解析】作∠COD=∠A,并在∠COD的内部作 ∠DOE=∠B,则∠COE就是所求作的角.
课堂小结
作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相 同,而第三次以原角的两边与弧的交点之间的距离 为半径.
第二章 相交线与平行线
2.4 用尺规作角
尺规作图
直尺的功能是: 在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:
以任意一点为圆心,任意长为半径作一个圆; 以任意一点为圆心,任意长为半径画一段弧。
导入新课
复习巩固 尺规作图的基本步骤是什么? 提示:(1)写出已知.(2)写出求作.(3)写出作法并作图. 作图时要保留_作__图__痕__迹__.有时,根据题目要求,可省略 作法.
已知:直线l及l外一点P,
求作:直线l′,使l′过P点且l′∥l.
作法:1.过点P任意作直线a与l 交于Q. 2.以P为顶点,直线a为角的一边,在直线a同旁作 ∠2,使∠2=∠1(如图),则∠2的另一边所在直线l′ 即为所求.
当堂练习
1.下列尺规作图的语句错误的是( B ) A.作∠AOB,使∠AOB=3∠α B.以点O为圆心作弧 C.以点A为圆心,线段a的长为半径作弧 D.作∠ABC,使∠ABC=∠α+∠β
1
2
随堂练习 已知:∠1,∠2,
你会作两个角 的差了吗?
求作:∠AOB,使得∠AOB= ∠1-∠2.
1
2
随堂练习
请用没有刻度的直尺和圆规, 完成本节课开始 提出的问题.
B
FHDA NhomakorabeaG
C G’ E
以点C为顶点作∠FCE =∠BAC,则∠FCE的边CF 所在的直线即为所求.
练一练 过直线外一点P作已知直线l的平行线.
点D’ ;
(5) 过点D’作射线O’B’.∠A’O’B’就是所求的角.
B D
B' D'
O
CA
O'
C' A'
思考:用尺规作一个角等于已知角是尺规作图中 的基本作图,你能利用它作出其他图形吗? 提示:可以作角的和、差、倍角及与角有关的图.
随堂练习 已知:∠1,∠2,
你会作两个角 的和了吗?
求作:∠AOB,使得∠AOB= ∠1+∠2.
讲授新课
用尺规作角 利用尺规,作一个角等于已知角. 已知:∠AOB(如图).
求作:∠A′O′B′=∠AOB.
B
O
A
作法:
(1)作射线O′A′; (2)以点O为圆心,以任意长为半径画弧,交OA于点
C,交OB于点D; (3)以点O′为圆心,同样长为半径画弧,交O′A′于点C′; (4)以点C’为圆心,CD长为半径作弧,交前面的弧于