1 因数和倍数
因数和倍数口诀

因数和倍数口诀
因数是可以整除一个数的正整数,而倍数则是指一个数的倍数。
在数学中,我们经常需要求一个数的因数或倍数,那么有没有什么好的口诀可以帮助我们快速计算呢?下面就为大家介绍一些实用的因
数和倍数口诀。
求因数的口诀:
1. 所有数都有1和自身作为因数。
2. 若一个数是偶数,它还有2作为因数。
3. 若一个数末位是0或5,它还有5作为因数。
4. 若一个数各位数字之和能被3整除,它还有3作为因数。
5. 若一个数末位是0,它还有10作为因数。
例如,求60的因数:60可以被2整除,所以它有2作为因数。
60的各位数字之和为6+0=6,6能被3整除,所以它还有3作为因数。
60的末位是0,所以它还有5和10作为因数。
因此,60的因数为1、2、3、4、5、6、10、12、15、20、30和60。
求倍数的口诀:
1. 一个数的倍数有无限个,且每个倍数都是这个数的整数倍。
2. 若一个数能被2整除,它的倍数也能被2整除。
3. 若一个数末位是0或5,它的倍数也能被5整除。
4. 若一个数各位数字之和能被3整除,它的倍数也能被3整除。
5. 若一个数末位是0,它的倍数也能被10整除。
例如,求8的倍数:8的倍数可以写成8、16、24、32、40、48、
56、64、72、80等等,也可以写成8×1、8×2、8×3、8×4、8×5、8×6、8×7、8×8、8×9、8×10等等,其中每个倍数都是8的整数倍。
倍数与因数知识点

倍数与因数知识点两个正整数相乘,那么这两个数都叫做积的因数,那么因数和倍数之间的区分是什么呢?下面是为大家整理的关于〔小学〕〔数学〕中倍数与因数相关的学问点之间归纳,盼望对你们有关怀。
倍数与因数学问点整理一:一、因数与倍数的意义1、假如自然数乘自然数b等于c,即b=c,我们就说和b 是c的因数,c是和b的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
倍数和因数是互相依存的。
0是任何整数的倍数。
3、怎样找一个数的因数?就是从1和它本身开始。
一组一组从小到大的相乘,积要是这个数。
4、怎样确定一个数有几个因数?从1和它本身开始。
一组一组从小到大的相乘,相同的只算一个。
二、2、5、3的倍数的特征1、2的倍数特征个位上是0、2、4、6、8的数都是2的倍数。
2、5的倍数的特征个位上是0或5的数是5的倍数。
3、3的倍数的特征各位上的数字的和是3的倍数,这个数就是3的倍数。
三、偶数与奇数自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
依据这个定义,我们可以说自然数分为偶数和奇数两类。
四、质数和合数1、质数一个数,假如只有1和他本身两个因数,这样的数叫做质数(或素数)。
如2、3、5、7都是质数。
最小的质数是2,除2外,全部的质数都是奇数。
2、合数一个数,假如除了1和它本身还有别的因数(合数的因数至少有3个),这样的数叫做合数。
最小的合数是4。
3、1既不是质数,也不是合数。
所以我们可以说质数和合数都是自然数,但不能说自然数分为质数和合数,只能说它分为质数、合数、1和0。
4、在自然数中,最小的奇数是(1),最小的质数是(2),最小的合数是(4)。
5、质数只有(2)个因数,它们分别是(1)和(它本身)。
一个合数至少有(3)个因数,(1)既不是质数,也不是合数。
自然数中,既是质数又是偶数的是(2)。
因数倍数、奇数偶数、质数合数概念

倍数和因数1、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:一前一后写,成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数(一般不考虑0)。
(4)2、3、5的倍数特征2的倍数:个位上是0,2,4,6,8的数都是2的倍数。
3的倍数:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5的倍数:个位上是0或5的数,是5的倍数。
2和5的倍数:个位上是0的数,既是2的倍数又是5的倍数能同时被2、3、5整除(也就是2、3、5的倍数)的最小的两位数是30,最大的两位数是90,最小的三位数是120。
奇数和偶数2、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
自然数中最小的偶数是0,最小的奇数是1。
