初三圆垂径定理
《圆的垂径定理》课件

第四步
综合第二步和第三步的结论, 得出垂径定理。
定理的应用
01
02
03
计算弦长
已知圆的半径和弦所对的 圆心角,利用垂径定理可 以计算出弦的长度。
计算弧长
已知圆的半径和弧所对的 圆心角,利用垂径定理可 以计算出弧的长度。
计算圆心角
已知圆的半径和弦长,利 用垂径定理可以计算出圆 心角的度数。
03
垂径定理的应用
02
垂径定理在解析几何中可以用于 解决一些实际应用问题,例如计 算桥梁的承重能力、设计圆形工 件等。
垂径定理在实际问题中的应用
在实际生活中,垂径定理的应用非常 广泛,例如在建筑设计、机械制造、 航空航天等领域中,垂径定理都发挥 着重要的作用。
垂径定理在物理学中也有应用,例如 在研究光的反射和折射、地球的重力 场等。
垂径定理在几何问题中的应用
垂径定理在证明圆的性质时发挥了重要作用,例如证明圆周角定 理、圆内接四边形的性质等。
垂径定理是解决几何问题中关于圆的问题的基础,例如求圆的面 积、周长、圆心角等。
垂径定理在解析几何中的应用
01
在解析几何中,垂径定理可以与 其他数学知识结合使用,例如与 三角函数、坐标系等结合,解决 更复杂的几何问题。
详细描述
弦切角定理指出,在圆中,连接弦与切线的交点的线段与弦所夹的角等于该弦 所对应的圆心角。这个定理在解决与弦、切线和圆心角相关的问题时非常有用 。
切线长定理
总结词
切线长定理是关于圆的切线长度的重 要定理。
详细描述
切线长定理指出,过圆外一点向圆作 两条切线,则该点到两切点的线段长 度相等。这个定理在解决与圆的切线 和相关长度相关的问题时非常有用。
定理的应用
数学-初三-圆的相关概念与垂径定理

数学-初三-圆的相关概念与垂径定理精锐教育1对1辅导讲义学员姓名: 学科教师: 年级: 辅导科目:主题:圆基本概念与垂径定理授课时间:学习目标1、掌握圆的相关基本概念2、运用垂径定理解决问题教学内容1、 圆是如何确定的?大小怎么判定?2、 圆中有哪些概念?3、 垂径定理如何应用?【知识梳理1】圆的确定定理 同圆或等圆中半径相等1.点与圆的位置关系圆是到定点(圆心)的距离等于定长(半径)的点的集合。
圆的内部是到圆心的距离小于半径的点的集合。
圆的外部是到圆心的距离大于半径的点的集合。
点P 与圆心的距离为d ,则点P 在直线外⇔r d >;点P 在直线上⇔r d =;点P 在直线内⇔r d <。
【例题精讲】例1.如图,圆O 的半径为15,O 到直线l 的距离OH =9,P 、Q 、R 为l 上的三点.PH =9,QH =12,RH =15,请分别说明点P 、Q 、R 与圆O 的位置关系.【试一试】1.矩形ABCD 中,AB =8,35BC =,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.2.如图所示,已知ABC ∆,90ACB ∠=,12AC =,13AB =,CD AB ⊥于点D ,以C 为圆心,5为半径作圆C ( )A .点D 在圆内,B A 、在圆外 B .点D 在圆内,点B 在圆上,点A 在圆外C .点B 、D 在圆内,A 在圆外 D .点D 、B A 、都在圆外2.过三点的圆1.不在同一直线上的三点确定一个圆。
2.经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。
例2.如图,作出AB所在圆的圆心,并补全整个圆.【试一试】1.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图示,为配到与原来大小一样的圆形玻璃,小明带到商定去的一块玻璃片应该是()A.第①快B.第②快C.第③快D.第④快2.三角形的外心一定在该三角形上的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【知识梳理2】圆心角、弧、弦、弦心距之间的关系1.圆心角:顶点在圆心的角。
初三下学期:圆的认识到垂径定理剖析

