高二年级11月月考数学理试题
高二月考数学(理科)试题

高二月考理科数学试题 2012.6选择题(每题5分,共60分)1. 已知2log (x 1)1+=,则x 等于( )A.0B.1C.2D.32. 命题“x R,sin x 1∀∈≤”的否定形式为( )A.x R,sin x 1∃∈≥B.x R,sin x 1∀∈≥C.x R,sin x 1∃∈>D.x R,sin x 1∀∈>3. 下列命题是真命题的是( )A.2x R,(x 1)0∀∈+>B.x {3,5,7},3x 1∀∈+为偶数C.2x Q,x 3∃∈=D. 2x R,x x 10∃∈-+= 4. “a 1>”是 “a log 20>”的( )条件A.充分不必要B.必要不充分C.充分必要D.即不充分也不必要5. 函数x y a b 1=+-的图象经过第二、三、四象限,则一定有( )A.0a 1<<且b 0>B.a 1>且b 0>C.0a 1<<且b 0<D.a 1>且b 0<6. 若253a ()5=、352b ()5=、252c ()5=,则a 、b 、c 的大小关系是( )A.a c b >>B.a b c >>C.c a b >>D.b c a >>7. 函数()lg sin f x x x =-的零点个数是( )A.1B.2C.3D.48. 下列函数中,值域为(,0)-∞的函数是( )A.2=-y xB.31=-y xC. =yD. 2=-x y9. 在同一坐标系下,函数xy e -=与函数ln y x =-的图象大致是( )10. 设函数()f x 定义域为R ,且(2)()f x f x -=,当1≥x 时,()ln =f x x ,则 ( )A.11()(2)()32<<f f fB.11()(2)()23<<f f fC.11()()(2)23<<f f fD.11(2)()()23<<f f f11. 已知()f x 是定义在R 上的偶函数,且(2)()f x f x +=,若()f x 在[1,0]-上是减函数,那么()f x 在[1,3]上是( ) A.增函数B.先增后减的函数C.减函数D.先减后增的函数12. 若()f x 为偶函数,当[0,)∈+∞x 时,()1=-f x x ,则不等式2(1)0-<f x 的解集为( )A.(1,0)-B.(UC.(0,2)D.(1,2)填空题(每题5分,共30分)13. 函数2y x mx 1=++为偶函数,则m 的值为 。
甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题

甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题一、选择题(每小题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中 ( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数2、下列命题中是真命题的是 ( ) ①“若x2+y2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题 ③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若x -3是有理数,则x 是 无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、设集合M={x| x>2},P={x|x<3},那么“x ∈M,或x ∈P ”是“x ∈M ∩P ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条4、“0x >0>”成立的( ) A 、充分不必要条件. B 、必要不充分条件. C 、充要条件. D 、既不充分也不必要条件.5、“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )A 、充分不必要条件.B 、必要不充分条件.C 、充分条件.D 、既不充分也不必要条件.6、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<17.若命题“p q ∧”为假,且“p ⌝”为假,则( ) A .p 或q 为假 B .q 假 C .q 真 D .不能判断q的真假 8.在△ABC 中,“︒>30A ”是“21sin >A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为( )A .①②B .②③C .①③D .③④10.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件11.下列命题中,真命题是 ( ).A .∃m ∈R ,使函数f(x)=x2+mx(x ∈R)是偶函数B .∃m ∈R ,使函数f(x)=x2+mx(x ∈R)是奇函数C .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是偶函数D .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是奇函数12、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<1 二、填空题(每道题5分,共20分)13设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是14、命题“若a =-1,则2a =1”的逆否命题是15.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点; 命题βα//:q , 则q p 是的 条件。
高二数学11月月考(期中)试题 理(新版)人教版

—————————— 新学期 新成绩 新目标 新方向 ——————————2019学年高二数学11月月考(期中)试题 理考试时间:120分钟 试卷总分:150分 本试卷分第I 卷和第II 卷两部分 第I 卷(选择题、填空题)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。
1.设R ,,∈c b a ,且b a >,则( )A .bc ac > B. 22+<+b a C .22b a > D .33b a > 2.数列{}n a : ,249,157,85,1--的一个通项公式是( ) A .)N (13)1(*21∈+--=+n n n n a n n B .)N (1212)1(*21∈++-=-n n n a n n C .)N (22)1(*21∈++-=+n n n n a n n D .)N (212)1(*21∈++-=-n nn n a n n 3.已知点),(b a P 和点)2,1(Q 分别在直线0823:=-+y x l 的两侧,则( ). A. 0823=-+b a B. 0823<-+b a C. 0823>-+b a D. 023<+b a 4.在等比数列{}n a 中,已知5127=a a ,则111098a a a a 等于( ). A .10 B .25 C .50 D .755.已知不等式062<--x x 的解集为A ,不等式0452<+-x x 的解集是B ,B A 是不等式02<++b ax x 的解集,则=-b a ( ).A.7-B. 5-C. 1D. 56.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ). A.45钱 B.34钱 C.23钱 D.35钱7.函数423(0)y x x x=-->的最值情况是( ). A.有最小值2- B.有最大值2- C.有最小值2+ D.有最大值2+ 8.已知等差数列{}n a 的公差和首项都不等于0,且2a ,4a ,8a 成等比数列,则36945a a a a a ++=+( ).A. 2B.3C. 5D.79.一艘轮船按北偏西30方向以每小时30海里的速度从A 处开始航行,此时灯塔M 在轮船的北偏东45方向上,经过40分钟后轮船到达B 处,灯塔在轮船的东偏南15方向上,则灯塔M 到轮船起始位置A 的距离是( )海里。
高二数学11月月考试题 理 试题

创作;朱本晓 2022年元月元日万州区2021-2021学年高二数学11月月考试题 理〔无答案〕满分是150分。
考试时间是是120分钟。
考前须知:1.在答题之前,必须将本人的姓名、准考证号填写上在答题卡规定的位置上。
2.答选择题时,必须使需要用2B 铅笔将答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上答题,在试题卷上答题无效。
