弧度制 教案
弧度制教学设计【优秀4篇】

弧度制教学设计【优秀4篇】高一数学必修四教案篇一一、教学目标掌握用向量方法建立两角差的余弦公式。
通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础。
二、教学重、难点1.教学重点:通过探索得到两角差的余弦公式;2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。
三、学法与教学用具1.学法:启发式教学2.教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来。
)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与xx之间的关系,由此得到,认识两角差余弦公式的结构。
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的'知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处。
思考:再利用两角差的余弦公式得出(三)例题讲解例1、利用和、差角余弦公式求、的值。
解:分析:把、构造成两个特殊角的和、差。
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用。
例2、已知,是第三象限角,求的值。
解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题。
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式。
弧度制教案

弧度制教材分析本节课是普通高中教科书人教A版必修第一册第五章第一节第二课,本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”,并且上节课学了任意角的概念,将角的概念推广到了任意角;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。
通过本节弧度制的学习,我们知道实数与角之间一一对应的关系,而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。
另外弧度制为今后学习三角函数带很大方便。
课程目标1.了解弧度制,明确1弧度的含义;2.能进行弧度与角度的互化;3.掌握用弧度制表示扇形的弧长公式和面积公式;学科素养1.数学抽象:角集与实数集间的一一对应;2.逻辑推理:弧长公式及扇形的面积公式;3.数学运算:角度制与弧度制的互换;4.数学模型:从圆的图形中理解角度值与弧度值。
教学重难点教学重点:理解并掌握弧度制的定义,熟练的进行角度制与弧度制的互化,弧度制的运用;教学难点:理解弧度制的定义,弧度制的运用。
教学方法引导发现法、讲授法教学准备多媒体教学过程创设情景1、我国现行的度量衡中,半斤等于八两吗?半斤等于五两即1斤等于10两是十进制半斤等于八两即1斤等于16两是十六进制2、度量衡是可以制定的,需要满足什么条件?①共同约定②便于计算3、国际单位制中衡量重量的单位是KG,那么KG跟斤能并存存的前提是什么呢?可以进行换算复习回顾1. 在平面几何里,度量角的大小用什么单位?角度制的单位有:度、分、秒。
2.1°的角是如何定义的?度、分、秒又如何换算呢?规定:圆周1/360的圆心角称作1°角。
1度等于60分(1°=60′),1分等于60秒(1′=60″)这种用度做单位来度量角的制度叫做角度制 .3.你知道60°+sin60°等于多少吗?讲授新课1.观察发现如图,射线OA绕着端点O旋转到OB形成角α.在旋转过程中,射线OA上的一点P(不同于点O)的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n°,OP=r,点P形成的圆弧PP1的长为l由初中所学知识可知:l=nπr180,这就是角度制中的弧长公式,在这个式子中lr=nπ180几何画板展示【探究】在射线OA上任取一点Q(不同于点O),OQ=r1,在旋转过程中,点Q所形成的圆弧QQ1的长为l1,l1与r1的比值是多少?我们能得出什么结论?【结论】可以发现,圆心角α所对的弧长与半径的比值,只与α的大小有关.也就是说,这个比值随α的确定而唯一确定.这就启发我们,可以利用圆的弧长与半径的关系度量圆心角.2.弧度制的概念我们规定:长度等于半径长的圆弧所对的圆心角叫做1弧度,记作1rad,读作1弧度.我们把半径为1的圆叫做单位圆,如图,在单位圆O中,弧AB的长度等于1,∠AOB就是1弧度的角.根据上述规定:在半径为r的圆中,弧长为l的的弧所对的圆心角为α rad,那么有:对这个式子进行变形,可以得到如下结论:|α|=lr(1)l=|α|∙r(弧长公式) (2)r=l|α|其中,α的正负由角α的终边的旋转方向决定,即逆时针旋转为正,顺时针旋转为负.当角的终边旋转一周后继续旋转,就可以得到弧度数大于2π或者小于-2π的角.这样就可以得到弧度为任意大小的角.一般地,正角的弧度数是正数,负角的弧度数是复数,零角的弧度数是0.欧拉是最早提出弧度制概念的数学家。
