第2章(4)传递函数方块图及其化简

合集下载

第2章(4)-控制系统的状态空间表达式

第2章(4)-控制系统的状态空间表达式

2-5 系统状态方程的线性变换2-5-1 系统状态空间表达式的非唯一性系统动态方程建立,无论是从实际物理系统出发,还是从系统方块图出发,还是从系统微分方程或传递函数出发,在状态变量的选取方面都带有很大的人为的随意性,因而求得的系统的状态方程也有很大的人为因素,很大的随意性,因此会得出不同的系统状态方程。

实际物理系统虽然结构不可能变化,但不同的状态变量取法就产生不同的动态方程;系统方块图在取状态变量之前需要进行等效变换,而等效变换过程就有很大程度上的随意性,因此会产生一定程度上的结构差异,这也会导致动态方程差异的产生;从系统微分方程或传递函数出发的系统实现问题,更是会导致迥然不同的系统内部结构的产生,因而也肯定产生不同的动态方程。

所以说系统动态方程是非唯一的。

虽然同一实际物理系统,或者同一方块图,或同一传递函数所产生的动态方程各种各样,其独立的状态变量的个数是相同的,而且各种不同动态方程间也是有一定联系的,这种联系就是变量间的线性变换关系。

设给定的系统为:作线性变换:Tz x = 即x T z 1-=T --为非奇异矩阵(变换矩阵)则:Bu T ATz T z11--+= , ()()01100x T x T z --== 因为T 为任意非奇异矩阵,所以状态空间表达式为非唯一的。

2-5-2系统特征值的不变性及系统的不变量 1. 系统特征值 特征方程:0=-A I λ系统特征值即为特征方程的根。

2. 系统的不变量与特征值的不变性 系统经非奇异变换后,其特征值是不变的。

证明:系统经非奇异变换后,得 其特征方程为:()AI A I T T T A I TTA I T AT T T T AT T T T AT T I -=-=-=-=-=-=---------λλλλλλλ11111111所以,特征值是不变的。

因为 00111=++++=---a a a A I n n n λλλλ所以,1210,,,--n n a a a a 是不变的,为系统的不变量。

传递函数方块图及其等效变换

传递函数方块图及其等效变换

Xr(s) ±
W1(s)
W2(s)
仪表维修工
方块图
由图可得: 由图可得:
Xr(s) ±
E(s)
B(s)
X c ( s) = W1 ( s) E ( s ) E (s) = X r ( s) ± B( s) B( s ) = W2 ( s) X c( s)
W1(s)
W2(s)
Xc(s)
∴ X c ( s ) = W1 ( s )[ X r ( s ) ± 2 ( s ) X c ( s ) ] W W1 ( s ) X c (s) = X r ( s) 1 +W 1( s )W2 ( s )
Xi(s) A
W(s) X1(s)
B
X0(s)
1/W(s)
X2(s)
仪表维修工
方块图
②从输出端移动到输入端
当分支点在A点 当分支点在 点 处时, 处时,各分支的输 出分别为: 出分别为:
Xi(s)
W(s)
A
X0(s) X1(s)
X 0 ( s ) = X i ( s )W ( s ) X 1( s ) = X 0 ( s ) = X i ( s )W ( s )
仪表维修工
方块图
图中: 图中:指向方块单元的箭头表示 输入量的象函数X 离开方块单元 输入量的象函数 i(s),离开方块单元 的箭头表示输出量的象函数X 的箭头表示输出量的象函数 0(s),写 写 在方块单元中的是传递函数G(s)。 在方块单元中的是传递函数 。
注意:元件方块图具有单向性, 注意:元件方块图具有单向性,即输出对 输入没有反作用。 输入没有反作用。
仪表维修工
方块图
为了达到等效的目的, 为了达到等效的目的,则输出应 分别为: 分别为:

2.3 传递函数的方块图表示及运算

2.3 传递函数的方块图表示及运算

2.3.2 闭环控制系统的方块图
(4)误差传递函数 假设N(s)=0 误差信号E(s)与输入信号Xi(s)之比 。
X 0 (s) E(s)G(s) 代入上式,消去G(s)即得:
E ( s) 1 1 X i ( s) 1 H ( s)G( s) 1 开环传递函数
2.3.2 闭环控制系统的方块图
G2 ( s) G( s) X 0 ( s) X i ( s) N ( s) 1 G( s) H ( s) 1 G( s) H ( s)
G2 ( s) H ( s) 1 E (s) X i (s) N (s) 1 G( s) H (s) 1 G(s) H (s)
注意:由于N(s)极性的随机性,因而在路传递函数 假设N(s)=0
主反馈信号B(s) 与输出信号X0(s) 之比。 B( s) H ( s ) 当H(s)=1时,系统叫单位反馈系统。 X 0 (s)
(3)闭环系统的开环传递函数 假设N(s)=0 假设反馈通路断开,反馈信号B(s)与误差信号E(s) 之比。 B( s ) G1 ( s)G2 ( s) H ( s) G ( s) H ( s) E ( s)
反馈公式 G1G5 G1G6 1 G5 H 2 G1G5 G7 1 GHG 1 G5 H 2 G1 H 1G2 1 G1G6 H 1G2 1 1 1 2 G5 1 G5 H 2
R
i
(1) (2)
ui
i
C (a)
uo
(b)
U o ( s)
U i (s) - U o ( s)
I(s)
U o ( s)
I(s) (c)
U o ( s)
(d)
例:画出下列R-C网络的方块图

自动控制原理第二章 控制系统的数学模型4

自动控制原理第二章 控制系统的数学模型4

x
G
y
x
G
y
上图中, 两者都具有关系: 上图中, 两者都具有关系 y(s) = G(s)x(s)。支路对节点x 来说 是输出支路,对输出节点y来说是输入支路 来说是输入支路。 是输出支路,对输出节点 来说是输入支路。
2
信号流图的术语
[几个术语]: 输入节点(源点 : 输入节点 源点):只有输出支路 源点 的节点。 的节点。如: R,N。 , 。 输出节点(阱点 : 输出节点 阱点):只有输入支路 阱点 的节点。 的节点。如: C
4
信号流图的等效变换
串联支路合并: 串联支路合并:
a
b
ab
x3
x1
x2
a
x1
x3
并联支路的合并: 并联支路的合并:
x1
b
x2
x1
a+b
x2
b a 1 m bc
回路的消除: 回路的消除:
a
b
±c
x1 x2
x3
x1
x2
x3
5
信号流图的等效变换
混合支路的清除: 混合支路的清除:
x4 ad b
c
x4
ad bd
18
梅逊公式||例5 梅逊公式 例
[例5]:使用 例 :使用Mason公式计算下述结构图的传递函数 公式计算下述结构图的传递函数
G4
C ( s) E ( s) , R( s) R( s)
R
-
E G 1
H1
+
G2
+ -
G3
C
H2
[解]:在结构图上标出节点,如上。然后画出信号流图,如下: 解 :在结构图上标出节点,如上。然后画出信号流图,如下:

第二章-系统的传递函数方框图及其简化.

第二章-系统的传递函数方框图及其简化.

系统闭环传递函数
GB (s)
X o (s) Xi (s)
由图可知
X i (s) E(s) G(s)
B(s)
H (s)
X o (s)
E(s) Xi (s) B(s) Xi (s) Xo(s)H (s) Xo(s) G(s)E(s) G(s)[Xi (s) Xo(s)H (s)]
G(s)Xi (s) G(s)Xo(s)H (s) 由此可得:
GK (s) G(s)H (s) E(s)
无量纲.
系统闭环传递函数
GB (s)
X o (s) Xi (s)
注意:我们所指的前向通道的传递函数、反馈回路的
传递函数和开环传递函数都是针对一个闭环系统而
言的。它们都是闭环系统的一部分。系统闭环传递
函数是闭环系统的传递函数。看一个传递函数是什
么具体类型,要从定义出发,而不能只看其符号。
8.分支点和相加点之间等效规则
X1(s)
X1(s) X2(s)
X 2 (s)
X1(s) X2(s)
X1(s)
X 2 (s)
X1(s) X2(s)
X1(s) X2(s)
X 2 (s)
一般应避免分支点和相加点之间的相互移动
三、方框图简化的一般方法 (法1)
1.确定系统的输入量和输出量.若作用在系统上的输 入量或输出量有多个,则必须分别对每一输入量,逐个 进行方框图的简化,以求得各自的传递函数. 2.若方框图中有交叉连接,则利用分支点或相加点的 移动规则,将交叉消除,简化成无交叉的多回路方框图 的形式.(大回路套小回路) 3.对多回路方框图,按照先里后外的顺序依次对各个 回路进行简化. 4.写出系统的传递函数.
Ua (s) 0