第一卷一、选择题(此题一共12个小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,有且只有一个是正确的)1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为〔 〕A .052=-+y xB .012=-+y xC .052=-+y xD .072=+-y x 2.过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,那么m 的值是〔 〕A .0B . 10C .2D .8- 3.0,0ab bc <<,那么直线ax by c +=通过〔 〕A .第一、三、四象限B .第一、二、四象限C .第一、二、三象限D .第二、三、四象限4、ABC ∆的角,,A B C 的对边分别为,,,a b c 4,,34b B C ππ===,那么c 的长度是〔 〕AB .C .3D .25、数列}{n a 为等差数列,假设π=++951a a a ,那么)cos(82a a +的值是〔 〕创作;朱本晓 2022年元月元日A .21-B .23- C .21 D .236、假设正实数,x y 满足()()2242log 3log log 2x y x y +=+,那么3x y +的最小值是〔 〕A .12B .6C . 16D .87.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60º,那么直线PC 与平面PAB 所成的角的余弦值为〔 〕A .12B.63C.32D.338.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,那么,a b 满足〔 〕A .1=+b aB .0=+b aC .0=-b aD . 1=-b a9.假如直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是〔 〕A .3-B .-13 C .13D .3 10.△ABC 中,a ,b ,c 是内角A 、B 、C 的对边,且lgsinA 、lgsinB 、lgsinC 成等差数列,那么以下两条直线L 1:sin 2A •x+sinA •y-a=0与L 2:sin 2B •x+sinC •y-c=0的位置关系是:〔 〕 A .重合B .平行C .垂直D .相交〔不垂直〕11.在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD的中点,那么异面直线OE 和1FD 所成的角的余弦值等于〔 〕A .515B .32 C .55D .51012.在等腰直角三角形ABC 中,AB=AC=1,点P 是边AB 上异于A 、B 的一点,光线从点P 出发,经BC 、CA 反射后又回到点P 〔如下图〕,假设光线QR 经过△ABC 的重心,那么AP=〔 〕创作;朱本晓 2022年元月元日A .31 B .41 C .32 D .21第二卷二、填空题〔本大题一一共4小题,每一小题5分,一共20分,请把答案填在答卷相应的横线上〕13.边长为的正三角形ABC 中,E 、F 分别为BC 和AC 的中点,PA⊥面ABC ,且PA=2,设平面α过PF 且与AE 平行,那么AE 与平面α间的间隔 为 .14.棱长都为2的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°,那么对角线A 1C 与侧面DCC 1D 1所成角的余弦值为___________.15.假设函数f 〔x 〕=log a 〔x-1〕-1〔a >0且a ≠1〕的图象过定点A ,直线〔m+1〕x+〔m-1〕y-2m=0过定点B ,那么经过A ,B 的直线方程为________________16.点A 〔1,1〕,B 〔5,5〕,直线l 1:x=0和l 2:3x+2y-2=0,假设点P 1、P 2分别是l 1、l 2上与A 、B 两点间隔 的平方和最小的点,那么||21P P 等于_________三、解答题〔本大题一一共6小题,一共70分,解容许写出文字说明,证明过程或者演算步骤〕17. 求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的间隔 相等的直线方程ABCDP18.直线1l :310ax y ++=,2l :(2)0x a y a +-+=。
2022-2023学年河北省唐县第一中学高二上学期11月月考数学试题(解析版)

2022-2023学年河北省唐县第一中学高二上学期11月月考数学试题一、单选题1.三名学生分别从4门选修课中选修一门课程,不同的选法有( ) A .24种 B .81种 C .64种 D .32种【答案】C【分析】根据分步乘法计数原理计算可得;【详解】三名学生分别从4门选修课中选修一门课程,对于任意1名同学均有4种不同的选法,故不同的选法有3464=种; 故选:C2.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种【答案】C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题. 3.设随机变量ξ服从正态分布(0,1)N ,(1)P p ξ>=,则(10)P ξ-<<= A .12p B .1p - C .12p -D .12p -【答案】D【详解】分析:由题可知,正态曲线关于0ξ=对称,根据(1)P p ξ>=,即可求出(10)P ξ-<< 详解:随机变量ξ服从正态分布()0,1N∴正态曲线关于0ξ=对称(1)P p ξ>=∴ 1(10)2P p ξ-<<=- 故选D.点睛:本题考查正态分布曲线的特点及曲线所表示的意义,本题解题的关键是正态曲线的对称性. 4.若随机变量X 的分布列为:已知随机变量()0Y aX b a b a ∈>R =+,,,且()10E Y =,()4D Y =,则a 与b 的值分别为( )A .10a =,3b = B .3a =,10b = C .5a =,6b = D .6a =,5b =【答案】C【分析】根据分布列概率的性质可计算出m ,根据平均数和方差的计算即可计算a 、b . 【详解】由随机变量X 的分布列可知,10.20.8m =-=.∴()00.210.80.8E X =⨯+⨯=,()()()2200.80.210.80.80.20.80.16D X =-⨯+-⨯=⨯=.∴()()10E Y aE X b =+=,()()24D Y a D X ==,∴0.810a b +=,20.164a =,又0a >,解得5a =,6b =﹒ 故选:C .5.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率( ) A .310 B .13C .38D .29【答案】B【详解】事件A :“第一次拿到白球”,B :“第二拿到红球”,则P(A)=210=15,P(AB)=210·39=115,故P(B|A)=()()P AB P A =13. 6.已知()01223344414729n n n n n n n n C C C C C -+-+⋅⋅⋅+-⋅⋅=,则123n n n n n C C C C +++⋅⋅⋅+=( )A .64B .32C .63D .31【答案】C【解析】根据二项式定理展开式的逆运算即可求得n 的值,进而由二项式系数和求得123nn n n n C C C C +++⋅⋅⋅+的值.【详解】根据二项式定理展开式的逆运算可知()()0122334441414n n n n n n n n nC C C C C -+-+⋅⋅⋅+-⋅⋅=- 所以()6147293n -== 解得6n =所以12360622163n n n n n n C C C C C +++⋅⋅⋅+=-=-=故选:C【点睛】本题考查了二项式定理展开式的逆运用,二项式系数和的应用,属于基础题.7.有朋自远方来,乘火车、船、汽车、飞机来的概率分别为0.3,0.2,0.1,0.4,迟到的概率分别为0.25,0.3,0.1,0,则他迟到的概率为( ) A .0.85 B .0.65 C .0.145 D .0.075【答案】C【详解】设A 1=“他乘火车来”,A 2=“他乘船来”,A 3=“他乘汽车来”,A 4=“他乘飞机来”,B =“他迟到”.则Ω=A 1∪A 2∪A 3∪A 4,且A 1,A 2,A 3,A 4两两互斥,由全概率公式得P (B )=(Ai )·P (B |Ai )=0.3×0.25+0.2×0.3+0.1×0.1+0.4×0=0.145.8.把座位编号为1,2,3,4,5,6的6张电影票分给甲、乙、丙、丁四个人,每人至少分一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为( ) A .240 B .144 C .196 D .288【答案】B【分析】将6张票按照要求分给4个人,是有2人各得两张,另外2人各得1张票.再将2张具有连续的编号的票的情况求出后可计算出答案.【详解】由题4人分6张票,则有2人各得两张,且具有连续的编号的票,另外2人各得1张票.2张具有连续的编号的票的情况有12和34;12和45;12和56;23和45;23和56;34和56共6种情况.所以不同的分法种数是446A 144=.故选:B二、多选题9.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则实数a 的值为( ) A .2 B .2-C .12D .0【答案】AD【解析】求出圆心坐标后,利用点到直线的距离公式列式可解得结果. 【详解】因为圆22240x y x y +--=的圆心为(1,2),所以圆心(1,2)到直线0x y a -+=的距离为|12|2211a -+=+,所以0a =或2a =. 故选:AD【点睛】关键点点睛:掌握点到直线的距离公式是解题关键.10.已知椭圆E :22194x y +=的左、右焦点分别为1F ,2F ,点P 在E 上,若12F PF △是直角三角形,则12F PF △的面积可能为( ) A .5 B .4 C .453D .253【答案】BC【分析】根据对称性只需考虑112PF F F ⊥或12PF PF ⊥,当112PF F F ⊥时,求出1PF 的长,再由面积公式即可求面积,当12PF PF ⊥时,结合122PF PF a +=,()222122PF PF c +=求出12PF PF ⋅,再由面积公式即可求面积.