弧度制 课程设计

弧度制 课程设计一、课程目标知识目标:1. 理解弧度制的概念,掌握角度与弧度的互化方法;2. 能够运用弧度制进行三角函数的计算;3. 了解弧度制在几何及物理中的应用。
技能目标:1. 能够准确地将在角度制下的角转换为弧度制;2. 能够运用弧度制进行简单的三角函数运算;3. 能够运用所学知识解决实际问题,提高解决问题的能力。
情感态度价值观目标:1. 培养学生对数学学科的兴趣,增强学习数学的自信心;2. 培养学生的团队合作意识,学会与他人交流、分享学习经验;3. 激发学生探索精神,使学生认识到弧度制在科学研究和实际生活中的重要性。
分析课程性质、学生特点和教学要求,本课程旨在让学生掌握弧度制的基本概念和计算方法,提高学生的数学运用能力。
课程目标具体、可衡量,便于学生和教师在教学过程中了解预期成果,也为后续的教学设计和评估提供了明确的方向。
通过本课程的学习,使学生能够更好地理解和运用弧度制,为后续学习打下坚实基础。
二、教学内容1. 弧度制概念引入:通过比较角度制与弧度制的区别,引导学生理解弧度制的定义及意义。
- 教材章节:第一章第三节“角的度量”2. 弧度与角度的互化:讲解弧度与角度之间的转换方法,举例说明。
- 教材章节:第一章第三节“角的度量”3. 弧度制下的三角函数计算:教授在弧度制下如何进行三角函数的计算,并分析其与角度制下的区别。
- 教材章节:第二章第六节“三角函数的定义与计算”4. 弧度制在实际问题中的应用:举例说明弧度制在几何、物理等领域的应用。
- 教材章节:第三章第九节“弧度制在实际问题中的应用”5. 课堂练习与讨论:设置相关习题,巩固所学知识,培养学生的实际应用能力。
教学内容按照以上五个部分进行安排,确保科学性和系统性。
在教学过程中,教师需关注学生对弧度制概念的理解,对弧度与角度互化方法的掌握,以及对弧度制下三角函数计算的应用。
通过课堂练习与讨论,使学生将所学知识内化为自身能力,提高解决问题的实际运用水平。
弧度制 说课稿 教案 教学设计

第 1 页 共 1 页 弧度制教学目的:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题。
教学过程:一、复习:弧度制的定义,它与角度制互化的方法。
二、由公式:⇒=r lα α⋅=r l比相应的公式180rn l π=简单弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 例一 利用弧度制证明扇形面积公式lR S 21=其中l 是扇形弧长,R 是圆的半径。
证: 如图:圆心角为1rad 的扇形面积为:221R ππ弧长为l 的扇形圆心角为rad Rl∴lR R R l S 21212=⋅⋅=ππ比较这与扇形面积公式 3602R n S π=扇 要简单例二 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴34π⑵ 165解: cm r 10= ⑴: )(3401034cm r l ππα=⨯=⋅=⑵:rad rad 1211)(165180165ππ=⨯=∴)(655101211cm l ππ=⨯=例三 如图,已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
解:设扇形的半径为r ,弧长为l ,则有 ⎩⎨⎧==⇒⎪⎩⎪⎨⎧==+22162l r r l l r ∴ 扇形的面积221rl S ==例四 计算4sin π5.1tan解:∵454=π ∴ 2245sin 4sin == π'578595.855.130.571.5rad ==⨯=•∴ 12.14'5785tan 5.1tan ==o R S l。
中职数学基础模块上册《弧度制》word教案

教案名称:中职数学基础模块上册《弧度制》word教案课时安排:2课时教学目标:1. 理解弧度制的概念和意义。
2. 掌握弧度制与角度制的转换方法。
3. 能够运用弧度制进行简单的三角函数计算。
教学重点:弧度制的概念和意义,弧度制与角度制的转换方法。
教学难点:弧度制的理解和运用。
教学准备:教师准备PPT和教学素材。
教学过程:第一课时一、导入(5分钟)1. 复习角度制的概念和转换方法。
