原生质体融合技术简介

合集下载

植物原生质体融合技术

植物原生质体融合技术

要点二
细胞大规模培养
通过改进细胞培养技术,可以实现植物原生质体融合后细 胞的规模化培养,为快速繁殖和生产转基因植物提供有效 手段。
生物反应器与细胞工厂的优化
生物反应器设计
针对植物原生质体融合过程,可以设计和优 化生物反应器,实现融合过程的自动化和连 续化,提高融合效率和细胞质量。
细胞工厂构建
通过优化生物反应器中的培养条件和工艺参 数,可以构建高效细胞工厂,实现植物原生
技术应用领域
新品种培育
通过原生质体融合技术,可实现不同品种间 优良性状的整合,快速培育出新品种。
基因功能研究
通过原生质体融合技术,可研究植物细胞中 基因的表达和功能。
抗性改良
利用该技术改良植物的抗逆性,如抗旱、抗 病、抗虫等。
细胞器与细胞生物学研究
该技术可用于研究细胞器的结构和功能,以 及细胞分裂、分化的过程。
原生质体的诱导融合
电融合法
利用电场作用诱导原生质体融合,通 常在特定的电融合装置中进行,需要 在特定的电场强度和脉冲时间下进行 操作。
化学融合法
利用化学物质如聚乙二醇(PEG)等 诱导原生质体融合,通过调节PEG浓 度、pH值等参数来控制融合过程。
融合后细胞的筛选与培养
筛选
通过特定的筛选方法如荧光染色、抗性筛选等,从融合后的细胞群体中筛选出 具有优良性状的细胞。
植物原生质体融合技术
目录
CONTENTS
• 植物原生质体融合技术概述 • 植物原生质体融合技术的基本原理 • 植物原生质体融合技术的应用 • 植物原生质体融合技术的挑战与前景 • 案例研究 • 技术展望
01
CHAPTER
植物原生质体融合技术概述
定义与特点

原生质体融合技术

原生质体融合技术

原生质体融合技术的局限性植物原生质体是指用特殊方法去细胞壁的、裸露的、有生活力的原生团。

这种裸露细胞在适当的外界条件下,还可形成细胞壁,进行有丝分裂,形成愈伤组织和诱发再生植株,因而仍然具有细胞的全能性。

植物原生质体融合技术是借鉴于动物细胞融合的研究成果,在原生质体分离培养的基础上建立起来的,以植物的原生质体为材料,通过物理、化学等因素的诱导,使两个原生质体融合在一起以致形成融合细胞的技术。

它不是雌雄孢子之间的结合,而是具有完整遗传物质的体细胞之间的融合,是2种原生质体间的杂交。

通过原生质体融合可以把带有不同的基因组的两个细胞结合在一起,与有性杂交相比,无疑可以使“杂交”亲本组合的范围扩大,不但可以利用细胞核内基因资源,还可以利用包含在细胞质中的诸如叶绿体和线粒体DNA的遗传资源。

原生质体培养是细胞杂交的基础,但是直到目前为止,也只有360多个种的原生质体培养再生了完整的植株,大多数重要的植物尤其是木本植物如葡萄、棕榈、橡胶、茶、香蕉、椰子和芒果等的原生质体再生仍然很困难,或者还未进行深入研究。