机械控制工程基础第二章物理系统的数学模型及传递函数

机械控制工程基础第二章物理系统的数学模型及传递函数
数; 因为系统每增加一个独立储能元件,其内部 就多一层能量(信息)的交换。
系统的动态特性是系统的固有特性,仅 取决于系统的结构及其参数,与系统的输 入无关。
线性系统与非线性系统 线性系统 可以用线性微分方程描述的系统。如果方程的 系数为常数,则为线性定常系统;如果方程的
系数是时间t的函数,则为线性时变系统;
其中:
K1
f x1
,
x1 x10 x2 x20
K f 2
x2
x1 x10 x2 x20
滑动线性化——切线法
线性化增量方程
y=f(x)
为:
y y' =xtg
y0
A
切线法是泰勒级
x
数法的特例。
y y’
0
x0
x
非线性关系线性化
系统线性化微分方程的建立
步骤 确定系统各组成元件在平衡态的工作点; 列出各组成元件在工作点附近的增量方程; 消除中间变量,得到以增量表示的线性化微
y
f
(x0 )
df (x) dx
x
(x x0
x0 )
或:y
-
y0
=
y
=
Kx,
其中:K
df (x) dx
x
x0
上式即为非线性系统的线性化模型,称为增
量方程。y0 = f (x0)称为系统的静态方程;
由于反馈系统不允许出现大的偏差,因此,
这种线性化方法对于闭环控制系统具有实际
意义。
增量方程的数学含义就是将参考坐标的原 点移到系统或元件的平衡工作点上,对于实际 系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
i(t)
R

《自动控制原理》第二章传递函数

《自动控制原理》第二章传递函数

G2 ( s ) N ( s) 1 + G1 ( s)G 2 ( s) H ( s)
∑ C ( s ) = Φ ( s) R( s) + Φ ( s) N ( s) =
G2 ( s )[G1 ( s) R ( s) + N ( s )] 1 + G1 ( s)G 2 ( s ) H ( s)
20
N ( s)
14
例2.23
R(s)
G4 G1 A G3 H2 H1
C
p1 = G1G2G3
_
-
B
G2
C (s)
∆1 = 1
L1 = −G1 G 2 H 1
p2 = G1G4
∆2 = 1
L2 = − G 2 G 3 H 2 L3 = −G 1 G 2 G3
L4 = − G 4 H 2
注意:回路 注意: 找不全是最 大的问题
5
1 R 1 G1 -1 1 G2 -1 1 G3 -1 K C
1
-1
•前向通路:开始于输入节点,沿支路箭头方向,每个节点 前向通路:开始于输入节点,沿支路箭头方向, 前向通路 只经过一次,最终到达输出节点的通路称之前向通路。 只经过一次,最终到达输出节点的通路称之前向通路。 •回路:起点和终点在同一节点,并与其它节点相遇仅一次的通路。 回路:起点和终点在同一节点,并与其它节点相遇仅一次的通路。 回路 •回路中所有支路的乘积称为回路增益。 回路中所有支路的乘积称为回路增益。 回路中所有支路的乘积称为回路增益 •不接触回路:回路之间没有公共节点时, 不接触回路:回路之间没有公共节点时, 不接触回路 不接触回路。 这种回路叫做 不接触回路。 •在信号流图中,可以有两个或两个以上不接触回路。 在信号流图中, 在信号流图中 可以有两个或两个以上不接触回路。

