七年级数学1.7近似数教案
沪科版七年级数学上册教学设计:1.7近似数教学设计

沪科版七年级数学上册教学设计:1.7近似数教学设计一. 教材分析《沪科版七年级数学上册》第1.7节近似数教学,主要让学生理解近似数的概念,掌握用四舍五入法求一个数的近似数的方法。
教材通过生活中的实例,引导学生认识近似数在实际生活中的应用,培养学生的数感。
二. 学情分析七年级的学生已经学习了有理数的概念,对数的运算有一定的了解。
但求近似数在实际生活中的应用可能是他们第一次接触,需要通过具体实例来理解和掌握。
三. 教学目标1.了解近似数的概念,能正确理解四舍五入法。
2.能运用四舍五入法求一个数的近似数。
3.认识近似数在实际生活中的应用,培养学生的数感。
四. 教学重难点1.教学重点:近似数的概念,四舍五入法的运用。
2.教学难点:理解四舍五入法的原理,能灵活运用四舍五入法求近似数。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识近似数的概念。
2.实践操作法:让学生动手操作,运用四舍五入法求近似数。
3.小组合作法:学生分组讨论,分享求近似数的方法和经验。
六. 教学准备1.教学课件:制作课件,展示生活中的实例和求近似数的方法。
2.练习题:准备一些求近似数的练习题,用于巩固所学知识。
3.小组讨论:提前分组,让学生有准备地进行合作学习。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如购物时找零、测量身高等,引导学生思考:这些实例中为什么会出现“大约”、“左右”等字眼?通过这些问题,让学生初步认识近似数的概念。
2.呈现(10分钟)介绍近似数的概念,解释四舍五入法的原理,并用课件展示求一个数的近似数的方法。
同时,让学生动手操作,尝试用四舍五入法求一些数的近似数。
3.操练(10分钟)让学生进行练习,运用四舍五入法求近似数。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)选取一些练习题,让学生独立完成,检验他们对四舍五入法的掌握程度。
同时,教师选取部分学生的作业进行点评,总结求近似数的方法和注意事项。
七年级数学上册 1.7近似数教案 沪科版

1.7 近似数教学目标:1、理解精确度和有效数字的意义2、要准确第说出精确位及按要求进行四舍五入取近似数教学重点、难点:重点:近似数、精确度和有效数字的意义,难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.教学过程:一、近似数的定义我们常会遇到这样的问题:(1)初一(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.我们把象960万、49这些与实际数很接近的数称为近似数(approximate number).在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.二、精确度我们都知道,14159.3=π···.我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位; 如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1); 如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01); 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits).象上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.三、例题例1 按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)30 435(保留3个有效数字);(3)1.804(保留2个有效数字);(4)1.804(保留3个有效数字)。
七年级数学上册 1.7 近似数教案 (新版)沪科版

1.7近似数课标要求:通过实际操作,了解近似数,知道误差的概念,并会按问题的要求对结果取近似值。
教材分析:本节是通过操作引入近似数和相关概念的,主要是通过对近似数的研究,再运用它去解决实际的相关问题。
为以后无理数的估计、函数的近似模拟等知识的学习做准备。
学生分析:学生在小学也初步结识了近似数、精确度等概念,也了解了简单的用四舍五入法取近似数的方法,教学中可做适当复习。
另外,有了前面基准及绝对值等概念的基础,对误差的学习显得较为自然。
