湘教版八年级数学(下)知识点
湘教版八年级数学下册知识点总结

湘教版八年级数学下册知识点总结湘教版初二数学下册(义务教育教科书)第1章直角三角形1.1 直角三角形的性质和判定(I)1.2 直角三角形的性质和判定(II)1.3 直角三角形全等的判定1.4 角平分线的性质本章复习与测试第2章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形本章复习与测试第3章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和平移的坐标表示本章复习与测试第4章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图象4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用本章复习与测试第5章数据的频数分布5.1 频数与频率5.2 频数直方图本章复习与测试期末考点第一章直角三角形一、已学须用知识点回顾知识点1、等腰三角形的性质(bjvdhuibf )(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴. (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合. (3)等边对等角:等腰三角形的两个底角相等. 提示:“三线合一”是指对应的角平分线、中线、高线在画图时实际上只是一条线段,即是一条线段既是顶角的平分线,又是底边上的中线,还是底边上的高,不能混淆.三角形的高可能在三角形的内部,也有可能在三角形的外部,还有可能和三角形的边重合。
知识点2、等腰三角形的判定定理1、定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边). 2、提示:(1)定理题设中的两个角必须是同一个三角形中的两个内角,不能出现在两个三角形中;(2)结论中的两条边应是这两个内角的“对边”,这种对应关系不能混淆;(3)此定理的作用在于证明一个三角形为等腰三角形. 知识点3、等边三角形的性质与判定1、等边三角形的三个角都相等,并且每个角都等于60°.2、等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”.因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴. 3、有一个角是60°的等腰三角形是等边三角形.拓展:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.知识点4、等腰三角形性质的应用等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:(1) 等腰三角形两底角的平分线相等;(2)等腰三角形两腰上的中线相等; (3)等腰三角形两腰上的高相等;(4)等腰三角形底边上的中点到两腰的距离相等.知识点5、全等三角形的判定1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。
湘教版数学八年级下册《2.2.2平行四边形的判定定理》教学设计

湘教版数学八年级下册《2.2.2平行四边形的判定定理》教学设计一. 教材分析湘教版数学八年级下册《2.2.2平行四边形的判定定理》是学生在学习了四边形的概念、性质和四边形的不稳定性等知识的基础上进行学习的。
本节内容主要介绍了平行四边形的判定方法,通过判定定理的学习,使学生能更好地理解平行四边形的性质,提高解决几何问题的能力。
教材中给出了三种判定平行四边形的方法,并通过例题和练习题进行巩固。
二. 学情分析学生在学习本节内容时,已具备了基本的几何知识,对四边形的概念和性质有一定的了解。
但学生在解决几何问题时,往往对平行四边形的性质理解不深,导致解题困难。
因此,在教学过程中,教师需要引导学生深入理解平行四边形的性质,并通过大量练习,提高学生解决几何问题的能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,能运用判定定理解决几何问题。
2.过程与方法:通过观察、操作、探究等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:平行四边形的判定方法。
2.难点:如何运用判定定理解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的判定定理,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究平行四边形的性质,培养学生的几何思维能力。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。
4.反馈评价法:及时给予学生反馈,提高学生的学习效果。
六. 教学准备1.教学课件:制作包含图片、动画和例题的教学课件,帮助学生更好地理解平行四边形的判定定理。
2.练习题:准备一定数量的练习题,用于巩固学生对平行四边形判定定理的掌握。
3.几何模型:准备一些几何模型,如平行四边形模型,让学生直观地感受平行四边形的性质。
七. 教学过程1.导入(5分钟)利用生活实例引入平行四边形的判定定理,如自行车架、门窗等,引导学生关注平行四边形的性质。
八年级数学下册12直角三角形的性质和判定(Ⅱ)《勾股定理》知识点解读素材湘教版.