传递函数及方块图剖析

传递函数及方块图剖析

则G(s) = Uo s = RCS
(RC = T
K 1
Ui s RCS + 1
K = 1)
Gs k
4 积分环节
s
时间域方程
xo t k xi t dt
X o s
k
X i s
s
X o s X i s
k s
例9
i2(t)
i1(t) ui(t)
R
A
B
C
_
K0 +
uo(t)
ui (t) = -C duo (t)
传递函数及 典型环节的传递函数
一、传递函数定义:
在初始条件为零时,线性
定常系统输出象函数 Xo s与输 入象函数 Xi s 之比。
Gs
X o s Xi s
Xi s Gs Xo s
设线性定常系统的微分方程为:
a
0
xon
t
a1
x
n1
o
t
a
n1
x
o
t
a
n
x
o
t
b0
x
m
i
t
b1
x
m
i
1
t
bm 1
x i
t
则G(s) = Uo s =
1
Ui s RCS + 1
(RC = T)
例4
弹簧-阻尼系统
K
xi
t
xo
t
D
dxo
dt
t
KXi s KXo s DsXo s
Gs
Xo s Xi s
K Ds
K
D
1 s 1
K
Gs Ks
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G(s) 1 G(s)H (s)
G(s) 1 Gk (s)
B(s)
H(s)
前向通道传递函数、
反馈通道传递函数、
开环传递函数、
正反馈、负反馈;
2.方框图的变换与化简:(1)串、并联的化简; (2)分支点跨过环节的移动规则; (3)相加点的拆并及跨过环节的移动规则; (4)反馈与并联交错的化简
Xo(s)
G1(S)
G2(S)
Xi(s) G1(S) G2(S)
Xo(s)
G(s)
X X
o(s) i(s)
X o(s) X (s)

X (s) Xi(s)

G2
(
s)G1(
s
)
n
G(s) Gi (s) i 1
负载效应问题
i1 R1 i2 R2
G1(s)

1 R1C1s
1
G2 (s)

Xo(s)
C

H1
jik 04
16
X (s) 0 求 Xo(s) 。令
Xi2(s)
i1
Xi 1(s)
H3
+
-
-
G1 B +
G2
,
Xi
2(
Xi1(s)处的相加点取消,
H1 变成(-H1)。原图改画成:
s)
Xi 2(s) +
G3
Xo(s)
+
+
-A +
+
-
G3 Xo(s) A +
H2
C
H2
G2
+
-
B G1
复习:
1.微分方程的拉氏算子解法; 2.系统的响应就是微分方程的解 总响应x(t) =零输入响应xZ(t)+零状态响应xs(t)
=瞬态响应+稳态响应 3.传函的的定义(零初始条件)
G(s) X o (s) L[xo (t)] X i (s) L[xi (t)]
4.由微分方程求传递函数的方法:
外环相套或串联 B(s)
(1)分支点后移:B→A (2)分支点前移:A→B
Xi (s) E(s) +
+B (s)
G1
G1
+
-
+
H1
H2
G2 B G3
H2
G3
-
+
G2
B
H1
Xo(s)
A
1+
G2 G2G3
H2
G1
G3
Xo(s)
A
Xi (s) E(s) +
+-
+
B (s)
1+
G2 G2G3
H2
G1
B
G3
Xo(s)
开环传函不变;前向通道传函不变; 相邻的相加点和分支点不能直接互换。 作业:复习P34~P42;预习P51~P86习题:2.8(b)
jik 04
20
分支点移动 A G2
1 G2
AG1 AG1+ AG2 G1 + +
AG2
(2)反馈化成单位反馈
A+ -
G1 A G1 1 + G1G2
A1+
G2
-
G1
G1 G2 1+ G1G2
1A G2
G2
G2
规则∶(1)开环传函不变;
A+ -
G1
G2
(2)前向通道传函乘积不变;
G1 G 2 1+ G1G2
1A G2
(4)电磁转矩: M (t) kmia (t) M (s) kmIa (s)
输入: Ia (s) 输出:M (s)
合画∶
直流电动机自身是一闭环系统,反电动势起
负反馈作用,可以帮助改善jik 0电4 动机的稳定性。
5
二.传递函数方框图的等效变换
1.串联传递函数等于各相串传函之积。
Xi(s)
X(s)
jik 04
3
例2: 绘制电枢控制式直流电动机的传递函数
方框图 。
R
i1 (t)
(1)电压平衡方程:
ua (t) e(t) Lia (t) Ria (t)
ia (t) ua (t)
F L
Rf if
Lf
uf
ML
U a (s) - E(s) (Ls R)I a (s)
Mq
输入∶Ua (s);输出∶ Ia (s)
A
G3
H1
Xi (s) E(s)
G2 G1
G3
+-
1+G2G3 H2 -G1G2 H1
B (s)
G3
G3
Xo(s)
Xi (s)
G2 G1
1+ G2G3H2 -G1G2 H1 + G1G2G3
Xo(s) G3
jik 04
15