在原生质体再生的物种中,茄科占了将近1/4,并且用于育种目的的大多数体细胞杂种和细胞质杂种也比较集中于茄属、烟草属、苜蓿属、柑橘属、芸薹属和番茄属等6个属中。

因此,为了有效地进行植物遗传改良,不但要使杂种细胞再生成完整植物,而且还必须提高植株再生的频率,以便有足够的群体进行有效的选择。

但目前存在的一个普遍的问题使许多原生质体再生的程序似乎较低,重复性较差,并且还具有基因型的依赖性。

为了将体细胞杂交技术应用于更多的植物中,还需要更加深入地研究植物细胞的分化、脱分化和再分化等发育机制。

1.技术局限性植物细胞杂交的本质是将两种不同来源的原生质体,在人为的条件下进行诱导融合。

由于植物细胞的全能性,因此融合之后的杂种细胞,可以再生出具有双亲性状的杂种植株。

因此,细胞融合也叫原生质体融合或细胞杂交。

其包括三个主要环节:诱导融合;选择融合体或杂种细胞;杂种植株的再生和鉴定。

食用菌原生质体融合育种技术简介

食用菌原生质体融合育种技术简介

食用菌原生质体融合育种技术简介原生质体(protoplast)这个术语最早是由Hanstein 在1880年提出来的。

确切地说,食用菌原生质体是指细胞壁完全消除后余下的那部分包裹的裸露的细胞结构。

原生质体虽然失去了细胞壁存在时的原有细胞形态,变成了圆球体,但它仍然具有原生质膜和整体基因组,是一个具有生理功能的单位。

食用菌原生质体融合(protoplastfusion)是指通脱壁后的不同遗传类型的食用菌菌株原生质体,在融合剂的诱导下进行融合,最终达到部分或者整套基因组(核基因、线粒体基、胞质基因)的交换和重组,生产出新的食用菌品种和类型,也就是说,食用菌原生质体融合育种技术上是一种不通过有性生活史(sexualcycle)而达到遗传重组或有性杂交的育种手段。

近日,在佛山科技学院召开的“草菇原生质体融合育种研究”成果鉴定会上获悉,该院农学系利用现代生物工程原生质体融合育种技术,成功地选育出草菇新品种Vp—2、Vp—3。

专家们实地考察后认为,该研究成果数据可靠,技术新颖,品种表现良好,种性稳定,菌丝生长健壮,爬料速度快,抗杂能力强,子实体结实,基部紧凑,个体适中,兼备双亲优良性状,生物特性明显优于目前生产使用的当家品种。

鉴定专家一致认为,该研究成果居于国内领先水平。

据项目鉴定委员会主任、省微生物研究所研究员丘元盛介绍,该项目成果具有技术的前瞻性和研究的独创性:采用超声波处理结合溶壁酶酶解,很好地解决了草菇细胞壁裂解的难题,为原生质体融合育种提供了大量原生质体,完善了草菇原生质体制备和融合技术;创造性地利用不同草菇品种间存在拮抗作用进行融合子初筛,利用不同草菇种间分解脱脂牛奶、可溶性淀粉、聚半乳糖醛酸等物质的能力差异性,定量检测融合子与亲本间的酶分解能力,通过DNA随机多态性差异检测进而确定融合子,技术操作新颖,为食用菌育种开辟新途径;开创性采用液氮研磨与溶壁酶酶解相结合提取草菇菌丝DNA技术,获得高纯度遗传物质,圆满解决草菇等真菌DNA提取过程中破壁困难和纯度不高等技术难题,实现现代分子生物学水平格测融合子的技术性飞跃。

植物原生质体融合的方法

植物原生质体融合的方法

植物原生质体融合的方法
植物原生质体融合技术是一种准确、灵活和快速的分子育种技术,它可以将一种植物中的遗传物质与另一种植物的遗传物质融合在一起,以获得更有效的育种方法。

下面介绍植物原生质体融合技术的基本概念和其应用:
一、植物原生质体融合技术的基本概念
1、原生质体的定义:原生质体(Protoplast)是指细胞原有的稳定的液体质结构,在植物细胞当中占据重要的分子物质,可以被用来搅拌,冷冻,施主或克隆植物细胞的核酸,蛋白质以及其他的分子物质。

2、破壁法的原理:破壁法是一种用于分离出植物原生质体的方法,它利用酶和/或静电力,这种酶使细胞壁细胞可以被剥离出来,从而形成原生质体。

3、原生质体融合技术:原生质体融合技术就是利用破壁法将不同植物的原生质体融合起来,以获得新的基因组的遗传材料,从而为植物的育种提供了新的思路。

二、植物原生质体融合技术的应用
1、引入新基因:原生质体融合技术可以有效地引入一些新的基因材料到植物细胞,从而改变植物的性状特征,从而获得抗逆性、抗病性、烘焙品质和其他重要特征,使植物更适应环境条件。