《勾股定理》知识点解读知识点1:勾股定理(重点)★勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222a b c +=。
该定理反映了直角三角形的三边关系。
(古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”) ■温馨提示①勾股定理应用的前提是这个三角形必须是直角三角形,解题时,只能是在同一个直角三角形中时,才能利用它求第三边边长。
例:如图,在Rt△ABC 中,∠C=90°,AC=5,BC=12,求AB 的长。
解:在Rt△ABC 中,根据勾股定理,得AB 2=AC 2+BC 2=52+122=169,所以AB=13.②在式子222a b c +=中,a 代表直角三角形的两条直角边,c 代表斜边,它们之间的关系不能弄错。
应用勾股定理时,要注意确定哪条边是直角三角形的最长边,也就是斜边。
在Rt△ABC 中,斜边未必一定是c ,当∠A=90°时,222=+a b c ;当∠C=90°时,222=+b a c . 例:在Rt△ABC 中,AC=3,BC=4,求AB 2的值。
解:当∠C=90°时,AB 2=AC 2+BC 2=32+42=25;当∠A=90°时,AB 2=BC 2-AC 2=42-32=7③遇到直角三角形中的线段求值问题,要首先想到勾股定理。
勾股定理把“数”与“形”有机地结合起来,把直角三角形这一“形”与三边关系这一“数”结合起来,是数形结合思想方法的典型。
④勾股定理的变式:在Rt△ABC 中,∠A,∠B,∠C 的对边分别为a ,b ,c ,则 222222222=()(),()(),c a b a c b c b c b b c a c a c a c a b +=-=+-=-=+-===,例:如图,已知等腰△ABC 的腰AB=AC=10 cm ,底边BC=12 cm ,AD 是∠BAC 的长是 cm.解析 ∵AB=AC,AD 是∠BAC 的平分线,2 ∴AD⊥BC,BD=CD=12BC=6(cm ) 在Rt△ABD 中,由勾股定理知8()cm ==答案 8 知识点2:勾股定理的验证(难点)★勾股定理的验证方法很多,可以用测量计算,可以用代数式的变形,可以用几何证明,也可以用面积(拼图)证明,其中拼图证明是最常见的一种方法。
八年级数学下册(湘教版)第3章 图形与坐标 小结与复习3

为
。
-1
y 4
3
●
A(x1,y) 2
A′
1
● -4 -3 -2 -1 0
-1
-2
●
B(x2,y)
A B′
B
●●
●
12345x
-3
1、如图,点A(1,0),B(4,0)则-4AB= 4-1=3
2、如图,点A′(-4,0),B ′ (2,0)-5 则A ′ B ′ =
2-(-4)=6
x轴上两点间距离:点A(x1,0),B( x2 ,0)
用坐标表示平移
知识框架
平
纵轴 y
y轴
面
3
(● 2,3)
直
2
角 坐
原点 1
x轴
标
-4 -3 -2 -1 0 1 2 3 x 横轴
系
-1
-2
1、横坐标刻画了点到原点(或y轴)的水平距离,横坐标 绝对值越大,则说明该点到原点-3(或y轴)越远。
2、纵坐标刻画了点到原点(或x-4轴)的竖直距离,纵坐标
绝对值越大,则说明该点到原点(或x轴)越远。即:纵坐 标越在大平,面说内有明公该共点原点位而置且越互相高垂,直纵的坐两条标数越轴小,构,成说了明平面该直点角位坐标置系.简 称越坐低标。系。
y
3
第二象限
2
(-,1 0 -1
第三象限
-2
(-, -)
-3
-4
12 3 x
第四象限 (+, -)
坐标系中的图形变换
坐标的变化
图象的变化
(x,y) (-x, y) (x,y) (x, -y) (x,y) (-x, -y) (x,y) (x+a,y+b)
湘教版数学八年级下册_《直角三角形的性质和判定》要点及典例分析

直角三角形的性质和判定
一、知识要点解析:
1.直角三角形的判定:
(1)定义:有一个角是直角的三角形是直角三角形.
(2)定理:有两个角互余的三角形是直角三角形.当然后面学了勾股定理后还可以运用勾股定理的逆定理进行判定.
注意:判定直角三角形要灵活运用定义和定理,根据具体题目具体分析.
2.直角三角形的性质:
(1)直角三角形的两个锐角互余。
(2)在直角三角形中,斜边上的中线等于斜边的一半.
二.典例分析
例1、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点. 如果M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请证明△OMN是直角三角形.
分析:要证明△OMN是直角三角形,只要证明∠MON=900即可.
证明:连接OA。
AN=BM,OA=OB,∠OAC=∠B=45°
△OAN≌△OBM,得ON=OM,∠AON=∠BOM
又∠AOM+∠BOM=90°
所以∠AON+∠AOM=90°,即∠MON=90°.
所以△OMN是直角三角形.