2. 提问:为什么我们需要引入弧度制?二、新课讲解(15分钟)1. 讲解弧度制的概念:以半圆的弧长作为角度的度量单位。
2. 讲解弧度制与角度制的转换方法:π弧度等于180度。
3. 举例说明弧度制的运用:计算三角函数值。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固弧度制的理解和运用。
2. 教师对学生的练习进行指导和讲解。
四、总结(5分钟)1. 回顾本节课的内容,让学生加深对弧度制的理解。
2. 提醒学生注意弧度制与角度制的区别和转换方法。
第二课时一、复习(5分钟)1. 复习上节课的内容,提问学生对弧度制的理解和运用。
2. 复习弧度制与角度制的转换方法。
二、深入学习(15分钟)1. 讲解弧度制在三角函数计算中的应用。
2. 举例说明弧度制在解决实际问题中的应用。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固弧度制的理解和运用。
2. 教师对学生的练习进行指导和讲解。
四、拓展(10分钟)1. 引导学生思考弧度制在其他领域的应用。
2. 让学生举例说明弧度制在实际问题中的应用。
五、总结(5分钟)1. 回顾本节课的内容,让学生加深对弧度制的理解。
2. 提醒学生注意弧度制与角度制的区别和转换方法。
教学评价:通过课堂练习和课后作业的完成情况,评价学生对弧度制的理解和运用能力。
观察学生在课堂上的参与度和提问回答情况,了解学生的学习效果。
教案名称:中职数学基础模块上册《弧度制》word教案课时安排:2课时教学目标:1. 理解弧度制的概念和意义。
弧度制说课稿范本(通用5篇)

弧度制说课稿弧度制说课稿范本(通用5篇)作为一位不辞辛劳的人民教师,往往需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。
那么什么样的说课稿才是好的呢?以下是小编收集整理的弧度制说课稿范本(通用5篇),欢迎阅读与收藏。
弧度制说课稿1一、教材的地位和作用弧度制是学习高中数学三角函数的基础,学习好弧度制可以更好地学习后面关于三角函数、解三角形等内容、本节课是人教版普通高中课程标准实验教科书A版必修四第一章《三角函数》中第一节的第二课时内容,主要学习的是弧度制、它是本章的重要基础知识,主要体现在一下几个方面:第一,在教材结构上,本节为后面内容的学习做好了铺垫、之前的学习已经让学生了解了任意角和角度制,而对弧度制的概念却一无所知,然而在研究三角函数的时候大多都是用弧度制,只要学生学好了这一节,就能更好地学习后面的知识、第二,在教学内容上,弧度制是一个全新的研究角的单位,利用类比的方法让学生理解数学研究的互通性、教学目标1、知识与技能:(1)理解并掌握弧度制的定义;(2)掌握并运用弧度制表示的弧长公式、扇形面积公式;(3)熟练地进行角度制与弧度制的换算;(4)理解角的集合与实数集R之间建立的一一对应关系;(5)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系、2、过程与方法:创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性、根据弧度制的定义推导并运用弧长公式和扇形面积公式、以具体的实例学习角度制与弧度制的互化,能正确使用计算器、3、情感态度和价值观:通过本节的学习,使同学们掌握另一种度量角的单位制———弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系、角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备、(三)重点与难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制的互化换算;弧长和面积公式及应用、难点:理解弧度制定义,弧度制的运用、由于之前学生对于用角度制来度量角的大小的方法已经根深蒂固,学生很难接受一个新的度量方法,所以我认为对弧度制定义的理解和弧度制的运用时教学的难点二、说教法为了使学生更主动地参加到课堂教学中,激发学生主动学习弧度制的内容,充分调动学生学习的主动性、积极性,这是本节课的教学原则、根据这样的原则及所要完成的教学目标,我采用如下的教学方法和教学手段:1、教学方法:我采用的是引导发现法、探索讨论法、(1)引导发现法:举出实例,多个标量的不同的度量方法,引导学生思考,可能角也有别的度量方法、(2)探索讨论法:介绍弧度制后,和学生一起讨论,探讨弧度制与角度制的关系,以及弧长公式和面积公式的推导方法、2、教学手段:大部分文字概念的部分用ppt和几何画板展现