关系:奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数无论多少个偶数相加,结果都是偶数奇数个奇数相加,结果是奇数偶数个奇数相加,结果是偶数合数和质数(素数)3、质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、100以内的质数口诀2、3、5、7和11,13后面是17,19、23、29,(十九、二三、二十九)31、37、41,(三一、三七、四十一)43、47、53,(四三、四七、五十三)59、61、67,(五九、六一、六十七)71、73、79,(七一、七三、七十九)83、89、97。
因数和倍数的认识

因数和倍数的认识1. 什么是因数和倍数?在数学中,我们经常会遇到因数和倍数这两个概念。
它们是描述整数之间关系的重要概念。
因数指的是能够整除一个数的所有正整数。
例如,6的因数有1、2、3和6本身。
我们可以用符号a|b来表示a是b的因子。
倍数指的是一个数乘以另一个整数所得到的结果。
例如,2是4的倍数,因为2×2=4。
我们可以用符号b=ka来表示b是a的倍数。
2. 因子和倍数之间的关系因子和倍数之间存在着紧密的关系。
如果a是b的因子,那么b一定是a的倍数。
换句话说,如果一个数字能够整除另一个数字,则后者一定能被前者整除。
举个例子来说明这个关系:考虑数字12和6。
12可以被6整除,所以6是12的因子;而12本身也是6的倍数,因为12=6×2。
3. 如何确定一个数字的因子?确定一个数字的因子非常简单。
我们只需要从1开始逐个尝试是否能够整除该数字即可。
如果能够整除,则该数是因子之一。
以12为例,我们可以从1开始逐个尝试:1不能整除12,2可以整除12,所以2是12的因子。
同理,3也是12的因子。
继续尝试4、5、6、7、8、9、10、11,发现只有2和3能够整除12。
最后得出结论:12的因子有1、2、3和12本身。
4. 如何确定一个数字的倍数?确定一个数字的倍数也非常简单。
我们只需要将该数字乘以任意一个整数即可得到它的倍数。
以6为例,我们可以将6分别乘以1, 2, 3, 4, 5等来得到它的倍数:6、12、18、24等等。
这些都是6的倍数。
5. 因子和倍数在实际问题中的应用因子和倍数在实际问题中有着广泛的应用。
a. 最大公约数和最小公倍数最大公约数(Greatest Common Divisor,简称GCD)指的是两个或多个整数共有的最大因子。
最小公倍数(Least Common Multiple,简称LCM)指的是两个或多个整数共有的最小倍数。
求解最大公约数和最小公倍数是因子和倍数概念在实际问题中的重要应用之一。
沪教版6年级数学1.1:因数与倍数(讲义)

第2讲:因数与倍数(教案)一:因数和倍数上一节课我们已经学过了有关整数和整除的相关知识,我们通过下面的一个例题来回顾一下这部分知识:例题:计算下列各式,判断12能被哪些数整除?12=÷3÷21212==÷112=12÷6÷512==÷4÷812÷912=12==÷7÷121212=12==÷10÷11通过以上的计算,我们可以发现,12可以被1,2,3,4,6,12整除,这时我们就说1,2,3,4,6,12是12的因数;12则是这些数的倍数。
因数和倍数:如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数或约数。
练习1:分别写出16的所有因数,它有多少个,最大的和最小的是几?注:通过这个题我们可以看出,一个整数的因数中最大的因数是它本身,最小的因数是1.练习2:写出2的倍数,你能写出多少个?注:通过这个题我们可以看出,一个整数的倍数有无数个,并且没有最大的倍数,只有最小的倍数,最小的倍数就是它本身。
练习3:对下列各数进行分类。
2,3,4,5,6,12,15,18,20,24,30,6060的因数:_______________________________________________;6的倍数:________________________________________________;练习4:分别写出下列四个数的所有因数,再分别写出这四个数的倍数(只需要从小到大写出3个即可。
)12,18,30,36四:能被2整除的数例题1:首先写出2的倍数,并观察它们具有怎样的特征?通过计算和观察,我们可以发现个位上是0,2,4,6,8的整数都是2的倍数,也就是说凡是个位上是0,2,4,6,8的整数都能被2整除。