专项练习:
1、若一个三角形三内角之比为1:2:3,则该三角形一定是( )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、不能确定
2、已知直角三角形中30°角所对的直角边长是2cm,则斜边上的中线的长是()
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm
参考答案:
1.B
2.A。
湘教版数学八年级下册第一章《直角三角形》说课稿

湘教版数学八年级下册第一章《直角三角形》说课稿一. 教材分析湘教版数学八年级下册第一章《直角三角形》是学生在学习了平面几何基本概念和性质的基础上进行的一章教学。
本章主要通过探讨直角三角形的性质和应用,使学生进一步理解和掌握勾股定理,提高解决实际问题的能力。
本章的主要内容包括直角三角形的定义,性质,分类,直角三角形的边角关系,勾股定理的证明及其应用等。
二. 学情分析学生在学习本章之前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对直角三角形的性质和应用的理解不够深入,对勾股定理的证明和应用可能存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能:使学生理解和掌握直角三角形的定义和性质,能够熟练运用勾股定理解决实际问题。
2.过程与方法:通过观察,操作,探究等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:直角三角形的定义和性质,勾股定理的证明和应用。
2.教学难点:勾股定理的证明,直角三角形在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导发现法,合作交流法等,激发学生的学习兴趣,培养学生的自主学习能力。
2.教学手段:利用多媒体课件,几何画板等教学工具,直观展示直角三角形的性质和应用,提高教学效果。
六. 说教学过程1.导入:通过生活中的实例,引导学生认识直角三角形,激发学生的学习兴趣。
2.新课导入:介绍直角三角形的定义和性质,引导学生通过观察,操作,探究等方法,发现和证明勾股定理。
3.应用拓展:通过解决实际问题,引导学生运用勾股定理,巩固所学知识。
4.课堂小结:对本节课的主要内容进行总结,加深学生对知识的理解。
5.布置作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。
湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,
∴
DM=
1 2
BC.
在
Rt
△
BEC
中,∵
M
湘教版八年级数学下册_1.3 直角三角形全等的判定

1.3 直角三角形全等的判定
学习目标
1 课时讲解 2 课时流程
斜边、直角边定理 三角形全等的判定方法 用尺规作直角三角形
逐点 导讲练课堂 小结Βιβλιοθήκη 作业 提升感悟新知
知识点 1 斜边、直角边定理
知1-讲
定理: 斜边和一条直角边对应相等的两个直角三角形全等
(可以简写成“斜边、直角边”或“HL” ) .
判定两个直角三角形全等.
感悟新知
知3-练
解题秘方:紧扣尺规作直角三角形的基本步骤作图 .
解: 如图 1.3 - 5,△ ABC 即 为所求作的直角三角形 .
课堂小结
直角三角形 全等的判定
特殊 直角三角形 一般
HL
全等的判定
SAS ASA AAS SSS
可证两角的夹边对应相等 或一相等角的对边对应相 等
可证直角与已知锐角的夹 边对应相等或已知锐角(或 直角)的对边对应相等
感悟新知
斜边(H)
直角
三角 形
一直角边
(L)
HL 或 AAS
HL 或 ASA或 AAS 或 SAS
知2-讲
可证一条直角边对应相等 或一锐角对应相等
可证斜边对应相等或与已 知边相邻的锐角对应相等 或已知边所对的锐角对应 相等或另一直角边对应相 等
第三步:设法推导出所缺的条件; 第四步:整理书写证明过程 .