【详解】由22194x y +=可得3a =,2b =,所以22945c a b =-=-=, 根据对称性只需考虑112PF F F ⊥或12PF PF ⊥,当112PF F F ⊥时,将5x =-代入22194x y+=可得43y =±, 如图:12225F F c ==,143PF =,所以12F PF △的面积为144525233⨯⨯=,当12PF PF ⊥时,由椭圆的定义可知:1226PF PF a +==,由勾股定理可得()22212220PF PF c +==, 因为()2221212122PF PF PF PF PF PF +=+-⋅, 所以1220362PF PF =-⋅,解得:128PF PF ⋅=, 此时12F PF △的面积为12142PF PF ⋅=,综上所述:12F PF △的面积为445故选:BC.11.已知椭圆2222x y a b +=1与椭圆222516x y +=1有相同的长轴,椭圆2222x y a b +=1的短轴长与椭圆22219y x +=1的短轴长相等,则下列结论不正确的有( ) A .a 2=25,b 2=16B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9【答案】ABC【解析】由椭圆22221x y a b +=与椭圆2212516x y +=有相同的长轴可确定椭圆22221x y a b +=的焦点位置且225a =,然后再结合条件可得到29b =,进而可得答案.【详解】椭圆2212516x y +=的长轴长为10,椭圆221219y x +=的短轴长为6,由题意可知椭圆22221x y a b+=的焦点在x 轴上,即有5a =,3b =.故只有D 对故选:ABC【点睛】本题考查椭圆中基本量的判定,解题的关键是掌握椭圆标准方程的特征,特别是注意焦点在标准方程中大的分母对应的变量所在的轴上,属于基础题.12.已知圆22:4O x y +=和圆22:4240M x y x y +--+=交于P ,Q 两点,则( ) A .两圆有两条公切线 B .PQ 垂直平分线段OM C .直线PQ 的方程为240x y +-=D .线段PQ 的长为455【答案】ACD【解析】根据圆O 和圆M 的位置关系判断A ;数形结合可知PQ 垂直线段OM 但不平分线段OM ,圆22:4O x y +=和圆22:4240M x y x y +--+=的方程相减判断C ;先求得圆心O 到直线PQ 的距离,再利用弦长公式求解判断D.【详解】对于A :因为圆22:4O x y +=和圆22:4240M x y x y +--+=交于P ,Q 两点,所以两圆有两条公切线,故正确;对于B :数形结合可知PQ 垂直线段OM 但不平分线段OM ,故错误;对于C :圆22:4O x y +=和圆22:4240M x y x y +--+=的方程相减得:240x y +-=,所以直线PQ 的方程为240x y +-=,故正确; 对于D:圆心O 到直线PQ 的距离为:445541d ==+,所以线段PQ 的长为22224545||222()55PQ r d =-=-=,故正确; 故选:ACD.三、填空题13.椭圆2212x y +=的焦距长为__________.【答案】2【分析】根据椭圆方程求出c ,进而可求出结果.【详解】因为椭圆2212x y +=中22a =,21b =,所以2221c a b =-=,所以焦距为22c =. 故答案为2【点睛】本题主要考查椭圆的焦距,熟记椭圆的性质即可,属于基础题型. 14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===15.已知P 是圆22:2410C x y x y +-+-=外一点,过P 作圆C 的两条切线,切点分别为,,A B 则PA PB ⋅的最小值为____________.【答案】18【分析】先将圆的方程化为标准方程,由此确定出圆的半径,设PC d =,根据长度表示出cos APB ∠,然后根据向量的数量积计算公式求解PA PB ⋅,结合基本不等式求解出PA PB ⋅的最小值.【详解】圆C 的标准方程为()2212)6(x y -++=,则圆C ,设PC d =,则PA PB ==因为sin APC ∠=所以2212121cos APB d ∠=-=-⎝⎭,所以()2222127261181818PA PB d d d d ⎛⎫⋅=--=+-≥= ⎪⎝⎭,当且仅当2272d d=,即26d =>时,等号成立,故PA PB ⋅的最小值为18,故答案为:18.【点睛】关键点点睛:解答本题的关键是将PA PB ⋅表示为d 有关的形式,通过统一变量利用基本不等式简化求最值的方法,其中cos APB ∠的计算需要借助圆的半径去完成.16.已知a ,b ,c 分别是椭圆E 的长半轴长、短半轴长和半焦距长,若关于x 的方程220ax bx c ++=无实根,则椭圆E 的离心率e 的取值范围是_______________________.【答案】1⎫⎪⎪⎝⎭【分析】根据判别式为负可求,,a b c 的关系,从而可求离心率e 的取值范围. 【详解】由题有2440b ac ∆=-<,即220a c ac --<, 故210e e +->,得e <或e >01e <<,1e <.故答案为:⎫⎪⎪⎝⎭四、解答题17.(1)已知点()1,1A -在圆C :22220x y x y m +-++=外,求实数m 的取值范围. (2)已知椭圆221x ny +=的离心率为12,求实数n 的取值. 【答案】(1)62m -<<;(2)43n =或34. 【分析】(1)由点在圆外,代入圆的方程大于0即可.(2)根据椭圆的离心率求方程,分椭圆焦点在x 轴上,或者焦点在y 轴上,由离心率找到,,a b c 之间的关系就可得到结果.【详解】解:(1)若方程22220x y x y m +-++=表示圆,则4440m +->,解得2m <, 根据点()1,1A -在圆外,可得11220m ++++>,则6m >-, 所以62m -<<.(2)由椭圆方程221x ny +=,得22111x y n+=, ①若焦点在x 轴上,则1n >,即21a =,21b n=, ∴22211c a b n=-=-, ∴22211114c n e a -===,即43n =. ②若焦点在y 轴上,则01n <<,即21a n=,21b =, ∴22211c a b n=-=-,∴得到22211114c n e a n-===,即34n =. 故43n =或34. 18.已知圆C 经过原点且与直线40x y --=相切,圆心C 在直线0x y +=上. (1)求圆C 的方程;(2)已知直线l 经过点()2,1,并且被圆C 截得的弦长为2,求直线l 的方程. 【答案】(1)()()22112x y -++= (2)2x =或3420x y --=【分析】(1)由d OC =可求得圆心()1,1C -和半径; (2)分直线k 存在和不存在两种情况讨论.【详解】(1)因为圆心C 在直线0x y +=上,可设圆心为(),C a a -, 则点C 到直线40x y --=的距离d =,OC =据题意,d OC ==解得1a =,所以圆心为()1,1C -,半径r d = 则所求圆的方程是()()22112x y -++=.(2)当弦长为21=. 当k 不存在时,直线2x =符合题意;当k 存在时,设直线方程为210kx y k --+=,1=,∴34k =, ∴直线方程为3420x y --=.综上所述,直线方程为2x =或3420x y --=.19.已知椭圆的中心在原点,焦点在x 轴上,离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭.(1)求椭圆的标准方程;(2)倾斜角为45︒的直线l 过椭圆的右焦点F 交椭圆于A 、B 两点,求OAB 的面积. 【答案】(1)22143x y +=..【分析】(1)设椭圆方程,根据题意列出方程组,求得答案即可;(2)由题意求得直线方程,联立椭圆方程,整理得根与系数的关系式,利用弦长公式求得弦长,继而求得原点到直线AB 的距离,即可求得答案. 【详解】(1)因为椭圆的中心在原点,焦点在x 轴上, 所以设椭圆的标准方程为:22221(0)x y a b a b+=>>,因为椭圆的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭,所以22222222191441,321a b a c b a c a b c ⎧+=⎪⎧=⎪⎪⎪=∴=⎨⎨⎪⎪=⎩=+⎪⎪⎩,所以椭圆的标准方程为:22143x y +=; (2)由(1)可知:()1,0F ,倾斜角为45︒的直线l 的斜率为1, 所以直线l 的方程为:01(1)y x -=⨯-即10x y --=, 代入椭圆方程中,得22(1)143x x -+=, 27880x x ∴--=,设()11,A x y ,()22,B x y , 所以1287x x +=,1287x x =-因此724AB =, 原点到直线AB的距离d =1124227OAB S d AB =⋅=⨯=△ 所以OAB 的面积为7. 20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为菱形,60ABC ∠=︒,AP AB =,E 为CD 的中点.(1)求证:CD ⊥平面PAE ;(2)求平面PAE 与平面PBC 所成二面角的正弦值.【答案】(1)证明见解析;(2)277. 