教学目标:1.通过对数据的收集与分析初步掌握近似数和准确数的概念,能区分一个数是准确数还是近似数;2. 通过实际操作了解误差与精确度的概念,并能写出任给一个近似数的精确度;3.能够按照实际问题的需求对一个数进行四舍五入,精确到某一数位.教学重点:掌握近似数和准确数的概念,误差和精确度的概念.教学难点:能够按照要求对一个数进行四舍五入,精确到某一数位.尤其是精确到十位及十位以上的近似数。
教学程序设计:【活动1】收集数据探究分析由学生自己出示课前所准备的数据资料,教师在黑板上记录。
然后师生共同分析探究得出准确数和近似数的概念。
准确数——与实际完全相符的数;近似数——与实际接近的数。
教师提问:如何区分准确数和近似数呢?并引导学生从以下两方面分析:1、看数据的来源:一般来说,通过数数得到的数都是准确数;通过测量、估计、统计或通过近似计算得到数都是近似数。
2、看数据本身的特点,如圆周率以及有圆周率计算所得到的圆的周长和面积等都是近似数。
下列各数,哪些是近似数?哪些是准确数?(1)东风汽车厂2012年生产汽车14500辆。
(2)绿化队今年植树约2万棵。
(3)小明到书店买了10本书。
(4)一次数学测验中,有2人得满分。
(5)某区在校中学生近75万人。
(6)小琳称得体重为38千克。
(7)半径为10m的圆的面积约为314m2。
【活动2】动手操作发现新知请同学们自己测量数学课本宽度,并取2个不同的测量结果加以分析,给出误差的概念:误差=近似值-准确值。
1.7 近似数(第1课时)-教案

1.7近似数(第一课时)-教案池州市东至县大同中学柏忠阳一、教学背景(一)教材分析沪科版《教育义务课程标准验教科书·数学》(七年级上册)1.7近似数(第1课时)。
前一节已学习科学计数法,本节课了解近似数,知道误差的概念,会按要求取一个数的近似数。
(二)学情分析在小学学生已略微了解近似数的概念,应掌握近似值与准确值的区分,前一节已学习科学计数法。
本节课将学习近似数和误差,会按要求取一个数的近似数。
二、教学目标1.通过实际的操作,了解近似数,知道误差的概念。
2.会按要求取一个数的近似数。
三、教学重点与难点重点:近似数的表示方法及近似值的取法。
难点:正确地求一个近似数的精确度和用科学计数法表示它的精确度。
四、教学方法分析及学习方法指导通过学生日常生活得出的数据,明确近似数、准确值和误差的概念;通过练习,会知道近似数的精确度。
五、教学过程(一)动手操作、引入课题1.数一数今天我们班上的同学数。
2.查一查你的数学课本的页数。
3.量一量<<数学课本>>的宽度。
4.测量你的铅笔的长度。
同学们完成后,请相互比较一下你所得出的数据有何差别。
设计意图:通过学生动手操作,使学生对身边的数量的认识中感受准确数与近似数。
学生动手操作,对学生兴趣的培养有很大帮助。
(二)得出定义,揭示内涵学生思考,并交流结果:1.什么叫准确数?准确数--与实际完全符合的数。
2.什么叫近似数?近似数--与实际非常接近的数。
你还能举出一些日常遇到的近似数吗?设计意图:通过对比的方法,让学生明确准确数和近似数的定义,再让学生从生活中找到近似数;这样是学生对近似数有着更深的印象。
跟踪练习:下列数据中,哪些是准确的?哪些是近似的?(1)小芳班上有45人;(2)我国有56个民族;(3)我国人工造林的保存面积居世界首位,目前达到6200万公顷;(4)举世瞩目的西气东输工程全长4000km;(5)某词典有1752页;(6)量杯里有水50mL;(7)女子短跑100m世界记录为10.49s(8)世界人口为61亿。
新沪科版七年级数学上册教学设计《1.7 近似数》

新沪科版七年级数学上册教学设计:《1.7近似数》教学目标【知识与技能】1.使学生初步理解近似数的概念,并由给出的近似数,说出它精确到哪一位.2.给出一个数,能熟练地按要求四舍五入取近似数.【过程与方法】通过近似数的学习,体会近似数的意义及其在生活中的作用.【情感、态度与价值观】通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想.教学重难点【重点】近似数、精确度等概念;给一个数,能按照精确到哪一位或四舍五入取近似数.【难点】由给出的近似数求其精确度.教学过程一、问题引入1.问题.(1)师:同学们,请你们统计一下班上喜欢吃肯德基的同学的人数.(2)量一量课本的宽度.了解准确数和近似数的概念.2.根据学生原有的认知结构提出问题.师:在小学里我们计算圆的面积S=πR2,π一般取多少?生:3.14.师:这是一个精确的数吗?小数位数太多,不便于计算,常常保留两位小数,由“四舍五入”取π≈3.14,这就是“近似数”,小学里在小数计算中经常把最后答案取近似数.3.完成练习.(1)将3.062保留一位小数得;(2)将7.448保留整数得;(3)将15.267保留两位小数得.二、讲授新课1.精确度.师:在实际问题中,我们经常要用近似数.