感悟新知
知识点 2 三角形全等的判定方法
判定两个三角形全等常用的思路方法如下表:
知2-讲
已知对应 可选择的 相等的元素 判定方法
需寻找的条件
锐角 三角
两边(SS)
形或
钝角 一边及其邻
三角 角( SA) 形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章直角三角形一、直角三角形的性质和判定1.直角三角形:有一个内角是直角的三角形。
三角形内角和等于180°。
三角形中线:连接三角形的一个顶点与它的对边中点的线段。
2.直角三角形的性质A.直角三角形的两个锐角互余。
B.直角三角形斜边上的中线等于斜边的一半。
C.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
D.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
3.直角三角形的判定A.有两个角互余的三角形是直角三角形。
B.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。
二、勾股定理1.勾股定理:直角三角形两直角边a,b的平方和,等于斜边的c的平方,即a2+b2=c2。
2.在直角三角形中,已知任意两条边长,可以根据勾股定理求出第三边的长。
3.如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
三、直角三角形全等的判定1.斜边和一条直角边对应相等的两个直角三角形全等(HL)。
2.直角三角形全等的条件(A表示对应角相等、S表示对应边相等)四、角平分线的性质1.角平分线上的点到角的两边的距离相等。
2.角的内部到角的两边距离相等的点在叫的平分线上。
第二章 四边形一、多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
A .组成多边形的各条线段叫做多边形的边。
B .每相邻两条边的公共端点叫做多边形的焦点。
C .连接不相邻两个顶点的线段叫做多边形的对角线。
D .相邻两边组成的角叫作多边形的内角,简称多边形的角。
2.多边形的内角和n 边形的内角和等于(n -2)*180°。
3.多边形的外角和A .多边形外角的定义:多边形的内角的一边与另一边的方向延长线所组成的角。
B .多边形外角和的定义:在多边形的每一个顶点处取一个外角,它们的和。
C .多边形外角和定理:任意多边形的外角和等于360°。
D .多边形外角和定理的证明:多边形的每个内角与跟它相邻的外角是邻补角,所以n 边形内角和加外角和等于n *180°,外角和等于n *180°-(n -2)*180°=360°。
4.正多边形A .在平面内,边相等、角也相等的多边形叫作正多边形。
○1正多边形必须满足:各边相等、各内角相等。
缺一不可。
○2各内角相等,所以每个内角为 (n−2)∗180°n○3各外角相等,外角为360°n ,每个内角为180°- 360°n 。
○4正多边形都是轴对称图形,正n 边形有n 条对称轴,当n 为偶数时,正n 边形既是轴对称图形也是中心对称图形。
二、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫作平行四边形。
用表示。
2.平行四边形的对边平行且相等、对角相等。
3.平行四边形的判定:A.一组对边平行且相等的四边形是平行四边形。
B.两组对边分别相等(或分别平行)的四边形是平行四边形。
C. 两组对角分别相等的四边形是平行四边形。
D.对角线互相平分的四边形是平行四边形。
三、中心对称和中心对称图形1.在平面内,如果一个图形G绕点O旋转180°,得到的像与另一个图形G’重合,那么将这两个图形关于点O中心对称,点O叫做对称中心。
2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
3.作一个图形关于某一点成中心对称的图形○1图形找出关键点、○2确定对称中心、○3连接关键点与对称中心、○4并延长相等的距离确定关键点的对应点、○5按原图形依次连接对应点得到中心对称图形。
4.中心对称图形:如果一个图形绕一个点旋转180°,所得到的像与原来的图形互相重合,那么这个图形叫作中心对称图形,这个点O叫作它的对称中心。
四、三角形的中位线1.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
2.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
五、矩形1.矩形:有一个角是直角的平行四边形叫做矩形,也称为长方形。
2.矩形的性质:○1矩形的四个角都是直角。
○2矩形的对角线相等且互相平分。
3.矩形的判定○1有一个角是直角的平行四边形是矩形○2对角线相等的平行四边形是矩形○3有三个角是直角的四边形是矩形○4对角线相等且互相平分的四边形是矩形4.矩形的对称性○1矩形是轴对称图形,对称轴是过对边中点的直线,且两条对称轴互相垂直。
○2矩形是中心对称图形,对称中心是对角线的交点。
六、菱形1.菱形:一组邻边相等的平行四边形叫作菱形。
2.菱形的性质:A.○1四条边都相等、○2对角相等、○3对角线互相平分B.菱形的对角线互相垂直。
C.菱形是中心对称图形,对称中心是对角线交点。
D.菱形是轴对称图形,两条对角线所在直线都是它的对称轴。
3.菱形的判定A.四条边都相等的四边形是菱形。
B.对角线互相垂直的平行四边形是菱形。
4.菱形的面积:S=1/2ab。