2、突变:通过将不同植物原生质体融合起来,可以引发基因突变,从
而获得新的外观形状或性状,更好地提高植物的繁殖力和适应性。

3、抗逆育种:原生质体融合技术可以有效地增强植物细胞体抗病性和抗逆性,从而大大提高植物的耐受性,使一些极端的环境能够更好地适应植物的生长和发育。

总而言之,植物原生质体融合技术旨在将宿主植物中基因携带的遗传改良物质融入受体细胞中,以获得更多优良育种材料,从而提高植物的适应性和抗逆性,从而提升作物的产量。

第六章 原生质体融合

第六章 原生质体融合
NaNO3的作用:中和质膜的负电荷,使原生质体不再 相互排斥,而紧密结合在一起不足:诱导频率不高。
2 高pH(10.5)-高Ca离子法
1973年:Keller和Melchers用pH10.5的 50 mMCaCl2溶液在37℃时,诱 发烟草叶肉原生质体融合。 优点:杂种产量高。 不足:高pH值对细胞有毒害作用。
细胞质杂种
细胞质杂种只具有一个亲本的细胞核,而具 有两个亲本细胞质的遗传物质,细胞质杂种可用 来转移细胞质基因所决定的遗传性状,如胞质雄 性不育基因,抗除草剂基因及其对某些抗生素抗 性的特征,以及一些光合作用有关的特征,均可 通过胞质杂种来转移这些优良基因,因而在遗传 育种中具有重要意义。


非对称杂交是一亲本的细胞核和细胞质与另一 亲本的少量核物质(1~2条染色体)和全部细胞 质融合; 细胞质杂交是一亲本的细胞核和细胞质及另一 亲本的全部细胞质融合,可能使两种来源不同 的核外遗传成分(细胞器)与一个特定的核基因 组结合在一起,这种杂种叫细胞质杂种。
植物+植物 植物+动物 动物+酵母
PEG法原理
PEG是一种带负电性的高分子化合物, 在原生质体融合中起到一种桥梁作用,可以 使原生质体凝聚。在洗脱过程中,PEG将被 洗掉,导致质膜表面电荷重排。粘连的质膜 大面积紧密相连,电荷的重排队导致一个原 生质体的负性电荷部位与另一原生质体的正 性电荷部位相连而导致融合。
原生质体的融合过程包括3个主要阶段:


1)两个或多个原生质体的质膜彼此靠近; 2)局部区域质膜紧密粘连,彼此融合; 3)融合完成,形成球形的异核体或同核体。
①凝聚作用阶段:
两个或两个以上原生 质体膜彼此靠近
②小区域融合阶段:

第二节原生质体融合育种

第二节原生质体融合育种

第二节原生质体融合育种一. 原生质体融合育种的特点原生质体融合就是将两个亲株的细胞壁分别通过酶解作用加以剥除,使其在高渗环境中释放出只有原生质膜包被着的球状原生质体,然后将两个亲株的原生质体在高渗条件下混合,由聚乙二醇(PEG) 助融,使它们相互凝集,通过细胞质融合,接着发生两套基因组之间的接触、交换,从而发生基因组的遗传重组,就可以在再生细胞中获得重组体。

原生质体融合技术具有7 个方面的优点:杂交频率较高:由于原生质体没有细胞壁的障碍,而且在原生质体融合时又加入了融合促进剂PEG ,所以微生物原生质体间的杂交频率都明显高于常规杂交方法。

已知霉菌与放线菌的融合频率为10 -3 ~10-1,细菌与酵母的融合频率亦达到10 -3 ~10-6。

受接合型或致育性的限制较小:由于两亲株中任何一株都可能起受体或供体的作用,因此有利于不同种属间微生物的杂交。

另外,由于原生质体融合是和“性”没有关系的细胞杂交,所以其受接合型或致育性的限制比较小。

重组体种类较多:由于原生质体融合后,两个亲株的整套基因组之间发生相互接触,可以有机会发生多次交换,所以可以产生各种各样的基因组合而得到多种类型的重组体。

遗传物质的传递更为完整:由于原生质体融合是两个亲株的细胞质和细胞核进行类似合二为一的过程,因此遗传物质的交换更为完整。

原核微生物中可以得到将两个或更多个完整的基因组携带到一起的融合产物,放线菌中甚至能形成短暂或拟双倍体的融合产物,而在真菌中能形成短暂的或稳定的杂合二倍体甚至三倍体或四倍体等多倍体。

可获得性状优良的重组体:与其它的育种方法相结合,将从其它方法获得的优良性状通过原生质体融合再组合到一个单株中。

例如,唐沢昌彦等将氨基酸生产菌AJ3419(AEC r+ile-)与Bl-4(AHV r +lys-) 的原生质体融合,获得了苏氨酸高产菌AJ11812(AEC r+AHV r+ile-+lys-) ,该菌的苏氨酸产量较亲株提高了1 倍。