【分析】(1)在菱形中证明CD AE ⊥,再由已知的线面垂直得线线垂直,从而可证得线面垂直. (2)以A 为坐标原点,向量AB ,AE ,AP 方向分别为x 、y 、z 轴建立如图所示空间直角坐标系,用空间向量法求二面角.【详解】(1)证明:连AC∵底面ABCD 为菱形,60ABC ∠=︒∴AC AD =∵AC AD =,DE CE =,∴AE CD ⊥∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA CD ⊥∵PA CD ⊥,AE CD ⊥,AE ,PA ⊂平面PAE ,AEAP A =∴CD ⊥平面PAE(2)由(1)知CD AE ⊥,又由//AB CD ,可得AB AE ⊥,可得AB 、AE 、AP 两两垂直令2AB =,可得2AD AP ==,3AE =,1ED CE ==以A 为坐标原点,向量AB ,AE ,AP 方向分别为x 、y 、z 轴建立如图所示空间直角坐标系可得点A 的坐标为()0,0,0,点P 的坐标为()0,0,2,点B 的坐标为()2,0,0,点E 的坐标为(),点C 的坐标为()()2,0,0AB =,()BC =-,()2,0,2BP =-由(1)可知AB 为平面PAE 的法向量设平面BCP 的法向量为(),,m x y z =,有30220BC m x BP m x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取x =1y =,z =可得(3,1,m = 由23AB m ⋅=||2AB =,||7m =,有2cos ,7AB m =故平面PAE 与平面PBC 【点睛】方法点睛:本题考查用空间向量法求二面角.求二面角的方法:(1)几何法,通过作证算三个步骤求解,即作出二面角的平面角,并证明,然后计算出这个角.(2)空间向量法:建立空间直角坐标系,用空间向量法求角,即求出二面角两个面的法向量,由法向量的夹角与二面角相等或互补得解.21.已知圆C :221x y +=,直线l :()()1110++--=m x m y (m ∈R ).(1)求直线l 所过定点A 的坐标;(2)若直线l 被圆Cm 的值; (3)若点B 的坐标为()2,0-,在x 轴上存在点D (不同于点B )满足:对于圆C 上任意一点P ,都有PB PD为一常数,求所有满足条件的点D 的坐标. 【答案】(1)11,22⎛⎫ ⎪⎝⎭;(2)1-或1;(3)1,02⎛⎫- ⎪⎝⎭. 【分析】(1)先将方程整理成()(1)0m x y x y -++-=,令含参数m 的式子为0即解得定点;(2)先利用圆中弦长与半径,求得圆心到弦所在直线的距离,再结合点到直线的距离公式即求得参数m ;(3)先设点D 的坐标(,0)n ,结合题意计算PB PD,满足其为定值则需对应系数成比例,即求得参数n ,进而验证,即得结果.【详解】解:(1)直线l 的方程整理为:()(1)0m x y x y -++-=,令010x y x y -=⎧⎨+-=⎩,解得12x y ==, 故直线l 所过定点A 的坐标为11,22⎛⎫ ⎪⎝⎭; (2)由直线l 被圆CC 到直线l的距离为12d ==,又由点到直线的距离公式可知12d ==, 解得21m =,即1m =±,故实数m 的值为1-或1; (3)设点P 的坐标为()00,x y ,x 轴上的点D 的坐标为(,0)n ,由不同于点B 知2n ≠-,由22001,||x y PB +==||PD ==||||PB PD =, 若PB PD 为一常数,必有22145n n -+=,解得:12n =-或2n =-(舍去), 12n =-时||PD ==,||2||PB PD =为一常数,此时1,02D ⎛⎫- ⎪⎝⎭, 故满足条件的点D 的坐标为1,02⎛⎫- ⎪⎝⎭. 【点睛】思路点睛:直线被圆截得的弦长的相关问题,通常利用几何法解决,即直线被圆截得的半弦长2l 、弦心距d 和圆的半径r 构成直角三角形,且2222l r d ⎛⎫=+ ⎪⎝⎭,可以知二求一,或者结合点到直线的距离公式构建关系式求解参数.22.已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点. (Ⅰ)若直线l 与抛物线C 的准线相交于点P,且PF =l 的方程;(Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF △的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果; (Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF △的周长.【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为=1x -,设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=, 又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==,解得0m =或4m =(舍去),故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b ,点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=, 可得121x x b +=-,21214x x b =, ()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++()22111123044b b b b b =--++=+=, 得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ==()()121211215AF BF x x x x +=+++=++=,故ABF △的周长为15+【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
高二十一月份半月考(理科数学)

3,解答题
17.已知实数 , : , :
(1)若 是 的必要不充分条件,求实数 的取值范围;
(2)若 , 为真命题,求实数 的取值范围.
18.(12分)若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
A.3 B.6 C.9 D.12
7.若正数x,y满足x+3y=5xy,则3x+4y的最小值是( )
A. B. C.5 D.6
8.设x,y满足约束条件 则z=2x-y的最大值为( )
A.10B.8 C.3D.2
9.正方体 的棱长为 ,点 在 且 , 为 的中点,则 为( )
A. B. C. D.
10.函数y=loga(x+3)-1 (a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则 + 的最小值为( )
2,填空题
13.不等式x2-2x+3≤a2-2a-1在R上的解集是∅,则实数a的取值范围是________.
14.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得实数m的取值范围是(a,+∞),则实数a的值是______.
15.函数f(x)=ln(3x2+ax+1)的定义域为R,则实数a的取值范围是________
综上所述,m的取值范围是 .
20解(1)由题意知,1和b是方程ax2-3x+2=0的两根,则 解得
(2)不等式ax2-(ac+b)x+bc<0,
即为x2-(c+2)x+2c<0,即(x-2)(x-c)<0.
①当c>2时,原不等式的解集为2<x<c;
2021年高二上学期11月月考数学理试题
2021年高二上学期11月月考数学理试题本试卷共3页,20题,满分150分。
考试用时120分钟。
注意事项:1.答题前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再填涂其他答案,答案不能写在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不安以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合M={(x,y)|x2+y2=1 },N={(x,y)|x=1,y∈R},则M∩N=A{(1,0)} B{y|0≤y≤1} C {0,1} DΦ2、已知,三个命题①;②;③;正确命题的个数是A.0B.1C.2D.33在下列关于直线l,n与平面a ,ß的命题中真命题是4.若,那么的最大值是A、 B、 C、1 D、25.若在⊿ABC中,满足,则三角形的形状是A等腰或直角三角形 B 等腰三角形 C直角三角形 D不能判定6、已知等比数列的前项和,则等于A、B、C、D、7.过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为A.B.C.D.8.抛物线的焦点为,点在抛物线上,若,则点的坐标为A.B.C.或D.或二、填空题:本大题共6小题,每小题5分,满分30分.9若抛物线的焦点与椭圆的右焦点重合,则的值为 .10一个空间几何体的正视图,侧视图,俯视图为全等的等腰直角三角形,如果直角三角形的直角边的边长为1,那么这个几何体的体积为 .11、以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是 . 12、设为公比的等比数列,若和是方程的两根,则13.等差数列{a n }中,a 1=2,公差不为零,且a 1,a 3,a 11恰好是某等比数列的前三项,那么该等比数列的公比的值等于 .14.若函数y=log 2(x 2-mx+m )的定义域为R ,则m 的取值范围是 .三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分) 在中,,,.(Ⅰ)求的值;(Ⅱ)求的值.16.(本小题满分12分)空间四边形OABC 各边以及AC ,BO 的长都是1,点D ,E 分 别是边OA ,BC 的中点,连接DE (1)求DE 的长 (2)求证OABC17.(本小题共14分)在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 底面ABCD ,PD=DC ,点E 是PC 的中点,作EFPB 交PB 于点F ⑴求证:PA//平面EDB ⑵求证:PB 平面EFD⑶求二面角C-PB-D 的大小 18.(本小题满分14分)设椭圆的中心是坐标原点,长轴在x 轴上,离心率e=,已知点P (0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程。
