传递函数
传递函数概念

传递函数概念
在数学中,函数是一种关系,将一个集合的每个元素(输入)映
射到另一个集合的唯一元素(输出)。
传递函数就是在这种映射关系
中的一种特殊情况,指的是当一个元素作为一个函数的输入时,该函
数的输出可以作为另一个函数的输入。
也就是说,如果存在两个函数f 和g,当f(x)的输出作为g的输入时,g(f(x))的输出与g(x)的输出相等,那么函数g被称为f的传递函数。
反过来,如果函数f是g的传
递函数,则我们也可以称g为f的逆传递函数。
传递函数在数学、物理、计算机科学等领域中都有广泛的应用。
在数学和物理中,传递函数可以用来描述信号、电路等物理系统的行为。
在计算机科学中,传递函数可以用来优化计算机程序的执行速度。
此外,在控制论、信号处理、通信等领域中,传递函数也是不可或缺
的概念。
总之,传递函数是一种重要的数学概念,在实际应用中具有广泛
的应用价值。
通过研究传递函数,我们可以进一步理解复杂的物理系统、计算机程序等,并为实际问题提供更好的解决方案。
2.2 传递函数

3、典型环节的形式
G (s) K
( s 1) (T s 1)
j 1 j i 1 n i
m
上式中 τi──分子各因子的时间常数 ; Tj──分母各因子的时间常数 ;
K ──时间常数形式传递函数的增益;通常称为传递系数。
五、传递函数的求取
1、解析法
建立微分方程,根据微分方程按定义求取
介绍一种方法:复阻抗法
i
U R
du iC dt
i
1 udt L
U (s) I (s) R
U (s) I (s) Z (s)
I ( s) CsU ( s) U ( s )
1 Cs
1 Cs
I (s)
U (s) Ls
R
Ls
1 , Ls 分别成为电阻、电容和电感的复阻抗 把 R, Cs
传递函数是经典控制理论中最重要的数学模型之 一。利用传递函数,在系统的分析和综合中可解决如 下问题:
不必求解微分方程就可以研究初始条件为零的系统在输 入信号作用下的动态过程。 可以研究系统参数变化或结构变化对系统动态过程的影 响,因而使分析系统的问题大为简化。 可以把对系统性能的要求转化为对系统传递函数的要求, 使综合问题易于实现。
11/17/2013 8:53:46 PM
3
一、定义
零初始条件下,线性定常系统输出量的拉氏变换 与输入量的拉氏变换之比,称为该系统的传递函数,
记为G(s),即:
L[ y (t )] Y ( s ) G( s) L[r (t )] R( s )
意义:
R( s )
G (s )
Y ( s)
Y (s) R(s)G(s)
1 1 Y ( s) G s) R s) ( ( Ts 1 s
数学模型-传递函数

1 1 , j ,Ti zj pi ( pi )
( z j )
m
(3) 二项式表示法:
如 p1 . p2为一对共轭复数,则有
1 1 2 ( s p1 )( s p2 ) s 2 n s n 2
1 1 2 2 或 (T1 s 1)(T2 s 1) T s 2Ts 1
当初始条件为零时有:
3
第二章 数学模型
传 递 函 数(续)
C ( s ) b0 s m b1 s m 1 bm 1 s bm 则G ( s ) R( s ) a 0 s n a 1 s n 1 a n 1 s a n
s j 为复数, G (s ) 是复变量s 的函数, 故称为复放大系数。
i 1
m
(s z )
当s
z j时,G(s) = 0. z j 为传函的零点。
10
当 s pi 时,G(s) = , pi 为传函的极点。
第二章 数学模型
而 K g b0 ——传递系数。(根轨迹中叫根轨迹增益)
a0
(2)时间常数表示法:
bm d m s m d m 1 s m 1 d 1 s 1 G( s ) a n c n s n c n 1 s n 1 c 1 s 1
其传递函数为
6. 齿轮系
m
Z1
Z2
c
第二章 数学模型
§2-2 传 递 函 数
用拉氏变换求解微分方程,虽思路清晰,简单实用,但 如果系统参数改变,特征方程及其解都会随之改变。 要了解参数变化对系统动态响应的影响,就必须多次 计算,方程阶次愈高,计算工作量越大,故引入另一 种数模—传递函数。它是控制理论中的重要概念和工具, 也是经典理论中两大分支—根轨迹和频率响应的 基础。利用传递函数不必求解微方就可研究初始条件 为零的系统在输入信号作用下的动态过程。