使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159….我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫做精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫做精确到0.01).概括:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.三、例题讲解【例1】十一期间,某商场准备作打8折(即)促销.一种原价为348元的微波炉,打折后,如果要求精确到元,定价是多少?如果要求精确到10元,定价又是多少?【答案】这种微波炉打8折后的价格为348×=278.4(元).要求精确到元的定价为278元;精确到10元的定价为280元.【例2】据2010年上海世博会官方统计,2010年5月1日到10月31日期间,共有7 308.44万人次入园参观,求每次的平均入园人数(精确到0.01万人).【答案】从5月1日到10月31日共有184天,所以每天的平均入园人数为7 308.44÷184≈39.719≈39.72(万人).【例3】用四舍五入法,按括号中的要求把下列各数取近似数.(1)0.340 82(精确到千分位);(2)64.8(精确到个位);(3)1.504(精确到0.01).【答案】(1)0.340 82≈0.341.(2)64.8≈65.(3)1.504≈1.50.注意:(1)例3的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;(2)有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四舍五入”法得到的.例如,某地遭遇水灾,约有10万人的生活受到影响.政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数.如果按一个人平均一天需要0.5千克粮食算,那么可以估计出每天要调运5万千克的粮食.又如某校初中一年级共有112名同学,想租用45座的客车外出秋游.因为112÷45=2.488…,这里就不能用四舍五入法,而要用“进一法”来估计应该租用客车的辆数,即应租3辆.四、课堂练习课本P47练习.【答案】略五、课堂小结本节课教师主要引导学生理解并掌握下列内容:1.正确理解并掌握近似数、准确数、精确度和有效数字等概念.2.要学会给出一个近似数,能准确地确定它精确到哪一位或它有哪几个有效数字;准确、迅速、熟练地按照要求求出一个数的近似数.3.对例题中提到的注意事项应引起重视.。
沪科版七年级数学上册1.7 近似数教学设计

沪科版七年级数学上册1.7 近似数教学设计1.7 近似数【教学目标】➢知识目标:会说出准确数,近似数及精确度。
➢能力目标:给一个数能按照四舍五入的方法精确到哪一位,并能按要求说出它所表示的范围。
➢情感目标:了解到近似数是由实践中产生的,从而培养数学来源于实践,而又作用于实践的情感。
也使学生了解我国数学的历史文化进行爱国主义教育。
并能对含有较大数字的信息作出合理的解释和推断. 取近似数培养学生分析、判断和解决实际问题的能力【教学重点、难点】➢重点:近似数的表示方法及近似值的取法➢难点:正确地求一个近似数的精确度(包括近似数精确到哪一位)。
【教具】多媒体电脑,墙上大刻度尺。
【教学过程】一、引入课前探究利用电脑设备:讲述饮酒先生的故事;学生体验两个新闻报道。
同时区分准确数和近似数。
■饮酒先生有一先生,喜爱喝酒,常常对学生安排好学业,然后上山■2003年10月16日06:55 新浪科技快讯2019年10月15日,杨利伟搭乘中国自行研制的“神舟”五号飞船进入太空,环绕地球飞行14圈,行程约60万公里,离地高度是343公里,次日06:54在内蒙 古安全降落。
这次为期21小时的太空之旅,使中国继俄罗斯、美国之后成为世界上第三个能独立自主进行载人航天飞行的国家。
二、实践,探索和交流观察,比较上面的数据,引出课题--------准确数和近似数以及它们的概念:与实际完全符合的数称为准确数(accurate number ),与实际接近的数称为近似数(approximate number ).学生感受一下数学和生活,历史的联系,并自主观察对比总结。
从而自行描述准确数和近似数的概念;并能加以区分。