高二11月数学月考试题含答案
高二11月数学月考(考试总分:127 分)一、 单选题 (本题共计8小题,总分40分)1.(5分)1.数列341,,,472⋅⋅⋅的一个通项公式为( )A .231+=+n n a nB .213+=+n n a n C .222+=+n n a nD .553+=+n n a n 2.(5分)2.在等差数列{}n a 中,11a =,35a =,则7a =( ) A .13B .14C .15D .163.(5分)3.设等差数列{}n a 的前n 项和为n S ,若7584a a a +=+,则11S =( ) A .28 B .34 C .40D .444.(5分)4.在等比数列{}n a 中,3725a a =,则5a =( )A B .5C .D .5±5.(5分)5.已知数列{}n a 是各项为正的等比数列,其前n 项和为n S ,若486,18S S ==,则16S =( )A .48B .54C .72D .906.(5分)6.设数列{}n a 的前n 项和为n S ,数列{}n S n +是公比为2的等比数列,且11a =,则8a =( )A .255B .257C .127D .1297.(5分)7.我们常用函数()y f x =的函数值的改变量与自变量的改变量的比值来表示平均变化率,当自变量x 由0x 改变到0x x +∆时,函数值的改变量y ∆=( ) A .()0f x x +∆ B .()0f x x +∆ C .()0f x x ⋅∆D .()()00f x x f x +∆-8.(5分)8.曲线()2x f x e x =-在点()()0,0f 处的切线方程为( )A .1y x =+B .21y x =+C .112y x =-+D .1y x =-+二、 多选题 (本题共计4小题,总分12分)9.(3分)9.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =10.(3分)10.下列说法正确的是( ) A .曲线的切线和曲线可能有两个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .()y f x =在点()()00,x f x 处有切线,()0f x '不一定存在 11.(3分)11.下列求导数运算正确的有( ) A .(sin )cos x x '= B .211()x x'=C .31(log )3ln x x'=D .1(ln )x x'=12.(3分)12.已知等比数列{}n a 的前n 项和12()n n S m m +=+∈R ,则( ) A .1m =- B .等比数列{}n a 的公比为2 C .2nn a =D .112221210413a a a -+++= 三、 填空题 (本题共计4小题,总分5分)13.(1分)13.某剧场有20排座位,若后一排比前一排多2个座位,这个剧场共有820个座位,则这个剧场最后一排有______个座位. 14.(1分)14.设f (x )=2x +1,则f ′(1)=________. 15.(1分)15.在等比数列{}n a 中,若1399150a a a +++=,且公比2q,则数列{}n a 的前100项和为______.16.(2分)16.在数列{}n a 中,已知24a =,315a =,且数列{}n a n +是等比数列,则n a =___.四、 解答题 (本题共计4小题,总分70分)17.(16分)17.(16分)已知等差数列{}n a 中,公差22,3d a ==.求:(1)35,a a 的值;(2)该数列的前5项和5S .18.(16分)18.(16分)设质点M 沿x 轴作直线运动,且在时刻s t 时,质点所在的位置为m x ,且256x t t =-+.(1)求1s 到3s 这段时间内质点M 的平均速度;(2)求出质点M 在什么时刻的瞬时速度等于(1)中求出的平均速度. 19.(18分)19.(18分)求下列函数在指定点的导数: (1)sin ,4y x x x π==;(2),1e xxy x ==.20.(20分)20.(20分)已知数列{}n a 的前n 项和为n S ,且22n S n n =+.数列{}n b 是等比数列,11b =,5232a b a -=. (1)求{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T 。
2022-2023学年吉林省长春市高二年级上册学期11月月考数学试题【含答案】
2022-2023学年吉林省长春市第二中学高二上学期11月月考数学试题一、单选题1.已知数列3,5,7,9,……,()21n +,则17是这个数列的( ) A .第7项 B .第8项 C .第9项 D .第10项【答案】B【分析】由数列通项有2117n +=求解,即知17是数列的第几项. 【详解】由题设,2117n +=,可得8n =,故17是这个数列的第8项. 故选:B2.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y x = 【答案】A【详解】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-====-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A.点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.3.已知正项等差数列{}n a 的前n 项和为()*n S n N ∈,若28793a a a --=,则158S a -的值为( )A .3B .14C .28D .42【答案】D【分析】根据等差数列的性质得7982a a a +=,则可由已知等式求8a 的值,从而利用求和公式和等差数列性质求158S a -得值.【详解】解:正项等差数列{}n a ,则0n a >若28793a a a --=,则28798323a a a a =++=+,解得83a =或81a =-(舍)则()115815888815215144222a a a S a aa a +⨯⨯-=-=-==. 故选:D.4.若过点(2,1)P ,且与圆221x y +=相切的直线方程为( )A .250x y +-=B .250x y +-=或1y =C .4350x y --=D .4350x y --=或1y =【答案】D【分析】验证点在圆外,然后讨论切线斜率存在与不存在两种情况即可解决. 【详解】圆221x y +=的圆心是(0,0) ,半径是1r = ,把点(2,1)P 的坐标代入圆的方程221x y +=可知点P 在圆221x y +=外, 当直线斜率不存在时, 直线为2x = ,不满足题意; 当直线斜率存在时,设直线为1(2)y k x -=- ,即120kx y k -+-= , 因为直线与圆相切,所以圆心到直线的距离等于半径,即1= ,解得0k = 或43k =, 切线为4350x y --=或1y = , 故选:D.5.2022年北京冬奥会开幕式始于24节气倒计时,它将中国人的物候文明、传承久远的诗歌、现代生活的画面和谐统一起来.我国古人将一年分为24个节气,如图所示,相邻两个节气的日晷长变化量相同,冬至日晷长最长,夏至日晷长最短,周而复始.已知冬至日晷长为13.5尺,夏至日晷长为1.5尺,则一年中夏至到秋分的日晷长的和为( )尺.A .24B .60C .40D .31.5【答案】D【分析】根据给定条件可得以冬至日晷长为首项,夏至日晷长为第13项的等差数列,求出公差即可列式计算作答.【详解】依题意,冬至日晷长为13.5尺,记为113.5a =,夏至日晷长为1.5尺,记为13 1.5a =, 因相邻两个节气的日晷长变化量相同,则从冬至日晷长到夏至日晷长的各数据依次排成一列得等差数列{},N ,13n a n n *∈≤,数列{}n a 的公差131 1.513.51131131a a d --===---, 因夏至日晷长最短,冬至日晷长最长,所以夏至到冬至的日晷长依次排成一列是递增等差数列,首项为1.5尺,末项为13.5尺,公差为1,共13项,秋分为第7项,故7167.5a a d =+=, 所以一年中夏至到秋分的日晷长的和为1.57.5731.52+⨯=(尺). 故选:D.6.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 的通项公式为( ) A .32n a n =- B .2n a n =-C .n a n =D .43n a n =-【答案】A【分析】根据等差中项的性质,列出方程代入计算即可求得公差d ,从而得到通项公式.