剩下的所有整数都是不能被2整除的数。
这样按照能否被2整除,可将正整数分为两类:偶数和奇数。
因数倍数知识点

1、因数:因数的个数是有限的,最小的因数是1,最大的因数是它本身。
倍数:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
在讨论因数和倍数时,一般不讨论0.2、2的倍数特点:末尾是0、2、4、6、8。
3的倍数特点:各个数位上的数之和是3的倍数。
5的倍数特点:末尾是0、5。
既是2的倍数又是5的倍数特点:末尾是0。
3、奇数:不是2的倍数,末尾是1、3、5、7、9。
偶数:是2的倍数,末尾是0、2、4、6、8。
最小的奇数是1;最小的偶数是0;最小的非零偶数是2.奇数+奇数=偶数;偶数+偶数=偶数;奇数-奇数=偶数;偶数-偶数=偶数。
奇数-偶数=奇数;奇数+偶数=奇数。
两个相同类型的数加减结果是偶数,两个不同类型的数加减结果是奇数。
4、质数:只有1和它本身两个因数的数,叫作质数(素数)。
合数:除了1和它本身还有其他因数的数,叫作合数。
最小的质数是2;最小的合数是4;1既不是质数又不是合数。
质数有两个因数;合数有至少3个因数。
5、分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
6、除了2以外的偶数都是合数。
7、0是最小的自然数。
8、末尾是0:除了零都是合数;末尾是1:21,51,81,91,111,121.末尾是2:除了2都是合数;末尾是3: 33,63,93,123是合数。
末尾是4:都是合数。
末尾是5:除了5都是合数。
末尾是6:都是合数。
末尾是7: 27、57、77、87末尾是8:都是合数。
末尾是9: 39、49、69、99、169。
9、三角形面积=底×高÷2 平行四边形面积=底×高S=ah÷2 S=ah梯形面积=(上底+下底)×高÷2S=(a+b)×h÷2组合图形面积的求解方法:分割法、添补法。
10、把一个平行四边形沿着(高)分割成两部分,通过(割补法)可以把这两部分拼成一个(长方形),它的(长)等于平行四边形的(底),它的(宽)等于平行四边形的(高)。
数的因数与倍数关系

数的因数与倍数关系数学中的因数和倍数是辅助我们进行数的运算和分析的重要概念。
理解数的因数和倍数关系对于解题和数学思维的培养都具有重要的意义。
本文将从数的因数和倍数的定义入手,探讨它们之间的关系和一些实际问题的应用。
一、数的因数1. 定义:对于任意一个数a,如果存在一个数b,使得b能够整除a,那么称b为a的因数,而称a为b的倍数。
换言之,如果a能被b整除,则b是a的因数。
2. 性质:每个数都有自身和1作为因数。
此外,对于任意一个因数c,存在另外一个因数d,使得cd=a。
举个例子,对于数6来说,因数有1、2、3和6,其中2和3乘积等于6。
二、数的倍数1. 定义:对于任意一个数a,如果存在一个数b,使得a能够整除b,那么称b为a的倍数,而称a为b的因数。
换言之,如果b能被a整除,则b是a的倍数。
2. 性质:每个数都是自身的倍数。
此外,对于任意一个倍数d,存在另外一个倍数c,使得cd=a。
举个例子,对于数3来说,倍数有3、6、9等,其中2和3的乘积等于6。
三、因数和倍数的关系1. 本质区别:因数和倍数是相对的概念,因数是对一个数的整除进行描述,倍数是对一个数的被整除进行描述。
因数和倍数是互逆的。
2. 例子分析:以数12为例,它的因数有1、2、3、4、6和12,而它的倍数有12、24、36、48等。
可以观察到,因数都是小于等于12的数,而倍数都是大于等于12的数。
因数和倍数之间存在着明显的对应关系。
四、实际问题应用1. 寻找因数:在质因数分解和求最大公因数等问题中,我们需要运用因数的概念来进行计算。
比如,对于数24来说,我们可以通过寻找它的因数来进行质因数分解:24 = 2 × 2 × 2 × 3,即24可以分解为2的三次幂和3的一次幂的乘积。
2. 判断倍数:在判断一个数是否是另一个数的倍数的问题中,我们需要运用倍数的概念来进行判断。
比如,判断一个数是否能被2整除,只需要判断该数的个位数是否为0、2、4、6、8即可,如果是,则它是2的倍数。
因数与倍数知识点归纳总结

因数与倍数知识点归纳总结1.引言1.1 概述概述部分的内容可以如下所示:引言部分是对文章主题的整体介绍,本文主题为因数与倍数的知识点归纳总结。