三、互动学习亚洲杯中国胜利挺进八强 “神舟”五号载人航例 1 下列由四舍五入得到的近似数各精确到哪一位?(1)11亿;(2)0.03086;(3)1.2万;(4)3000;(5)1.20万;(6)3000.0 ;(7)3.68×103例2 用四舍五入法,按括号里的要求对下列各数取近似值.(1)0.33448 (精确到千分位);(2)64.8 (精确到个位);(3)1.5952 (精确到0.01).例3 某地遭遇洪灾,约有10万人的生活受到影响.政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数.如果按一个人平均一天需要0.4千克粮食算,那么可以估计出每天要调运4万千克粮食;如果按一个人平均一天需要0.5千克粮食算,那么可以估计出每天要调运5万千克粮食.(学生板演练习易错点及易漏点,及时纠正并强调)五、练一练P47练习,以小组竞赛的形式展开。
沪科版七年级数学上册教学设计:1.7近似数

一、教学目标
(一)知识与技能
1.理解近似数的概念,掌握用四舍五入法、截断法等方法求一个数的近似数。
2.能够运用近似数解决实际问题,如计算物品的价格、测量长度等。
3.理解有效数字的概念,并能在实际计算中运用有效数字进行近似计算。
4.能够对数据进行近似处理,提高数据处理能力,为后续学习打下基础。
(五)总结归纳
在课堂的最后,我将引导学生进行总结归纳:
1.让学生回顾本节课所学的近似数的概念、求法以及有效数字的应用。
2.组织学生分享他们在学习过程中遇到的困难和解决问题的方法。
3.总结课堂学习要点,强调近似数在实际生活中的应用和重要性。
4.提醒学生加强对近似数知识点的复习,为后续学习打下基础。
五、作业布置
4.分层练习,巩固提高
-设计不同难度的练习题,满足不同学生的学习需求。
-对学生进行个别辅导,针对性强,确保每位学生都能掌握本章节的知识点。
5.总结反思,拓展延伸
-引导学生总结本节课的学习内容,形成知识网络。
-提出具有挑战性的问题,激发学生思维,培养他们解决问题的能力。
6.课堂评价,促进发展
-采用多元化评价方式,关注学生在课堂上的表现,给予及时反馈。
- 0.003456
2.应用题:设计一些与生活实际相关的题目,让学生运用近似数知识解决实际问题。
例题:某商店举行打折活动,原价为198元,打八折后,计算打折后的价格(精确到元)。
3.提高题:布置一些具有一定难度的题目,旨在培养学生的高级思维能力和问题解决能力。
例题:已知一个长方体的长、宽、高分别为2.5米、1.8米和1.2米,求该长方体的体积的近似值(精确到小数点后三位)。
沪科版数学七年级上册《1.7 近似数》教学设计1

沪科版数学七年级上册《1.7 近似数》教学设计1一. 教材分析《近似数》是沪科版数学七年级上册的教学内容,主要让学生了解和掌握近似数的概念、求法以及应用。
通过本节课的学习,学生能够理解近似数在实际生活中的重要性,并能够运用近似数解决一些实际问题。
二. 学情分析学生在之前的学习中已经掌握了实数的概念,对数的运算也有一定的了解。
但是,对于近似数的概念和求法可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.了解近似数的概念,掌握求近似数的方法。
2.能够运用近似数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等,通过导入、呈现、操练、巩固、拓展、小结等环节,引导学生逐步理解和掌握近似数的概念和求法。
六. 教学准备1.PPT课件。
2.实例和练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“一辆汽车以60公里/小时的速度行驶,行驶100公里需要多长时间?”让学生思考并回答,引出近似数的概念。
2.呈现(10分钟)讲解近似数的概念,以及求近似数的方法,如四舍五入法、进一法、去尾法等,并通过实例进行演示和解释。
3.操练(10分钟)让学生分组进行练习,运用所学的近似数方法求解实际问题,如计算身高、体重、温度等的近似值,每组选出一个代表进行解答和分享。
4.巩固(5分钟)对学生的练习进行点评和讲解,强调近似数的求法和应用,解答学生可能遇到的问题。
5.拓展(5分钟)让学生思考近似数在实际生活中的应用,如购物、烹饪、工程等,并选取几个学生进行分享。
6.小结(5分钟)对本节课的内容进行总结,强调近似数的概念和求法,以及运用近似数解决实际问题的重要性。
7.家庭作业(5分钟)布置相关的练习题,让学生巩固所学的近似数知识,题目包括选择题、填空题和解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.7 近似数
教学目标:
1、理解精确度和有效数字的意义
2、要准确第说出精确位及按要求进行四舍五入取近似数
教学重点、难点:
重点:近似数、精确度和有效数字的意义,
难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.
教学过程:
一、近似数的定义
我们常会遇到这样的问题:
(1)初一(4)班有42名同学;
(2)每个三角形都有3个内角.
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重是约49千克.
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.
我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.
我们把象960万、49这些与实际数很接近的数称为近似数(approximate number).
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.
二、精确度
我们都知道,14159.3=π···.
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位; 如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1); 如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01); 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits).
象上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.
三、例题
例1 按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.015 8(精确到0.001);
(2)30 435(保留3个有效数字);
(3)1.804(保留2个有效数字);
(4)1.804(保留3个有效数字)。
解:(1)0.015 8≈0.016;
(2)30 435≈3.04×104;
(3)1.804≈1.8;
(4)1.804≈1.80
注意:(2)不能写成30 400,这样是有5个有效数字,像这样的数保留几位有效数字一般要用科学计算法,或3.04万。
例2 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;
(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;
(3)2.40万精确到百位,共有3个有效数字2、4、0.
注意由于2.40万的单位是万,所以不能说它精确到百分位.
注意(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;
课堂练习
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数?哪写是近似数?
(1)东北师大附中共有98个教学班;
(2)我国有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148 (精确到千分位);
(2)1.5673 (精确到0.01);
(3)0.03097 (保留三个有效数字);
(4)75460 (保留一位有效数字);
(5)90990 (保留二位有效数字).
4.下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?
(1)54.8;(2)0.00204;(3)3.6万.
课堂练习答案
1.略.
2.(1)精确值;(2)近似值.
3.(1)0.65148 ≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;
(5)90990≈9.1×104.
4.(1)精确到个十分位,有3个有效数字;(2)精确到千万分位,有3个有效数字;(3)精确到千位,有2个有效数字.
课后作业
教科书P57-6
课后选作题
1.下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?(1)32;(2)17.93;(3)0.084;(4)7.250;(5)1.35×104;(6)0.45万;(7)2.004;(8)3.1416. 2.23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?
①23.04 ②23.06 ③22.99 ④22.85
课后选作题答案
1.(1)精确到个位,有两位有效数字;
(2)精确到百分位,有四位有效数字;
(3)精确到千分位,有两位有效数字;
(4)精确到千分位,有四位有效数字;
(5)精确到百位,有三位有效数字;
(6)精确到百位,有两位有效数字;
(7)精确到千分位,有四位有效数字;
(8)精确到万分位,有五位有效数字.
2.②和④.。