出来,而探究探讨的部分,我会用粉笔在黑板上作出指导、三、说学法新课标的理念倡导“以学生为主体”,强调“以学生发展为核心”、因此本节课给学生提供以下4种机会:1、提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳、2、提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题、3、提供表达、交流的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说、4、提供成功的机会:通过学生自己推导、动手探究,肯定学生探究过程,积极引导学生,赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣、四、说教学程序设计1、引出弧度制在讲到弧度制之前,先讲几个可以用多种度量制度量的例子,说明一个量可以用不同的度量制来度量,度量制不同,度量的数值不同,度量制间可以转化、引出角的另一种度量方式——弧度制、设计意图从以前学习的例子类比,让学生了解数学研究的互通性,激发学生的学习欲、2、认识弧度制提出问题:一定大小的圆心角?所对应的弧长与半径的比值是怎样的数值,它与半径大小有关吗?在学生思考之后再和学生一起探究,利用?与圆周角的比例求出弧长,再求出比值,发现一定大小的圆心角?所对应的弧长与半径的比值是唯一确定的,与半径大小无关,即圆心角?所对应的弧长与半径的比值只与角的大小有关,与半径大小无关、所以得出结论,我们可以用这个量来度量角的大小、设计意图让学生在探究的过程中认识弧度制,不仅可以加强学生的探索欲,集中上课注意力,还能提高学生主动思考的能力、3、弧度制的定义提出弧度制的定义,即把等于半径长的圆弧所对应的圆心角叫做1弧度的角,用几何画板在圆里展示出一弧度的角,然后再展示两弧度的角和三弧度的角、再提出问题:若弧是一个半圆,则其圆心角的弧度数是多少?若弧是一个整圆,其圆心角的弧度数是多少?设计意图让学生在心中对弧度制有个明确的定义,这里面引出本节课的主要内容弧度制,又承上启下,总结前面对这种新的度量的认识,又为后面探究弧度制做好了铺垫、4、角度制和弧度制的关系探究弧度制与角度值的换算,在几何画板中画出坐标轴上半径为r 的圆,再对特殊弧长的圆心角分别是多少作出表格,其中包括往不同方向旋转所得的角、再让学生思考弧度为l的圆弧所对应的圆心角的用角度制如何表示,用弧度制又该如何表示、得出角度制和弧度制互相转化的公式??l,并得出一度的角用弧度制度量得到的是多少,一弧度的角用角度r制得到的又是多少,再对前面的表格进行检查验算、然后我会再出几个弧度制和角度制相互转换的题目并列出表格,让学生思考一些常见角在弧度制下的值、指出在今后的学习中弧度制的单位rad可以不用写,只要写弧度数就可以了,在几何画板中展示出,在弧度制下,每一个角都有唯一的实数与之对应,反过来每个实数都有一个角与之对应、设计意图通过列表,让学生认识到弧度制和角度制之间的是存在一种关系的,通过类比,发现弧度制与角度制就想“克”与“斤”一样,他们之间有一个量的转化,并激发学生探索了解这个量到底是什么,探究之后通过整理,让学生了解这之间的换算关系,并通过简单的题目和列表,让学生脑海中的这种换算关系得到升华、5、数学应用证明课本中例3的三个题目,先让学生思考,并让学生思考用与书上不同的方法进行证明、再让学生用计算器计算例4、设计意图例3中三个公式在第一节中都是非常重要的,它是弧度制学习中的重要产物,学生在证明几个题目后会发现利用弧度制,求扇形面积和弧长可以更加简单和方便,这样不仅可以激发学生的学习热情还可以让升华整节课的内容、弧度制说课稿2各位老师:大家好,今天我说课的课题是《弧度制说课稿》下面我将从(1)教材(2)教法(3)学法(4)教学过程(5)教学反思。
任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。
2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。
弧度制教案及教学设计

1.1.2 弧度制一、教材分析1、本节内容在教材中的地位和作用:2、教材地位与作用:本节课是普通高中实验教科书人教A版必修4第一章第一单元第二节。
本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”?并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。
通过本节弧度制的学习,我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。