在数学中,因数与倍数是基本且重要的概念,涉及到数的整除性质以及数的倍增关系。
本文旨在对因数与倍数的定义、性质以及它们之间的关系进行详细总结,并探讨它们在实际生活中的应用场景和意义。
在日常生活中,我们常常会遇到各种与因数与倍数相关的问题,比如求一个数的所有因数、判断两个数是否互为倍数,以及在解决实际问题中如何利用因数与倍数来进行计算等等。
因此,了解因数与倍数的性质和用途对我们提高数学思维能力,解决实际问题有着重要的意义。
在本文的正文部分,将详细介绍因数和倍数的定义与性质。
首先,我们将介绍因数的定义与性质,包括最大公因数、素数因子分解和因子个数等内容。
然后,我们将着重介绍倍数的定义与性质,包括最小公倍数、倍增规律和倍数之间的关系等内容。
最后,在结论部分,将对因数与倍数的关系进行总结,并探讨其在实际生活中的应用场景和意义。
通过对因数与倍数的深入了解,我们可以更好地理解数的整除性质和倍增关系,从而在解决实际问题时更加灵活和高效。
总而言之,本文将对因数与倍数的知识点进行全面归纳总结,从概念的定义与性质到关系的探讨与应用场景的讨论,旨在帮助读者深入理解并灵活运用因数与倍数的相关知识,提高数学思维能力,解决实际问题。
文章结构部分的内容可以如下所示:1.2 文章结构本篇长文的主要结构分为引言、正文和结论三个部分。
引言部分旨在引出本文要总结归纳的知识点——因数与倍数,并介绍本文的大致结构。
首先进行概述,简要介绍因数与倍数的基本概念以及其在数学中的重要性。
然后介绍文章的结构,即引言、正文和结论三个部分,以及各部分的内容概要。
正文部分是本文的核心部分,将详细阐述因数与倍数的定义与性质。
其中,2.1节将重点介绍因数的定义及其性质,解释什么是因数,因数与被除数之间的关系,并探讨因数与质因数、倍数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 因数和倍数
一、教学内容
教材第88-91页,因数与倍数。
二、教学提示
在这节课先揭示整数的概念,再利用整数认识因数和倍数,而是让学生根据实际情境列出乘法算式,利用乘法来认识倍数与因数。
在找一个数的倍数时,也是让学生运用除法的知识,探索找一个数的倍数的方法。
教材提出“可以怎样排队”的问题。
利用整数乘法认识倍数与因数,以整数乘法算式为例说明倍数与因数的含义,让学生通过小组合作,探究不同的解题方法,指导学生利用原有的乘除法知识,探究找一个倍数的方法,总结出一个数的倍数最小的是本身,没有最大的倍数,并提醒学生,在探究因数和倍数的时候,一般不讨论0。
引导学生体会一般可以用乘法算式来找一个数的倍数,要注意引导学生的有序思考,并逐步让学生领会到一个数的倍数的个数是无限的。
三、教学目标
知识与能力
结合具体情境,利用乘法认识倍数和因数。
过程与方法
探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
情感、态度与价值观
培养学生综合应用的意识和能力。
四、重点、难点
重点、难点
了解倍数和因数的意义。
五、教学准备
教师准备:
多媒体课件
学生准备:
练习本
六、教学过程
(一)新课导入:创设情境
1、谈话引人
师:同学们喜欢开运动会吗?运动会上的团体操表演非常好看,那么接下来我们一起来看看运动会上团体操排练时,队型排列出现了一些问题,想让同学们帮忙解决这个问题。
2、出示情境图
(1)学生活动:仔细观察情境图,获取图中信息。
全班进行交流
(2)学生活动:分一分。
你能提出什么问题?
学生先单独活动,教师帮助有困难的学生。
全班进行交流
(3)学生汇报,提出问题。
教师引导学生对队形如何排列进行提问。
设计意图:通过讨论学生感兴趣的话题引入本课的例题,吸引学生的注意力,调动学生的学习兴趣。
(二)探究新知:
1.解决:可以怎样排队
2.学生列算式说明倍数和因数的含义
2 x 6 = 12
3 x
4 = 12 1 x 12 = 12
(1)说明含义,2和6是12的因数;12是2和6的倍数。
需进一步使学生明确,2是12的因数,6也是12的因数;12是2和6的倍数。
关于倍数和因数这种相互依存的关系,学生第一次接触,教师要让学生多说一说,并通过一定的例证进一步说明。
(2)看其余两个乘法算式,说出其中的因数和倍数关系。
(3)练习:说一说。
第90页第一题先自己试说谁是谁的因数,谁是谁的倍数,同桌之间交流后,再进行全班交流。
3.解决:你能找出24的因数吗?