【详解】因为2a ,3a ,6a 成等比数列,则2326a a a =⋅即()()()211125a d a d a d +=++,将11a =代入计算 可得2d =-或0d =(舍)则通项公式为()()11223n a n n =+-⨯-=-+ 故选:A.7.已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ + 抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P ,∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 2==.故选:C .8.已知数列{}n a 满足:6(3)8,6,6n n a n n a a n ---≤⎧=⎨>⎩(*n ∈N ),且数列{}n a 是递增数列,则实数a 的取值范围是( ) A .(2,3) B .10(1,)7C .10(,3)7D .(1,3)【答案】C【分析】仿照分段函数的单调性求解,同时注意67a a <.【详解】由题意763016(3)8a a a a -->⎧⎪>⎨⎪--<⎩,解得1037a <<.故选:C .二、多选题9.已知椭圆22:1641C x y +=,则下列结论正确的是( ) A .长轴长为12BC .短轴长为12 D【答案】CD【分析】化简椭圆方程为标准方程,然后求解判断选项即可. 【详解】椭圆22:1641C x y +=,化成标准方程为22111416y x +=, 可得12a =,14b =,c ==长轴长为21a =, A 选项错误;焦距2c =B 选项错误;短轴长为122b =, C 选项正确; 离心率32c e a ==,D 选项正确. 故选:CD .10.已知F 是抛物线2:16C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则( )A .C 的准线方程为4x =-B .F 点的坐标为()0,4C .12FN =D .三角形ONF 的面积为162(O 为坐标原点)【答案】ACD【分析】先求C 的准线方程4x =-,再求焦点F 的坐标为()4,0,接着求出4AN =,8FF '=,中位线62AN FF BM '+==,最后求出12FN =,162QNF S =△即可得到答案. 【详解】如图,不妨设点M 位于第一象限,设抛物线的准线l 与x 轴交于点F ',作MB l ⊥于点B ,NA l ⊥于点A . 由抛物线的解析式可得准线方程为4x =-,F 点的坐标为()4,0,则4AN =,8FF '=,在直角梯形ANFF '中,中位线62AN FF BM '+==, 由抛物线的定义有6MF MB ==,结合题意,有6MN MF ==,故6612FN FM NM =+=+=,2212482ON =-=,18241622QNF S =⨯⨯=△.故选:ACD.【点睛】本题考查抛物线的标准方程与几何性质,考查数形结合的数学思想以及运算求解能力,是基础题.11.公差为d 的等差数列{}n a 前n 项和为n S ,若1089S S S <<,则下列选项,正确的有( ) A .d >0 B .0n a >时,n 的最大值为9 C .n S 有最小值 D .0n S >时,n 的最大值为17【答案】BD【分析】根据等差数列的单调性以及前n 项和的函数性质,对每个选项进行逐一分析,即可判断和选择.【详解】对A :由1089S S S <<可得9100a a +<,90a >,100a <,故1090d a a =-<,A 错误; 对B :由A 得,数列为单调减数列,且90a >,100a <,故0n a >时,n 的最大值为9,B 正确; 对C :由A 得,0d <,故2122n d d S n a n ⎛⎫=+- ⎪⎝⎭是关于n 的开口向下的二次函数,其有最大值没有最小值,C 错误;对D :因为数列{}n a 的前9项均为正数,且179170S a =>,()()181********S a a a a =+=+<, 故0n S >时,n 的最大值为17,D 正确; 故选:BD .12.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,长轴长为4,点P 在椭圆C 外,点Q 在椭圆C 上,则( )A .椭圆C的离心率的取值范围是⎛ ⎝⎭B .当椭圆C1QF的取值范围是[2-+ C .存在点Q 使得120QF QF ⋅=D .1211QF QF +的最小值为1 【答案】BCD【分析】根据点)P在椭圆C 外,即可求出b 的取值范围,即可求出离心率的取值范围,从而判断A ,根据离心率求出c ,则[]1,QF a c a c ∈-+,即可判断B ,设上顶点A ,得到120AF AF <,即可判断C ,利用基本不等式判断D. 【详解】解:由题意得2a =,又点)P在椭圆C 外,则22114b+>,解得b <所以椭圆C的离心率2c e a ==>,即椭圆C的离心率的取值范围是⎫⎪⎪⎝⎭,故A 不正确;当e =c1b =,所以1QF 的取值范围是[],a c a c -+,即2⎡⎣,故B 正确;设椭圆的上顶点为()0,A b ,()1,0F c -,()2,0F c ,由于222212·20AF AF b c b a =-=-<, 所以存在点Q 使得120QF QF ⋅=,故C 正确;()21121212112224QF QF QF QF QF QF QF QF ⎛⎫++=++≥+= ⎪ ⎪⎝⎭, 当且仅当122QF QF ==时,等号成立, 又124QF QF +=, 所以12111QF QF +≥,故D 正确. 故选:BCD三、填空题13.已知直线1:2320l ax y a ++-=与()2:140l x a y +++=平行,则实数a 的值为______. 【答案】1【分析】根据直线一般式平行时满足的关系即可求解.【详解】由12l l //得:()112432a a a a ⎧+=⨯⎨≠-⎩,解得1a =,故答案为:114.记n S 为正项等比数列{}n a 的前n 项和,若314S =,12a =,则2514a a a a ++的值为__________. 【答案】2【分析】设正项等比数列{}n a 的公比为q ,根据等比数列的前n 项和公式,即可求出公比q ,再根据等比数列的性质可知2514a a q a a +=+,由此即可求出结果. 【详解】设正项等比数列{}n a 的公比为q , 当1q =时,314S =,12a =不能同时成立;当1q ≠时,因为n S 为正项等比数列{}n a 的前n 项和,且3114,2S a ==,所以()3131141a q S q-==-,即()()21171q q q q-++=-所以217q q ++=,所以2q (3q =-(舍去)),又()14251414=a a a a a a qq a a ++=++,所以2514a a a a ++的值为2.故答案为:2.15.已知双曲线2222x y a b-=1(0,0a b >>)的右焦点为F ,若过F 且倾斜角为60°的直线分别与双曲线的左右两支相交,则此双曲线离心率的取值范围是_______. 【答案】(2,+∞)【分析】由一三象限的渐近线的斜率大于3可得离心率的范围. 【详解】依题意,斜率为3的直线l 过双曲线2222x y a b-=1(a >0,b >0)的右焦点为F 且与双曲线的左右两支分别相交, 双曲线的一条渐近线的斜率ba必大于3, 即3b a >,因此该双曲线的离心率e 21()13c ba a==++=>2. 故答案为:(2,+∞).16.2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”.如图,在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,2F ,椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则下列说法正确的有____________.①椭圆的长轴长为2②线段AB 长度的取值范围是4,222+⎡⎤⎣⎦;③ABF △面积的最小值是4; ④AFG 的周长为442+. 【答案】①②④【分析】由题意可得b 、c ,然后可得a ,可判断①;由椭圆性质可判断②;取特值,结合OA 长度的取值范围可判断③;由椭圆定义可判断④.【详解】解:由题知,椭圆中的几何量2b c ==,所以2222a c b =+=, 则242a =,故①正确;因为2AB OB OA OA =+=+,由椭圆性质可知222OA ≤≤,所以4222AB ≤≤+,故②正确; 记AOF θ∠=,则11sin sin()22ABFAOFOBFSSSOA OF OB OF θπθ=+=⋅+⋅- sin 2sin (2)sin OA OA θθθ=+=+取6πθ=,则111122422ABFSOA =+≤+⨯<,故③错误;由椭圆定义知,242AF AG a +==, 所以AFG 的周长42442AFGC FG =+=+,故④正确.故答案为:①②④四、解答题17.设n S 是等差数列{}n a 的前n 项和,37a =,557S a =. (1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S 的最大值.【答案】(1)10n a n =-;(2)45.【分析】(1)求出等差数列的基本量后可求其通项;(2)根据通项的符号可求n S 的最大值.