3.1圆的概念与性质M1一.感知圆的世界圆是生活中常见的图形,许多物体都给我们以圆的形象.观察车轮,你发现了什么?二、圆的概念如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心线段OA叫做半径以点O为圆心的圆,记作“⊙O”,读作“圆O”.O A从画圆的过程可以看出:(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.归纳:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点组成的图形.圆的两种定义:动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.静态:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点组成的图形.为什么车轮是圆的?把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.三.与圆有关的概念弦:连接圆上任意两点的线段(如图AC)叫做弦;经过圆心的弦(如图中的AB)叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A 、B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.小于半圆的弧(如图中的AC )叫做劣弧;大于半圆的弧(用三个字母表示,如图中的ABC )叫做优弧.圆心相同,半径不等的两个圆叫做同心圆;能够重合的两个圆(即半径相等的两个圆)叫做等圆。
在同圆或等圆中能够完全重合的两条弧叫做等弧。
练一练1.如何在操场上画一个半径是5m 的圆?说出你的理由首先确定圆心, 然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆。
3.2垂径定理

右图是轴对称图形吗?如果是,其对称轴是什么?
C
A
┗
●
M
●
O
你能发现图中有哪些等量关系?与同伴说 说你的想法和理由. B 小明发现图中有: ②CD⊥AB, 由 ① CD是直径 ⌒ ⌒ 可推得 ④ AC=BC, ③ AM=BM
D
⌒ ⑤AD=BD.
⌒
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
O
∵∠AOD=180°-∠AOC ∠BOD=180°-∠BOC ∴∠AOD=∠BOD
D
⌒ ⌒=BD. ∴ AD
想一想 P90 6
垂径定理三种语言
驶向胜利 的彼岸
定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
C
A
M└
●
O
如图∵ CD是直径, CD⊥AB, B ∴AM=BM,
⌒ =BC, ⌒ AC ⌒ ⌒ AD=BD.
C E F O D
随堂练习P9210
挑战自我垂径定理的推论
驶向胜利 的彼岸
如果圆的两条弦互相平行,那么这两条弦所夹的弧相 等吗? 老师提示: 这两条弦在圆中位置有两种情况: 1.两条弦在圆心的同侧
O
2.两条弦在圆心的两侧
A
●
A C
●
B D
O
B D
C
垂径定理的推论
圆的两条平行弦所夹的弧相等.
1、1300多年前,我国隋代建造的赵州石拱 桥的桥拱是圆弧形,它的跨度(弧所对的弦 的长)为37.4米,拱高(弧的中点到弦的距 离,也叫弓形高)为7.2米,求桥拱的半径。 (精确到0.1米)。
若OA=10cm,OE=6cm,求弦 AB的长。 即右图中的OE叫弦心距.
人教版初三数学上册垂径定理

虎岭初中周郡校区 肖子慰
赵州桥主桥拱的半径是多少?
你知道赵问州题桥:吗?它是1300多年前我国隋代建造的石
拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是 圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧 的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱 的半径吗?
把一个圆沿着它的任意一 条直径对折,重复几次,你 发现了什么?由此你能得到 什么结论?
A
M└ 定B理:
●O
∴AM=BM.
∴A⌒C =B⌒C,
A⌒D =B⌒D.
D
C
O
垂直于弦的直径平分弦,并 A
M
B
且平分弦所对的两条弧
D
平分弦(定不理是: 直径)的直径垂直 于弦,并且平分弦所对的两条弧.
C
垂径定理:
由 ① CD是直径 ② CD⊥AB
推论:
可推得
O
A
M
B
③AM=BM,
④A⌒C=B⌒C,
C
·O
E
A
B
可以发现:
D
圆是轴活对动1称: 图形,任何一条直径所在直
线都是它的对称轴.它有无数条对称轴.
如图,在OD上取一点E (不与OD重合),过点E作AB 垂直CD交圆O于A、B, 你能发现图中有那些相等的线 段和弧?为什么?
(1) 线段: AE=BE
⌒⌒
⌒⌒
弧:AC=BC ,AD=BD
C
把圆沿着直活径动C2D:折叠时,CD两侧的
两个半圆重合,点A与点B重合,AE
与BE重合,A⌒C和B⌒C重合,A⌒D A 和B⌒D重合.
·O
E B
D
垂径定理
如图, 理由是: 连接OA,OB, 则OA=OB.
初中数学圆的定理