2∶求
X X
o (s) i1(s)
、Xo (s) X i 2 (s)
Xi 1(s)
n
G(s) Gi (s) i 1
3.闭环传函的框图
Xi(s) + E( s)
Xo(s)
- G(s)
B(s) H(s)
jik 04
7
(1)前向通道传递函数
G(s):
Xi(s) +
E(s)
-
G(s)
Xo(s)
G(s) Xo(s) E(s)
输入: E(s)
B(s) H(s)
(2)反馈回路传递函数 H (s): (3)开环传递函数 Gk (s):

R1C2 )s
1
2.并联传函等于各相并传函之和
G(s) X o (s) X1 (s) X 2(s)
Xi (s)
X i (s)
X i (s)

X 1 (s) X i (s)

X 2 (s) X i (s)
G1 (s) G2 (s)
G1(s) X1(s)
+
Xo(s)
+
G2 (s) X2(s)
Xi(s)
G(s) Xo(s) 1+G(s)H(s)
X o (s)[1 G(s)H (s)] H (s) X i (s)
GB (s)

X o (s) X i (s)
G(s) 1 G(s)H (s)
G(s) 1 Gk (s)
jik 04
9
讨论: (1)单位反馈:H(s)=1
Xi(s) +-
ps
5.传函的零点、极点(系统微分方程的特征根); 6.输出的时域表示:xo (t) L1[G(s) X i (s)]
jik 04
1
§2.3 传递函数方框图及其化简
一.传递函数方框图的绘制
将组成系统的各个环节用传递函数方框来表示,并将 相应的变量按照信号的流向连接起来,就构成系统的传递 函数方框图。
H
(s)

B(s) X o (s)
Gk
(s)

B(s) E(s)
Xi(s) E(s)
Xo(s)
B(s)
G(s)
H (s)
含义:
Gk
(s)

B(s) E(s)

G(s)H
(s)
开环传函GK(s)等于前向通道与反馈回路传函的积。
注意:开环传函无量纲.
jik 04
8
(4)闭环传函 GB(s)∶
GB (s)

X o (s) X i (s)
一个重要公式∶闭环系统的传递函数
G(s)
G(s)
GB (s) 1 G(s)H (s) 1 Gk (s)
Xi(s) + E( s)
- G(s)
Xo(s)
Xo(s) G(s)E(s)
B(s) H(s)
G(s)[ X i (s) H (s) X o (s)] G(s)Xi(s) G(s)H (s)Xo(s)
N (s)
++
G2( s) Xo ( s)
H( s)
X o1 (s)
G1 (s)G2 (s)
N(s)
X i (s) 1 G1 (s)G2 (s)H (s)
++
G2(s)
-
Xo(s)
令Xi(s)=0:N(s) → Xo2(s)
G1(s)
H(s) +
Xi(s)=0
X o2 (s)
G2 (s)
1.方框图的结构要素
jik 04
2
2.系统方框图的建立
(1)列写原始微分方程;
(2)在零初始条件下,对原始微分方程分别进行拉斯变换;
(3)根据因果关系,确定各个原始微分方程分中的输入量与 输出量,并将拉斯变换的结果表示成传递函数方框图的形 式;
(4)按信号的传递过程,依次将上述各个方框图连接起来, 构成整个系统的传递函数方框图,一般输入在左边,输出 在右边。
jik 04
10
三.方框图变换及化简
1.分支点互换 2.相加点互换及拆并
X
b
a
X X
a X
X bX
X1 a
X3 X1 X2 X3
X3 X1
b
b
X2
3.分支点移过环节
分支点
前移 X1 G(s)
X2
X3 ( X 2 )
a X3
X1 X2 X3 X1
X1 X2 X3
X2
相关文档
最新文档