【详解】(1)设等差数列的公差为d ,则()1112751074a d a d a d +=⎧⎨+=+⎩,解得191a d =⎧⎨=-⎩, 故()9110n a n n =--=-.(2)因为当19n ≤≤时,0n a >,当10n =时,0n a =,当10n >时,0n a <,故当9n =或10n =时n S 有最大值且最大值为9010452+⨯=. 18.已知圆C 过点()2,6A ,且与直线1:100l x y +-=相切于点()6,4B .(1)求圆C 的方程;(2)过点()6,24P 的直线2l 与圆C 交于M ,N 两点,若CMN 为直角三角形,求直线2l 的方程;【答案】(1)()()221150x y -++=(2)6x =或125480x y -+=.【分析】(1)设圆心坐标为(),a b ,根据题意由()()()()22224162664b a a b a b -⎧=⎪-⎨⎪-+-=-+-⎩求解;(2)易得圆心C 到直线2l的距离5d ==,再分直线2l 斜率不存在和存在,利用点到直线的距离公式求解.【详解】(1)解:设圆心坐标为(),a b , 则()()()()22224162664b a a b a b -⎧=⎪-⎨⎪-+-=-+-⎩,解得:11a b =⎧⎨=-⎩, ∴圆的半径r =∴圆C 的方程为:()()221150x y -++=. (2)CMN △为直角三角形,CM CN =,CM CN ∴⊥,则圆心C 到直线2l 的距离5d ==; 当直线2l 斜率不存在,即2:6l x =时,满足圆心C 到直线2l 的距离5d =;当直线2l 斜率存在时,设()2:246l y k x -=-,即6240kx y k --+=,5d ∴==,解得:125k =, 21248:055l x y ∴-+=,即125480x y -+=; 综上所述:直线2l 的方程为6x =或125480x y -+=.19.已知F 是抛物线()2:20C y px p =>的焦点,()1,M t 是抛物线上一点,且32MF . (1)求抛物线C 的方程;(2)已知斜率存在的直线l 与抛物线C 交于A ,B 两点,若直线AF ,BF 的倾斜角互补,则直线l 是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.【答案】(1)22y x =;(2)过定点,定点为1,02⎛⎫- ⎪⎝⎭. 【解析】(1)根据抛物线的定义可知3122p MF =+=,求出p 后可得抛物线方程. (2) 设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,由条件可得0AF BF k k +=,化简即得()()1212121202kx x m x x y y ++-+=,联立直线与抛物线方程,利用韦达定理代入可得2k m =,从而得出答案.【详解】(1)根据抛物线的定义,31122p MF p =+=⇒=, 抛物线的方程为22y x =,(2)设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y , 直线l 与抛物线的方程联立得()22222202y kx m k x km x m y x=+⎧⇒+-+=⎨=⎩, 12222km x x k -+=,2122m x x k =,则122y y k +=,122m y y k =,又0AF BF k k +=,即121201122y y x x --+=--, ()122112102x y x y y y +-+=, ()()1212121202kx x m x x y y ++-+=, 即22222120m km k m k k k-⋅+⋅-=,整理得:2k m =, 所以直线的方程为()21y m x =+,即直线经过定点1,02⎛⎫- ⎪⎝⎭. 【点睛】关键点睛:本题考查求抛物线的方程和直线与抛物线的位置关系,考查直线过定点问题,解答本题的关键是由0AF BF k k +=,得到()()1212121202kx x m x x y y ++-+=,然后由方程联立韦达定理代入,属于中档题.20.如图,在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,底面ABCD 为菱形,P A =PB =AB =2,E 为AD 中点.(1)证明:AC ⊥PE ;(2)若AC =2,F 点在线段AD 上,当直线PF 与平面PCD 所成角的正弦值为14,求AF 的长. 【答案】(1)证明见解析(2)1AF =【分析】(1)构造辅助线证明线面垂直得到线线垂直.(2)建立空间直角坐标系利用向量方法表示线面角即可求得AF 的长【详解】(1)证明:取AB 中点M ,连接,ME BD ,又因为2PA PB AB ===,所以PM AB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =.所以PM ⊥平面ABCD ,又AC ⊂平面ABCD ,所以PM AC ⊥,在ABD △中,因为M ,E 分别是,AB AD 中点,所以ME BD ∥,由底面ABCD 为菱形知,AC BD ⊥,所以AC ME ⊥.因为PM ME M =,所以AC ⊥平面PME ,又PE ⊂平面PME ,所以AC PE ⊥.(2)解:∵2AC =,∴ABC 为正三角形,即AB MC ⊥,由(1)知PM ⊥平面ABC ,∴以M 为原点,以MB 为x 轴,MC 为y 轴,MP 为z 轴建立空间直角坐标系, 则(1,0,0),3,0),(3,0),3)--A C D P , (0,3,3),(2,0,0)=-=-PC CD ,设面PCD 的法向量(,,)n x y z =,由·0·0PC n CD n ⎧=⎪⎨=⎪⎩ ,即33020z x =-=⎪⎩ 取(0,1,1)n =, 依题意设AF AD λ=,01λ≤≤,则(3,0),(3,3)λλλλ--=---F PF ,设直线PF 与平面PCD 所成角为θ,||1sin 4||||θ⋅==⋅PF n PF n , 解得12λ=或2(舍去), ∴1AF =.21.已知数列{}n a ,其中前n 项和为n S ,且满足15a =,*123(N )n n a a n +=+∈.(1)证明:数列{3}n a +为等比数列;(2)求数列{}n a 的通项公式及其前n 项和n S .【答案】(1)证明见解析(2)223n n a +=-,*n ∈N ,n S 3238n n +=--.【分析】(1)根据题意对123n n a a +=+两边同时加3,进一步推导即可发现数列{3}n a +是以8为首项,2为公比的等比数列;(2)先根据第(1)题的结果计算出数列{3}n a +的通项公式,进一步计算出数列{}n a 的通项公式,再运用分组求和法及等比数列的求和公式即可计算出前n 项和n S .【详解】(1)证明:由题意,123n n a a +=+两边同时加3,可得132332(3)n n n a a a ++=++=+,13538a +=+=,∴数列{3}n a +是以8为首项,2为公比的等比数列.(2)解:由(1)可得123822n n n a -++=⋅=,则223n n a +=-,*n ∈N , 故12n n S a a a =++⋅⋅⋅+342(23)(23)(23)n +=-+-+⋅⋅⋅+-342(222)3n n +=++⋅⋅⋅+-⋅3322312n n +-=-- 3238n n +=--.22.已知椭圆2222:10x y C a b a b +=>>(),四点()()12341,1,0,1,,P P P P ⎛⎛- ⎝⎭⎝⎭中恰有三点在椭圆C 上.(1)求椭圆C 的标准方程;(2)点P 是椭圆C 的上顶点,点Q ,R 在椭圆C 上,若直线PQ ,PR 的斜率分别为12,k k ,满足1234k k ⋅=,求PQR 面积的最大值.【答案】(1)2214x y += (2)32【分析】(1)由对称性可知经过34P P ,两点,再把1P 代入,得到222211134a b a b +>+,从而确定不经过点1P ,确定点2P 在C 上,待定系数法求出曲线C 的方程;(2)设直线:QR y kx m =+,与椭圆C 的方程联立,得到两根之和,两根之积,表达出12,k k ,列出方程,求出2m =-,直线QR 过定点()02M -,,故()123PM =--=,且由0∆>得到234k >,表达出1212PQRS PM x x =⋅⋅-=,换元后利用基本不等式求出面积的最大值32. 【详解】(1)由于34P P ,两点关于y 轴对称,故曲线C 经过34P P ,两点, 又由222211134a b a b +>+知,C 不经过点1P , 所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩, 故C 的方程为2214x y +=; (2)由于P 是椭圆C 的上顶点,故直线QR 的斜率一定存在,设()()1122,,,Q x y R x y ,直线:QR y kx m =+,联立方程组 2214y kx m x y =+⎧⎪⎨+=⎪⎩ ,得()222148440k x kmx m +++-= ()()()222222644441416140k m m k k m ∆=--+=+->,得2214k m +>,2121222844,1414km m x x x x k k --+==++, ()()12121212121111kx m kx m y y k k x x x x +-+---⋅=⋅= ()()()221212121134k x x k m x x m x x +-++-==,由题意知1m ≠,由2121222844,1414km m x x x x k k --+==++, 代入化简得()()()()222418141310k m k m m k m +-+-+-+=,整理得:240m --=,∴2m =-故直线QR 过定点()02M -,, 由0∆>得()22142k +>-,解得234k >, 且()123PM =--=,12121133222PQR S PM x x x x =⋅-=⨯-==令0t,则2663442PQR t S t t t ==≤=++, 当且仅当4t t =,即2t =,即k = 所以PRQ △面积的最大值为32. 【点睛】直线与圆锥曲线结合问题,通常要设出直线方程,与圆锥曲线联立,得到两根之和,两根之积,再根据题目条件列出方程,或得到弦长或面积,本题难点在利用1234k k ⋅=求出直线QR 过定点()02M -,后,利用1212PM x x ⋅-表达出PQR S ,再根据基本不等式求出面积的最大值.。