第二章 传递函数-梅逊公式

2.3 传递函数与系统动态结构图
2.3.1 传递函数的定义
设系统的标准微分方程为
an
dnc(t) dt n
a n1
dn1c(t) dt n 1
……
a1
dc(t) dt
a0c(t)
bm
dmr(t) dt m
bm1
d m 1r ( t ) dt m1
……
b1
dr(t) dt
点
上图所示的是
G(s)
(s
(s 1)(s 2) 3)(s 2 2s
2)
的零、极点分布图。
2.2 传递函数
比
比例环节(无惯性环节): c(t)=kr(t)
例
传递函数:G(S)=C(S)/R(S)=k
c(t)
环
阶跃响应:R(S)=1/S
r(t)
节
C(S)=kR(S)=k/S C(t)=k
0
方框图: R(S) k/s C(S)
3
传
递
积分调节器:
C
在A点列方程可得:
函 数
Ur(t)
R
i2
i1
A
Uc(t) i2=i1, i1=Uc(t)/R Uc(t)=1/C∫i2(t)dt=1/(RC)∫Uc(t)dt
设RC=T(积分时间常数),则有:Uc(t)=1/T∫Uc(t)dt
拉氏变换后为:Uc(S)=1/(TS)Uc(S)
5)传递函数具有正、负号(输入量和输出量的变化方向)。
6)传递函数的单位是输出量的单位与输入量的单位之比。
m
(s z j )
7)传递函数可以写成
G(s)
Kg
j1 n
自控理论 2-2传递函数

当 ui ( t ) = 1( t )时,
− t 1 −1 τs 则u0 ( t ) = L ⋅ =e τ τs + 1 s 1
图2-8 RC电路 电路
当 τ << 1 时,可近似认为 G ( s ) ≈ τs
5. 振荡环节
d 2 c( t ) dc( t ) 2 T + 2ζT + c( t ) = Kr ( t ) 2 dt dt
运放 2
U 2 ( s ) τs + 1 G2 ( s) = = U 1 ( s) Ts
( 2 − 38)
式中
τ = R3C
T = R2C
功放
U a ( s) G3 ( s) = = K2 U 2 ( s)
( 2 − 39)
附:电枢控制直流电动机的微分方程 电枢控制直流电动机的微分方程
dmc d 2n dn TaTm 2 + Tm + n = K u ua − K m (Ta + mc ) dt dt dt La ; 电磁时间常数 Ta = Ra 传递系数 1 Ku = Ce 机电时间常数 Tm Km = J ( 2 − 10)
m m −1
∏ (s − z
j =1 n i =1
m
j
)
∏ (s − p )
i
式中
z j ( j = 1 , 2 L m )为传递函数的零点; 为传递函数的零点; p i ( i = 1 , 2 L n )为传递函数的极点; 为传递函数的极点; K 1 = b0 为传递系数或根轨迹增 益。
② 时间常数表达式
n≥m
当初始条件均为零时,两边取拉氏变换 当初始条件均为零时,
(s
自动控制原理传递函数

y(t) y kt
S平面 j
x(t) 1(t)
0
t
0 Re
有一个0值极点。在图中极点用“ ”表示,零点用“ ”
表示。K表示比例系数,T称为时间常数。
3/18/2024 2:47:29 AM
20
积分环节实例
积分环节实例:
①
C
R
ui
ui (s) uo (s)
R
1 Cs
uo
uo (s) 1
LCs 2
1 RCs
1
3/18/2024 2:47:28 AM
2
传递函数的定义: 系统初始条件为零时,输出变量的拉普拉
斯变换与输入变量的拉普拉斯变换之比,称为 系统的传递函数。 记做: Y (s) G(s) 或 Y (s) G(s)U (s)
U (s)
U(s)
Y(s)
G(s)
3/18/2024 2:47:28 AM
R2 I2 (s) UO (s)
G(s) U0 (s) 1 1 Ts Ui (s) 1 Ts
T R1R2C R1 R2
R1 R2
R2
3/18/2024 2:47:28 AM
7
复习拉氏变换
②性质:
⑴线性性质:L[f1(t) f2 (t)] F1(s) F2 (s)
⑵微分定理:L[ f (t)] sF (s) f (0)
L[ f(t)] s2F (s) sf (0) f (0)