(1)小组合作探究
(2)小组汇报。
先说一说24的因数,再说出找出24的因数的方法。
(24)x (1)=24 24和1是24的因数
(3)x (8)=24 3和8也是24的因数
……
24÷(1)=(24)24和1是24的因数
……
(3)总结24的因数有:______________________________
4.解决:4的倍数有哪些?
(1)小组合作探究。
教师引导学生通过找因数的方法找出4的倍数。
(2)小组汇报。
先说一说4的倍数,再说说找出4的倍数的方法。
预设:
4x1=(4)(4)÷4=1
4x2=(8)(8)÷4=2
4x3=(12)(12)÷4=3
……
4的倍数有:4、8、12、16……
5.交流:你发现了什么?
引导学生发现一个数的倍数的个数是无限的,最小的是它本身,没有最大的倍数。
说明研究倍数和因数的范围。
教师根据课堂生成,相机给出“在研究因数和倍数的时候,一般不考虑0”这个规定。
设计意图:利用学生已有知识经验,探究新知让学生多说,多练,才能使知识掌握更牢固,学生也能体会到数学知识的应用价值。
(三)巩固新知:
1.自主练习,第一题
学生独立理解题意后,现自己找出谁是谁的因数,谁是谁的倍数,小组内交流自己找的方法。
全班交流时让学生在比较后得出用乘法算式的方法来找一个数的倍数比较方便快捷。
同时使学生领悟到:这个数是谁的倍数,那么谁同时也是这个数的因数。
2.试一试:你能找出7的倍数吗?学生体会到一个数的倍数是无限的
同桌练习:你说我写。
在学生弄懂题目意思后,再开展活动。
活动后让中后生进行全班交流。
3.自主练习第五题:分别找出4和5的倍数。
(1)自己找,比比谁找得快。
(2)组织交流,比比谁的方法好,比比谁找的对。
4.独立联系:写出100以内全部6的倍数。
交流时,体会怎样做到不重复,不遗漏,进一步明确方法。
5.讨论:根据除法算式如何人说倍数和因数。
例如15÷3=5
6.了解完全数。
学生阅读教材91页“你知道吗”,教师作必要讲解。
设计意图:通过当堂练习,学生能巩固这节课所学的知识,老师能了解学生的掌握情况,培养了学生独立解决问题的能力。
(四)达标反馈
1.根据算式25×4=100,()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。
2.判断:15的倍数有15、30、45。
()
3.找一找.
60 18 680 3 6 12 9 24 6 36
12的倍数: 12的因数:
4.写出24、36的因数。
(五)课堂小结
师:通过这节课的学习说一说自己有哪些收获。
(六)布置作业
1.写出100以内所有9的倍数()。
2.42的因数有()个.
A.6
B. 7
C. 8
3.已知42=6×7,6和7都是42的()
A.素因数
B.合数
C.因数
D.倍数
4.()是任何自然数的因数.
A.0
B.1
C.2
5.找出30的所有的因数.
(1)按从小到大的顺序写:
(2)一对一对地写:.
6.18的全部因数:
7. 17的倍数:
8.用边长8分米的小正方形铺成一个大的正方形,正方形的边长最短是多少分米?
板书设计
因数和倍数
(24)x (1)=24 24和1是24的因数
(3)x (8)=24 3和8也是24的因数
……
24÷(1)=(24)24和1是24的因数
……
教学反思:因数与倍数”这节内容,传统教材是按数学知识的逻辑系统安排的,在除法和整除的基础上,由整除直接演绎推理出来的。
这种概念的揭示从抽象到抽象,没有学生经历的过程,学生获得的概念是刻板的、冰冷的。
而本环节设计旨在让学生借助表象进行操作和想像活动,自主体验数与形的结合以及其中的“因倍关系”,进而生成因数和倍数的意义。
这种意义的建构是基于学生原有经验之上的,是学生自主操作、积极思考的结果。