另外弧度制为今后学习三角函数带来很大方便。
2、??教学目标3、??教学中的重点和难点教学重点?:理解弧度的意义,能正确地进行角度制与弧度制的换算。
教学难点?:弧度制的概念与角度的换算。
二、教学设计思想教材遵循了由浅入深、循序渐进的原则.从学生熟悉的基本单位转换入手,体会不同的单位制能给解决问题带来方便,引导学习去思考寻找另一种的单位制度量角。
通过类比引出弧度制,关键弄清1弧度的定义,然后通过探索得到弧度数绝对值公式并得出角度和弧度的换算方法。
在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性。
这样可以尽量自然的引入弧度制,并让学生在探索的过程中,更好的形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础。
三、教法分析本节课我采用引导发现式的教学方法。
通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、自主探究来达到对知识的发现和接受。
四、教学过程五、教学流程六、教学反思本节课,学生能够在老师的引导下主动学习,基本掌握了弧度制与角度制之间的转换,完成了课堂教学。
课堂气氛比较活跃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 弧度制
一、学习重点:弧度制概念的理解,弧度与
角度的互化;
学习难点:弧度制的建立与应用。
二、自主探究:
1、1°的角是如何定义的?弧长公式是什么?在半径给定的圆中,弧长与圆心角有什么关系? 周角的
360
1规定为1度的角
弧长公式r n l 180
π=
在半径给定的圆中,弧长与圆心角一 一对应
【探究练习】圆半径r 分别为1,2,3,分别计算30°、60°的圆心角对应的弧长l ,再计算弧长与半径的比。
你能得到什么结论? 结论:圆心角不变,则比值不变
2、什么是单位圆?
在直角坐标系中,以原点为圆心,以单位长为半径的圆
3、1弧度角的定义?什么是弧度制?
长度等于半径长的弧所对的圆心角,叫做1弧度的角.记作1rad,或1弧度,或1(单位可以省去不写)
以弧度作为单位来度量角的单位制,叫做弧度制
4、角度制与弧度制如何换算? 360︒=2π rad ∴180︒=π rad
三、合作探究:
1、1弧度的角与所取圆半径大小有关系吗?试说明理由。
无关。
弧度是弧长与半径的比值,只与角的大小有关。
2、平角、周角的弧度数怎样计算? 1个周角=360°=
r
π2r ,所以,
360°=2πrad ,
由此可以得到180°=πrad
3、正角、负角、零角的弧度数呢?
正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0 4、角α的弧度数的绝对值与弧长、半径的关系?
圆心角α的弧度数的绝对值|α|=
r
l ,其中
l 是以角α作为圆心角时所对弧的长,r 是
圆的半径;由此得到一个新的弧长计算公式:l =|α|r 5、角度制与弧度制有什么关系?各自有何特点?你认为为什么要用弧度制来度量角? 角度制与弧度制都是度量角的单位制。
角度制是用角量角,是六十进制。
弧度制是用半径量弧长,再用弧长刻画角,即用单位长度度量角。
是十进制。
用弧度制刻画角使角的集合与实数集R 之间建立起一一对应关系,为下阶段在平面直角坐标系中研究角打下基础。
【思考】还学过那些量可以有不同的度量方法?
四、课堂练习:
1、将下列弧度、角度互化;
=5
3π ;
=4
5π ;=-
8
7π
45o = ;18o = ;-105o = .
2、用弧度制写出终边落在x 轴与第一三象限角平分线之间的角的集合。
{β| k π<β<π/4+k π,k∈Z }
3、试用弧度制证明扇形面积公式S =
2
1l r ,
其中l 是扇形的弧长,r 是圆的半径。
证明:圆心角为1rad 的扇形面积为:2
21
R
ππ
弧长为l 的扇形圆心角为rad R
l
∴lR R
R l S 2
1212
=
⋅⋅=
ππ
这比之前扇形面积公式 360
2
R n S π=扇
要简单
作业答案
(1)D (2)B (3)C (4)B (5)B 6、2
7、1) {β|2k π-2π/3 <β<π/6+2k π,k∈Z } 2) {β|k π+π/4 <β<π+k π,k∈Z } 3) {β|2 k π <β<π/3+2k π或 2 k π+2π/3 <β<π+2k π,k∈Z }
8、解:设扇形的半径为r ,则
2
1(202)102
S r r r r =
-=-+
当5r =时,S 取最大值,此时
10,2l l r α==
=
9、10π 12πm
10、象限依次为一、一、三、一、三、三。