(a、b分别表示菱形对角线长度)七、正方形1.正方形:有一组邻边相等且有一个角是直角的平行四边形叫作正方形。
2.正方形的性质:具有平行四边形、矩形、菱形的所有性质。
A.四边相等,对边平行,邻边垂直。
B.四个角都是直角。
C.对角线互相垂直且平分且相等,每一条对角线平分一组对角。
D.既是轴对称图形,对称轴是两组对角线和对边中点所在直线;也是中心对称图形。
3.正方形的判定A.先证它是矩形,再证有一组邻边相等。
B.○1证是平行四边形、○2证有一个角是直角、○3证有一组邻边相等C.先证它是菱形,再证有一个角是直角。
D.○1证是平行四边形、○2证有一组邻边相等、○3证有一个角是直角。
4.正方形的面积:边长的平方或对角线乘积的一半。
第三章图形与坐标一、有序实数对1.有序实数对:有顺序的两个数a与b组成的数对,记作(a,b)。
2.平面直角坐标系:在平面内,有公共原点的两条互相垂直的数轴组成平面直角坐标系。
水平位置的数轴叫横轴或x轴,取向右为正方向;数值的数轴叫纵轴或y轴,取向上为正方向,两条数轴的交点O称为平面直角坐标系的原点。
在平面直角坐标系中,两条坐标轴把平面分成四个区域,分别称为第一,第二,第三,第四象限,坐标轴上的点不属于任何一个象限。
3.点的坐标表示:对于平面内的任何一点P,过点P分别向x轴,y轴作垂线,垂足在x轴,y轴上对应的实数a,b分别叫作点P的横坐标、纵坐标,用有序实数对(a,b)表示点P的坐标。
平面上的点和有序实数对是一一对应的关系。
4.坐标平面内点的坐标特征A.点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0;B.点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在x轴上,又在y轴上⇔x,y同时为零,即点P的坐标为(0,0);C. 两点在平行于x轴的直线上⇔两点的纵坐标相同,横坐标为不相等的两个实数;两点在平行于y轴的直线上⇔两点的横坐标相同,纵坐标为不相等的两个实数;D.第一、三象限角平分线上的点横纵坐标相等;第二、四象限角平分线上的点横纵坐标互为相反数;5.坐标平面内的点到原点的距离若点A为坐标平面内的任意一点,即点A的坐标为(x,y),则点A到原点的距离OA=√x2+y2。
6.平面内点的位置的确定A.直角坐标定位法:在平面内建立适当的平面直角坐标系,用一对有序实数表示点在平面内的坐标,即点的位置。
B.方位角和距离定位法:用方向和距离来确定平面内物体的位置的方法。
需要:○1方位角;○2目标到中心的距离。
二、简单图形的坐标表示1.根据点的坐标描点作图由点的坐标描点与由点写坐标正好相反,先找到点的横坐标在x 轴上的位置,过该点作x 轴的垂线,同样根据点的纵坐标在y 轴上的位置,过该点作y 轴的垂线,两条直线的交点即为所描的点。
连线作图时要按要求去连,只能连各组内的点,两组之间的点不要依次连接。
2.建立适当的平面直角坐标系确定点的坐标用坐标表示物体的位置,首先要建立适当的直角坐标系,选取的坐标原点的位置发生变化时,图形上的个点的坐标也会发生变化。
三、轴对称和平移的坐标表示1.轴对称的点的坐标特点在平面直角坐标系中,关于x 轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y 轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
A (a ,b )−−−−→−轴对称关于x A ’(a ,-b ) A (a ,b )−−−−→−轴对称关于y A ’’(-a , b ) 2.平移的坐标表示一般的,在平面直角坐标系中,将点(a ,b )向右(或向左)平移k 个单位,其像的坐标为(a +k ,b ) (或(a -k ,b ));将点(a ,b )向上(或向下)平移k 个单位,其像的坐标为(a ,b +k ) (或(a ,b -k )); 第四章 一次函数一、函数和它的表示法1.变量与常量的概念在讨论的问题中,取值会发生变化的量称为变量,取值固定不变的量称为常量。
2.函数的概念一般地,如果变量y 随着变量x 而变化,并且对于x 取的每一个值,y 都有唯一的一个值与它对应,那么称y 是x 的函数,记作y =f (x ),这时把x 叫做自变量,把y 叫做因变量,对于自变量x 取的每一个值a ,因变量y 的对应值称为函数值,记作f (x )。
3.确定函数值:如果y 是x 的函数,对于自变量x 取的每一个值a ,因变量y 的对应值称为函数值,记作f (a )。
4.函数的表示方法图像法:建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值(即因变量的对应值)为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图像,这种表示函数关系的方法称为图像法。
用图像法表示函数关系的优点是:可以直观地看出因变量如何随着自变量而变化。
列表法:列一张表,第一行表示自变量取的每一个值,第二行表示相应的函数值(即因变量的对应值),这种表示函数关系的方法称为列表法。
用列表法表示函数关系的优点是:可以很清楚地看出自变量的值与因变量的对应值。
公式法:用式子表示函数关系的方法称为公式法,这样的式子称为函数的表达式,用公式法表示函数关系的优点是:可以方便地计算函数值。
二、一次函数1.如果函数的表达式是关于自变量的一次是,那么这样的函数称为一次函数,它的一般形式是:y=kx+b(k,b为常数,k≠0)。
2.特别地,当b=0时,一次函数y=kx(k为常数,k≠0)也叫作正比例函数,其中k叫做比例系数。