2021年高二11月月考数学理试题 含答案
2021年高二11月月考数学理试题含答案一、选择题(每小题5分,共60分)1.已知椭圆,则椭圆的焦距长为()(A). 1 (B). 2 (C). (D). 232. 一个年级有12个班,每个班有50名同学,随机编号为1-50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( )(A)抽签法 (B)系统抽样法 (C)随机数表法 (D)分层抽样法3.若命题“p∨q”为真,“﹁p”为真,则()(A) p真q真 (B) p假q假 (C)p真q假 (D)p假q真4.从区间内任取一个实数,则这个数小于的概率是( )(D)(A)(B)(C)565.已知椭圆C1、C2的离心率分别为e1、e2,若椭圆C1比C2更圆,则e1与e2的大小关系正确的是 ( )(A)e1<e2 (B) e1=e2 (C) e1>e2(D) e1、e2大小不确定6.计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号与10进制得对应关系如下表:例如用16进制表示D+E=1B,则A×B=( )(A) 6E (B) 7C (C)5F (D) B07.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品抽查一次抽得正品的概率是( )(A)0.99 (B)0.98 (C)0.97 (D)0.968.将x=xx输入如图所示的程序框图得结果()(A)-xx (B) xx (C) 0 (D) xx9.已知|x|≤2,|y|≤2,点P的坐标为(x,y),则当x,y∈Z时,P满足(x-2)2+(y-2)2≤4的概率为( )(A) (B) (C) (D)10.已知椭圆的长轴的左、右端点分别为A、B,在椭圆上有一个异于点A、B的动点P,若直线PA的斜率k PA=12,则直线PB的斜率k PB为( )(A) 32(B)-32(C)34(D) -3411.下列说法正确的是( )(A)“”是“在上为增函数”的充要条件(B)命题“使得”的否定是:“”(C)“”是“”的必要不充分条件(D)命题“”,则是真命题12.已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF. 若,,,则C的离心率为 ( )(A)(B)(C)(D)二、填空题(每题5分,共20分)13.如图阴影部分是圆O的内接正方形,随机撒314粒黄豆,则预测黄豆落在正方形内的约_____粒.x01342.24.34.8 6.715.已知方程表示椭圆,则的取值范围为___________16.已知,,分别为其左右焦点,为椭圆上一点,则的取值范围是三、解答题:(共70分)17.(10分)求椭圆9x2+25y2=900的长轴和短轴的长、离心率、焦点和顶点的坐标..18.(12分)为了对某课题进行研究,用分层抽样方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据如下表(单位:人)高校相关人数抽取人数A 18 xB 36 2C 54 y(1)求x、y;(2)若从高校B、C抽取的人中选2人作专题发言,求这二人来自高校C的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北容城中学高二年级2014年11月份月考数学试题
命题人 段美英 审题人 段飞华
一、选择题(每小题5分,共60分)
1.已知椭圆2
214
x y +=,则椭圆的焦距长为( )
(A). 1 (B). 2 (C). (D). 23
2. 一个年级有12个班,每个班有50名同学,随机编号为1-50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( )
(A ) 抽签法 (B)系统抽样法 (C)随机数表法 (D)分层抽样法 3.若命题“p ∨q ”为真,“﹁p ”为真,则( ) (A) p 真q 真 (B) p 假q 假 (C)p 真q 假 (D)p 假q 真
4.从区间()0,1内任取一个实数,则这个数小于5
6的概率是( )
(A )35 (B) 45 (C)
5
6 (D)
16
25
5.已知椭圆C 1、C 2的离心率分别为e 1、e 2,若椭圆C 1比C 2更圆,则e 1与e 2的大小
关系正确的是 ( )
(A )e 1<e 2 (B) e 1=e 2 (C) e 1>e 2 (D) e 1、e 2大小不确定 6.计算机中常用16进制,采用数字0~9和字母A ~F 共16个计数符号与10进制得对应关系如下表:
例如用16进制表示D+E =1B ,则A×B=( )
(A ) 6E (B) 7C (C)5F (D) B0
7.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品抽查一次抽得正品的概率是( )
(A)0.99 (B)0.98 (C)0.97 (D)0.96
8.将x=2005输入如图所示的程序框图得结果 ( )
(A )-2005 (B) 2005 (C) 0
(D) 2006
9.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),则当x ,y ∈Z 时,P 满足(x -2)2+(y -2)2
≤4的概率为( )
(A)
225 (B) 425 (C) 625 (D) 8
25
10.已知椭圆22
143
x y +
=的长轴的左、右端点分别为A 、B ,在椭圆上有一个异于点A 、B 的动点P ,若直线PA 的斜率k PA =1
2
,则直线PB 的斜率k PB 为
( )
(A)
32 (B) -
32 (C)
34 (D) -
34
11.下列说法正确的是( )
(A )“1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 (B )命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” (C )“1-=x ”是“0322=++x x ”的必要不充分条件 (D ) 命题:p “2cos sin ,≤+∈∀x x R x ”,则p ⌝是真命题
12.已知椭圆22
22:1(0)x y C a b a b
+=>>的左焦点为F,C 与过原点的直线相交于A,B 两点,
连接AF,BF. 若AB 10=,BF 8=,4
cos ABF 5
∠=,则C 的离心率为 ( )
(A ) (B) (C) (D)
二、填空题(每题5分,共20分)
13.如图阴影部分是圆O 的内接正方形,随机撒314粒黄豆,则预测黄豆落在正方形内的约_____粒.
14.已知x,y 的取值如下表所示,若y 与x 线性相关,且0.95,y x a a ∧
=+=则
15. 表示椭圆,则k 的取值范围为___________
16.已知2
214
x y +=,1F ,2F 分别为其左右焦点,P 为椭圆上一点,则12F PF ∠的取值
范围是 三、解答题:(共70分)
17. (10分)求椭圆9x 2+25y 2=900的长轴和短轴的长、离心率、焦点和顶点的坐标. .
18. (12分)为了对某课题进行研究,用分层抽样方法从三所高校A 、B 、C 的相关人员中,抽取若干人组成研究小组,有关数据如下表(单位:人)
(1)求x 、y ;
(2)若从高校B 、C 抽取的人中选2人作专题发言,求这二人来自高校C 的概率。
19.(12分)已知动点P 与平面上两定点(1,0),(1,0)A B -连线的斜率的积为定值2-. (1)试求动点P 的轨迹方程C.
(2)设直线:1l y x =+与曲线C 交于M 、N 两点,求|MN|
20.(12分)已知p :函数2
()()1
f x m m x =--的图象在R 上递减;q :曲线()2231y x m x =+-+与x 轴交于不同两点,如果p 或q 为真,p 且q 为假,求m 的取
值范围.
21.(12分)设函数()f x = D. (1)a ∈{1,2,3,4},b ∈{1,2,3},求使D=R 的概率; (2)a ∈[0,4],b ∈[0,3],求使D=R 的概率.
22.(12分)已知直线:220l mx y m -+=(m R ∈)和椭圆22
22:1(0)x y C a b a b
+=>>,
椭圆C 的离心率为
2
2
,连接椭圆的四个顶点形成四边形的面积为. (Ⅰ)求椭圆C 的方程;
(Ⅱ)设直线l 与椭圆C 交于A ,B 两点,若以线段AB 为直径的圆过原点,求实数
m 的值.。