原生质体融合技术简介

原生质体融合技术简介
葡萄糖氧化酶产量最高为 62.7u/ml , 较 亲 本 提 高 了 394.3%
作者 Xu
Jin
Khattab
酵母
对铬有较高抗性和除铬性 能较高的两种酵母进行融 合
处理低浓度含铬废水时, 卢显妍 去除率和还原率可达100%, 处理高浓度含铬废水 (200mg/L) 时 , 还 原 率 达 50%
黑 曲 霉 (Aspergillus niger) 与 阿 特 拉 津 降 解 菌 青 霉(Penicillium sp)
(T.atroviride)
进行融合
豌 豆 根 瘤 菌 (Rhrhizbium
leguminosorum) 和 大 豆 根 瘤

(Sinorhizobium
动物病理组织中发现多核细胞 天花病脓胞周围发现多核细胞 水痘侵害过的皮肤中发现多核细胞 麻疹病人扁桃腺中发现多核细胞 组织培养中发现麻疹病毒能诱导细胞用和成多核体 用副流感病毒诱发细胞融合 探索用硝酸钠诱导植物原生质体融合 用NaNO3进行了烟草种间原生质体融合 以白地霉营养缺陷型为材料经原生质体融合首次完成异核体形成 发现PEG是一种良好的聚合剂用于原生质体融合 以曲霉 青霉营养缺陷型为材料经原生质体融合首次完成异核体形成 巨大芽孢杆菌内株间原生质体融合成功 链霉菌原生质融合并获融合重组子 用PEG+高pH-Ca2+研究原生质体融合 用高pH-Ca2++9℅DMSO与少量PEG获得较高的融合率 原生质体PEG融合获得黑曲霉二倍体柠檬酸高产菌株 一种新的体内分子育种方法——全基因组改组技术
内容
• 原生质体融合技术及应用发展介绍 • 原生质体融合的具体操作方法
-2-
中国科学院青岛生物能源与过程研究所

第六章 原生质体融合

第六章 原生质体融合

例如:
猴和小鼠 牛和大肠杆菌 苹果和番茄 马铃薯和番茄 人和小鼠细胞
二、原ห้องสมุดไป่ตู้质体融合的类型
1.依据所选用亲本原生质体的来源可分为:
①体细胞杂交:
双亲的体细胞原生质体进行融合
②配子-体细胞杂交:

融合亲本一个是体细胞原生质体,另一个为性 细胞原生质体。精卵细胞与体细胞原生质体融 合可获得三倍体杂种。
③融合阶段
原生质桥 扩展,融合完 成,形成球形 的异核体或同 核体。
4 电融合法
Senda 1979年首先利用此方法实现原生质体融合
电融合仪中有一个融合室,小室两端装有电极, 一定密度的原生质体悬浮液置于其中。在不均匀交变 电场的作用下,使原生质体彼此靠近、接触,排成一 条链,再给予一个点脉冲,使原生质膜发生可逆性电 击穿,从而导致融合。
植物+植物 植物+动物 动物+酵母
PEG法原理
PEG是一种带负电性的高分子化合物, 在原生质体融合中起到一种桥梁作用,可以 使原生质体凝聚。在洗脱过程中,PEG将被 洗掉,导致质膜表面电荷重排。粘连的质膜 大面积紧密相连,电荷的重排队导致一个原 生质体的负性电荷部位与另一原生质体的正 性电荷部位相连而导致融合。
③配子间原生质体融合:

融合亲本为精卵细胞,精卵细胞的体外融合成
功,标志着高等植物受精过程的研究从此可以
置于人工控制的离体条件下进行。
原生质体融合的类型

2.依据所选用亲本原生质体的来源是否相同:
自发融合(仅限同一物种之内)
诱导融合(指应用某种诱变剂导致原 生质体融合的方法)
诱导融合
对称融合:是指两个完整的原生质体融合, 在融合子细胞内含有两个融合亲本全套染色 体和全部的细胞质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 4-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
原生质体研究的发展
1838 1873 1896 1931 1954 1958 1970 1972 1972 1974 1976 1976 1977 1978 1981 1988 2002 Muller Lugmbuthl Unna Wathin Bnders et al Marston Power et al Carlson Ferenczy et al Michayluk Ferenczy et al Fodor et al Hopwood Gleba et al Menczel Kirimalra et al Stemmer et al 动物病理组织中发现多核细胞 天花病脓胞周围发现多核细胞 水痘侵害过的皮肤中发现多核细胞 麻疹病人扁桃腺中发现多核细胞 组织培养中发现麻疹病毒能诱导细胞用和成多核体 用副流感病毒诱发细胞融合 探索用硝酸钠诱导植物原生质体融合 用NaNO3进行了烟草种间原生质体融合 以白地霉营养缺陷型为材料经原生质体融合首次完成异核体形成 发现PEG是一种良好的聚合剂用于原生质体融合 是一种良好的聚合剂用于原生质体融合 发现 以曲霉 青霉营养缺陷型为材料经原生质体融合首次完成异核体形成 巨大芽孢杆菌内株间原生质体融合成功 链霉菌原生质融合并获融合重组子 用PEG+高pH-Ca2+研究原生质体融合 高 用高pH-Ca2++9℅DMSO与少量 与少量PEG获得较高的融合率 用高 与少量 获得较高的融合率 原生质体PEG融合获得黑曲霉二倍体柠檬酸高产菌株 融合获得黑曲霉二倍体柠檬酸高产菌株 原生质体 一种新的体内分子育种方法——全基因组改组技术 全基因组改组技术 一种新的体内分子育种方法
内容
• 原生质体融合技术及应用发展介绍 • 原生质体融合的具体操作方法
- 2-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
原生质体融合
• 定义:指用自然或 指用自然或 人工方法、使两个 或更多个不同的细 胞融合成一个细胞 的过程,又称为体 细胞杂交
原生质体的制备 微生物种类不同其细胞壁结构和化学组成 不同,酶解处理的有效酶也不一样,因此 要根据微生物种类特性选择合适的酶。
细菌细胞壁的结构 G+ 糖肽、底聚糖、多糖、蛋白质、磷壁酸、糖醛酸、磷壁酸、脂多糖 G- 糖肽、磷壁酸、蛋白质、类脂、脂多糖、脂蛋白 放线菌的细胞壁 二氨基庚二酸、甘氨酸、阿拉伯糖、半乳糖 真菌的细胞壁成分 纤维素、几丁质、其它多糖
王玉华 John R P
2 2
梁惠仪 朱惠
徐波 Hida H
先诱变再改组,获得耐高温 王灏 (35℃)及耐乙醇的菌株(提高5%, 12.93%vol) 酶活提高3.17倍 平均酶活高于原始菌株 产量最高为516.37ug/L,较亲本 提高了44.72% 仅一年时间获得高产菌株,传统 方法需20年 pH3.8下生长良好,产酸比野生 型提高3倍 对剧毒杀虫剂五氯苯酚的耐受浓 度提高了10倍以上,并可降解 3mmol/L五氯苯酚 产羟基柠檬酸水平提高到145 mg/L 林俊 李立风 赵凯 Hiroyuki Patnaik Dai
哈 茨 木 霉 (Trichoderma 经 紫外 诱变得 到具有 MBC 得到同时具有MBC和戊唑醇 Lorant harzianum) 和 深 绿 木 霉 抗性及戊唑醇抗性菌株, 抗性的融合菌株 (T.atroviride) 进行融合 豌 豆 根 瘤 菌 (Rhrhizbium 豌豆根瘤菌具有penr 抗性,融合菌株具有双亲抗性, 韦革宏 leguminosorum) 和 大 豆 根 瘤 大豆根瘤菌具有cmr抗性 且能在双亲寄主植物上结 菌 (Sinorhizobium 瘤 xinjiangesis) 糖化酵母(S.diastaticus)和 单亲灭活 酿酒酵母(S.cerevisiae) 获得利用可溶性淀粉发酵 张华山 的融合菌株,利用率达 64.3%,在含5%淀粉发酵中 酒度可达6.5%(v/v) 产生能直接利用淀粉产乳 John R P 酸,产量40g/L,淀粉转化 率96%
白腐真菌(Phanerochaete)和 白腐真菌能有效降解木质 融合子可将木质素有109降 Zhang 白 地 霉 (Geotrichum 素,白地霉可生成单蛋白 到54g/kg,使得秸秆中蛋 candidium) 质 白质由48提高到67g/kg 酿酒酵母(S. cerevisiae) 经紫外诱变得到能于43℃ 选育出能耐受55℃高温的 Shi 生长的两突变株进行融合 融合菌株
原生质体融合技术的方法
原生质体融合育种一般包括如下步骤: ①标记菌株的筛选; ②原生质体的制备; ③原生质体的再生; ④原生质体的融合; ⑤融合子的选择; ⑥实用性菌株的筛选。
-10- 10-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
-11- 11-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
降解细胞壁所用酶类: 降解细胞壁所用酶类:
处理细菌细胞壁用酶: 处理细菌细胞壁用酶:溶菌酶Lysozyme 处理放线菌细胞壁用酶: 处理放线菌细胞壁用酶:Lytic Enzyme裂解酶、Lysozyme 溶菌酶 处理真菌用酶:纤维素酶Cellulase、酵母裂解酶 处理真菌用酶: Zymolyase、β-1,3葡聚糖酶、几丁质酶Chitinase、 Novozyme234(来自Trichoderma harzianum)、 Lywallzyme(广东微生物研究所溶壁酶) 、Glucuronidase 葡聚糖苷酸酶 (for yeast)、蜗牛酶snailase
碱性脂肪酶产生菌扩展青霉 (Penicillium expansum) 曲霉BI 紫杉醇产生菌多节孢属 (Nodulisporium sylviforme) 产泰勒菌素的弗氏链霉菌 (Streptomyces fradiae) 乳杆菌 Sphingobilum chlorophenolicum 羟基柠檬酸生产菌Streptomyces sp. 核黄素生产菌Bacillus subtilis 柔红霉素生产菌 抗生素产生菌比基尼链霉菌 (Streptomyces bikiniensis)
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
原生质体融合技术及方法简介
- 1-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
提高代谢产物的产量和质量 提高菌株降解能力 提高菌株抗受性 改良菌种的遗传特性 获得新代谢途径和性状
- 6-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology 融合亲本菌株 产普纳霉素始旋链霉菌 ( S . pristinaespiralis ) CGMCC0957突变菌 多杀菌素产生菌 Saccharopolyspora spinosa 黑 曲 niger) 霉 融合子 融合结果 4株突变产量较高菌株融 得到普纳霉素产量比亲本 合 高89.4%,达到0.89g/L的 优良菌株 10株产量较高的菌株进行 多 杀 菌 素 产 量 可 达 到 融合 547mg/L , 较 出 发 菌 提 高 200.55% (Aspergillus 经 紫外 或EMS 诱变, 筛选 葡萄糖氧化酶产量最高为 胞外葡萄糖氧化酶活性最 62.7u/ml,较亲本提高了 394.3% 高菌株进行融合 对铬有较高抗性和除铬性 能较高的两种酵母进行融 合 作者 Xu
德氏乳酸杆菌突变株和淀粉 基因组三轮改组 酶 产 生 菌 (Bacillus amyloliquefaciens)