L[ f (n) (t)] sn F (s) sn1 f (0) sn2 f (0) ... f (n1) (0)
⑶积分定理:(设初值为零)
L[
f
(t)dt]
F (s) s
⑷时滞定理:L[ f (t T )] est f (t T )dt esT f (s) 0
第六章 传递函数

第六章 传递函数对于线性定常系统,传递函数是常用的一种数学模型,它是在拉氏变换的基础上建立的。
用传递函数描述系统可以免去求解微分方程的麻烦,间接地分析系统结构及参数与系统性能的关系,并且可以根据传递函数在复平面上的形状直接判断系统的动态性能,找出改善系统品质的方法。
因此,传递函数是经典控制理论的基础,是一个极其重要的基本概念。
第一节 传递函数的定义一、传递函数的定义1、定义对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入量的拉()()C s R s ==零初始条件输出信号的拉氏变换传递函数输入信号的拉氏变换2、推导设线性定常系统的微分方程的一般形式为1011110111()()()()()()()()n n n n nn m m m m mm d d d a c t a c t a c t a c t dtdtdtd d d b r t b r t b r t b r t dtdtdt------++⋅⋅⋅++=++⋅⋅⋅++◆ 式中c(t)是系统输出量,r(t)是系统输入量,r(t)、c(t)及其各阶导数在t=0时的值均为零,即零初始条件。
◆a , 1a ,…,na 及b , 1b ,…,mb 均为系统结构参数所决定的实常数。
对上式中各项分别求拉氏变换,并令C(s)=L[c(t)],R(s)=L[r(t)],可得s 的代数方程为:11011011[]()[]()nn mm n n m m a s a sa s a C sb sb sb s b R s ----++⋅⋅⋅++=++⋅⋅⋅++于是,由定义得到系统的传递函数为:10111011()()()()()m m m m nn n nb s b sb s b C s M s G s R s a s a sa s a N s ----++⋅⋅⋅++===++⋅⋅⋅++其中,1011()m m m m M s b s b s b s b --=++⋅⋅⋅++ 1011()n n n n N s a s a s a s a --=++⋅⋅⋅++ N(s)=0称为系统的特征方程,其根称为系统特征根。
第四章系统传递函数模型

H(s) 1
s1
3 微分环节 凡是系统的输出正比例于系统输入的微分,即:
y(t)Tdu(t)Tu(t) dt
系统的传递函数为 H(s)Y(s) Ts
U(s)
其中T称为微分环节的时间常数,一般情况下微分环节 在实际中不可能单独存在。 在实际应用中,常将微分环节与其他环节联合使用。
4 积分环节
该环节的输出等于系统的输入量对时间的积分成正比
方次大于等于分母方次的时候,通常要转换成余项研 究)
例4-1 设系统的动力学方程为: m y c y k y u (t) , 计算单自由度弹簧质量的传递函数的零极点模型。
解:
H ( s ) u y ( ( s s ) ) m s 2 1 c s k s 2 2 1 /p m s p 2 ( s p 1 1 ) /( m s p 2 )
可以证明:各个留数可以通过下式求出:
ki sl iim H(s)(si)
i1,2, n
例4-3 某系统的传递函数为: H(s) 5s3
s36s21s16
将系统模型写成零极点增益模型。 解: H(s)5 s0.6
(s3)s(2)s(1)
系统的零点:z0.6 极点: (3,2,1) 增益: k 5 写成留数形式,则有:
k3sl im 2H(s)(s3)
5(ss3 )(0s.6 2)5(ss3)(0s.6 2)|s151 20.61
则系统的留数为: k1 6 k2 7
k3 1
传递函数的留数形式为: H(s)6 7 1
s3 s2 s1
例4-4 已知系统的传递函数为:
H(s)s3s22s23s5s110
将系统模型写成零极点增益模型:
dt
在机械系统中,如图所示不考虑AB杆的质量情况下,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-6 传递函数
求解控制系统的微分方程,可以得到在确定的初始条件及外作用下系统输出响应的表达式,并可画出时间响应曲线,因而可直观地反映出系统的动态过程。
如果系统的参数发生变化,则微分方程及其解均会随之而变。
为了分析参数的变化对系统输出响应的影响,就需要进行多次重复的计算。
微分方程的阶次愈高,这种计算愈复杂。
因此,仅仅从系统分析的角度来看,就会发现采用微分方程这种数学模型,当系统阶次较高时,是相当不方便的。
以后将会看到,对于系统的综合校正及设计,采用微分方程这一种数学模型将会遇到更大的困难。
目前在经典控制理论中广泛使用的分析设计方法——频率法和根轨迹法,不是直接求解微分方程,而是采用与微分方程有关的另一种数学模型——传递函数,间接地分析系统结构参数对响应的影响。
所以传递函数是一个极其重要的基本概念。
一、传递函数的概念及定义
在[例2-7]中,曾建立了RC 网络微分方程,并用拉氏变换法对微分方程进行了求解。
其微分方程(2-44)为
)()(t u t u dt
du RC r c c =+ 假定初始值0)0(=c u ,对微分方程进行拉氏变换,则有
)()()1(s U s U RCs r c =+
网络输出的拉氏变换式为
)(11)(s U RCs s U r c += (2-48)
这是一个以s 为变量的代数方程,方程右端是两部分的乘积;一部分是)(s U r ,这是外作用(输入量)的拉氏变换式,随)(t u r 的形式而改变;另一部分是
1
1+RCs ,完全由网络的结构参数确定。
将上式(2-48)改写成如下形式 1
1)()(+=RCs s U s U r c 令1
1)(+=RCs s G ,则输出的拉氏变换式可写成 )()()(s U s G s U r c =
可见,如果)(s U r 给定,则输出)(s U c 的特性完全由)(s G 决定。
)(s G 反映了系统(网络)自身的动态本质。
这很显然,因为)(s G 是由微分方程经拉氏变换得到的,而拉氏变换又是一种线性变换,只是将变量从实数t 域变换(映射)到复数s 域,所得结果不会改变原方程所反映的系统本质,对照)(s G 与原微分方程(2-44)的形式,也可看出二者的联系。
我们称)(s G 为传递函数,并将其看作另一种数学模型。
这是一个复变量函数,对任意元、部件或系统,传递函数的具体形式各不相同,但都可看作是在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比。
RC 网络的传递函数,即为
1
1)()()(+==RCs s U s U s G r c 输出、输入与传递函数三者之间的关系,还可以用图2-26的方框形象地表示输入经)(s G 传递到输出。
对具体的系统或元、部件,只要将其传递函数的
表达式写入方框图的方框中,即为该系统或该元、部件的传递函数方框图,又称结构图。
如上述网络,只需在方框中写入
1
RCs 1+,即表示了RC 网络的结构图。
根据上述说明,可以对传递函数作如下定义:
所谓传递函数即线性定常系统在零初始条件下,输出量的拉氏变换式与输入量的拉氏变换式之比。
设线性定常系统的微分方程一般式为
1
1101()()()()n n n n n n d d d a c t a c t a c t a c t dt
dt dt ---++++ )()()()(01111t r b t r dt d b t r dt
d b t r dt d b m m m m m m ++++=--- (2-49) 式中)(t c 为系统输出量,()r t 为系统输入量,0a ,1a ,…,n a 及0b ,1b ,…,m b 均为由系统结构参数决定的实常数。
设初始条件为零,对式(2-49)两边进行拉氏变换,得
)()()()(01110111s R b s b s b s b s C a s a s a s a m m m m n n n n ++++=++++----
则系统的传递函数为
1110111)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++==---- (2-50) 令 0111)(b s b s b s b s M m m m m ++++=--
0111)(a s a s a s a s N n n n n ++++=--
式(2-50)可表示为