- 7-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
基因组重排技术
20世纪90年代,美国加州Maxgen公司在原生质体融合技术的基础上提出了基因 组重排技术(genome shuffling)技术的概念,基因组重排技术是经典微生物诱变育种 技术与原生质体融合技术的有机结合。首先对微生物菌体进行诱变,筛选出正向突变 菌株,然后通过原生质体“递推式融合”使正向突变的若干个菌株进行原生质体融合, 筛选出符合育种要求的融合子,从而在短时间内获得性状得到大幅度提高的菌株。由 于此技术在无需了解微生物遗传性状的条件下即能实现微生物的定向育种,获得正向 突变的菌株,自此技术诞生以来,短短几年时间里在工业生产菌种改进及开发方面就 获得了成功的应用。
- 5-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology
原生质体融合的优势
打破了微生物的种界 界限,可实现远缘菌株 的基因重组。可使遗传 物质传递更为完整、获 得更多基因重组的机会。 可与其他育种方法相结 合,如把常规诱变和原 生质体诱变所获得的优 良性状,组合到一个单 株中。
- 8-
中国科学院青岛生物能源与过程研究所
Qingdao Institute of Bioenergy and Bioprocess Technology 改组菌种 鼠李糖乳杆菌(Lactobacillus rhamnosus) 干酪乳酸菌(Lactobacillus casei) 德氏乳酸杆菌突变株和淀粉酶产 生菌(Bacillus amyloliquefaciens) 产纤溶酶的枯草芽孢杆菌 纳他霉素产生菌褐黄孢链霉菌 (Streptomyces gilvosporeus) 替考拉宁产生菌SIIA 01-11-25 异亚硝基酸产生菌 (Streptomyces sp.) 3株酿酒酵母菌 2 3 改组次数 2 改组结果 15%葡萄糖36h发酵产乳酸 135.6g/L,提高葡萄糖耐受性及 产酸能力 产酸能力提高2.4倍,提高耐酸 性 产生能直接利用淀粉产乳酸,产 量40g/L,淀粉转化率96% 酶活1600U/ml以上,较亲本提高 4-5倍 产量提高到3574mg/L,较亲本提 高1.5倍 产量提高65.3% HCA产量最好194mg/L,是野生型 的5-6倍 作者 于雷
相关文档
最新文档