)()()()()(s N s M s R s C s G ==
(2-51)
若在式(2-50)中,令0=s ,则有 0
0)0(a b G = 即为系统的放大系数。
从微分方程(2-49)看,0=s 相当于所有导数项为零,方程变为静态方程,0
0a b 恰好为输出、输入的静态比值。
传递函数是在初始条件为零(称零初始条件)时定义的。
控制系统的零初始条件有两方面含义:一是指输入作用是在0=t 以后才作用于系统。
因此,系统输入量及其各阶导数在0=t 时的值为零;二是指输入作用加于系统之前,系统是“相对静止”的。
因此,系统输出量及其各阶导数在0=t 时的值也为零。
实际的工程控制系统多属此类情况,这时,传递函数一般都可以完全表征线性定常系统的动态性能。
必须指出,用传递函数来描述系统动态特性,也有一定局限性。
首先,对于非零初始条件,传递函数便不能完全描述系统的动态特性。
因为传递函数只反映零初始条件下,输入作用对系统输出的影响,对于非零初始条件的系统,只有同时考虑由非零初始条件对系统输出的影响,才能对系统动态特性有完全的了解。
其次,传递函数只是通过系统的输入变量与输出变量之间的关系来描述系统,亦即为系统动态特性的外部描述,而对系统内部其它变量的情况却不完全知道,甚至完全不知道。
当然,现代控制理论采用状态空间法描述系统,可以克服传递函数的这一缺点。
尽管如此,传递函数作为经典控制理论的基础,仍是十分重要的数学模型。
二、传递函数的基本性质
从线性定常系统传递函数的定义式(2-50)可知,传递函数具有以下性质。
(1)传递函数是复变量s 的有理真分式,而且所有系数均为实数,通常分子多项式的次数m 低于(或等于)分母多项式的次数n ,即m ≤n 。
这是因为系统必然具有惯性,且能源又是有限的缘故。
(2)传递函数只取决于系统和元件的结构参量,与外作用形式无关。
(3)将式(2-50)改写成如下所谓“典型环节”的形式
∏∏∏∏====++++++==12211122221221)
12()1()12()1()()()(n i n j j j j i v m l l l l m k k s T s T s T s s s s K s N s M s G ξτξττ (2-52)
数学上的每一个因子都对应着物理上的一个环节,我们称之为典型环节。
其中: K 放大(比例)环节
s 1 积分环节
11+Ts 惯性环节或非周期环节
12122++Ts s T ξ 振荡环节
1+s τ 一阶微分环节 1222++s s ξττ
二阶微分环节 我们所研究的自动控制系统,都可以看成由这些典型环节组合而成.
(4)一定的传递函数有一定的零、极点分布图与之对应。
将式(2-50)写成如下零、极点形式
)())(()())((N(s)M(s)G(s)2121*n m p s p s p s z s z s z s K ------== (2-53)
式中m z z z ,,,21 为传递函数分子多项式)(s M 等于零的根,称为传递函数的零点;,1p ,2p , n p 为传递函数分母多项式)(s N 等于零的根,称为传递函数的极点。
把传递函数的零点和极点同时表示在复平面][s 上的图形,就叫做传递函数的零、极点分布图。
图(2-27) 表示了传递函数)
12)(3(2)(2++++=
s s s s s G 的零、极点分布情况,图中零点用“0”表示,极点用“×”表示。
式(2-53)中常数“*K ”称为传递函数的根轨迹增益。
*K 与K 之间的关系为
2
21221*T T K K ττ= (2-53a )
(5)传递函数的拉氏反变换,即为系统的脉冲响应。
所谓脉冲响应,是指系统在单位脉冲函数(t)δ输入下的响应,也称为脉冲过渡函数。
因为单位脉冲的拉氏变换式等于1,因此
11()[()][()]k t C s G s --==
显然,系统的脉冲响应)(t k 与系统传递函数)(s G 有单值对应关系,故可以用来描述系统的动态特性,如图2-28所示。
(6)若令ωj s =(即ωσj s +=,其中0=σ),这是传递函数的一种特殊形式,ωj s s G =|)(=)(ωj G ,称为频率特性。
)(ωj G 是用频率法研究系统动态特性的基础。
显然,频率特性也是描述系统动态特性的又一种数学模型。
而且频率特性有鲜明的物理定义,这些将在后面讲述频率法时详细介绍。