垂径定理垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。
数学表达为:如右图,直径DC 垂直于弦AB ,则AE=EB ,劣弧AD 等于劣弧BD ,等弧CAD= 优弧CBD。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
一条直线,在下列5 条中只要具备其中任意两条作为条件,就可以推出其他三条结论。
称为知二推三1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦(不是直径)4.垂直于弦5.经过圆心数学证明编辑如图,在⊙ O 中,DC 为直径,AB 是弦,AB ⊥DC 于点E,AB、CD 交于E,求证:AE=BE ,弧AC= 弧BC ,弧AD= 弧BD证明图示连接 OA 、 OB 分别交⊙ O 于 点 A 、点 B∵OA 、OB 是⊙O 的半径∴ OA=OB∴△ OAB 是等腰三角形∵AB ⊥DC∴ AE=BE ,∠ AOE= ∠BOE (等腰三角形的三线合一 性 质)∴弧 AD=弧 BD ,∠AOC= ∠BOC ∴弧 AC= 弧 BC推导定理 编辑 推论一:平分弦(不是直径)的直径垂直于这条弦 , 并且平原本命题,其中 CD 垂直于直线 AB分这条弦所对的两段弧。
几何语言:因为 DC 是直径, AE=EB ,所以直径 DC 垂直于弦 AB ,劣弧 AD 等于劣弧 BD ,优弧 ACO= 优弧 BCO推论二:弦的 垂直平分线 经过圆心 ,并且平分这条弦所对的弧。
几何语言: 因为 DC 垂直 AB ,AE=EB ,所以 DC 是圆的直径, 劣弧 AD 等于劣弧BD ,优弧 ACO= 优弧 BCO推论三:平分弦所对的一条弧的直径垂直平分这条弦 弧。
推论四:在同圆或者 等圆 中 ,两条平行弦所夹的弧相等。
韦达定理韦达定理( Viete theorem )为 解析几何 中的一个定理,说明了一元 n 次方程中根和 系数 之 间的关系。
人教版初三数学上册垂径定理及其推论

垂径定理及其推论
【垂径定理】
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
【注】
(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段;
(2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。
【垂径定理的推论】
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧;
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧;
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧;
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论:
1.平分弦所对的优弧
2.平分弦所对的劣弧
(前两条合起来就是:平分弦所对的两条弧)
3.平分弦 (不是直径)
4.垂直于弦
5.经过圆心。
垂径定理_精品文档

垂径定理垂径定理是解决几何问题中常用的一个定理,它和“垂直”有关。
垂径定理的全称是“垂直于直径的半径必垂直于圆”。
垂径定理的内容简单而明确,但它却具有重要的意义和应用价值。
本文将从垂径定理的定义、证明以及几个典型的应用来介绍垂径定理,并解释为什么它在解决几何问题中具有重要意义。
首先,我们来了解一下垂径定理的定义。
垂径定理主要是指:如果在一个圆上,有一个半径垂直于直径,那么这个半径和这个直径在圆上的交点之间的弧长就是90度。
换句话说,半径与直径的交点和圆上的其他点之间的弦垂直。
这是垂径定理的基本内容。
接下来,让我们来看一下垂径定理的证明。
首先,我们假设在一个圆上,有一个半径OA垂直于直径BC,如下图所示。
这是一个坐标证明的图。
为了简化问题,我们可以假设圆的半径为1。
因此,点O的坐标就是(0,1),点B的坐标就是(-1,0),点C 的坐标就是(1,0)。
我们知道,在直角三角形中,直角的两条边的斜率乘积为-1。
我们可以计算出OA的斜率为-1,而BC的斜率为0,因此满足垂径定理的条件。
我们可以继续应用几何知识来证明垂径定理。
根据半径垂直于弦的定义,我们知道OA垂直于BC。
根据直径的定义,我们知道BC就是圆的直径。
因此,根据垂直定理,我们可以得出结论,OA是圆的半径,它与直径BC垂直。
接下来,我们将介绍几个典型的应用垂径定理的例子。
例1:证明对称圆上的两条弦垂直在一个圆上,有两条弦AB和CD,且AB与CD以圆心为中点。
我们需要证明这两条弦互相垂直。
根据问题的设定,我们知道AB和CD以圆心O为中点。
因此,OA 等于OC,OB等于OD。
根据垂径定理的定义,OA垂直于AB,OC垂直于CD。
进一步观察,我们可以发现OA和OC重合,因为它们都是圆的半径,长度相等,方向相同。
同理,OB和OD重合。
因此,根据重合线段垂直定理,我们可以得出结论,AB垂直于CD。
例2:证明正方形的对角线相互垂直在一个正方形中,连接两个相对顶点的线段被称为对角线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂直于弦的直径
学习要求
1.理解圆是轴对称图形.
2.掌握垂直于弦的直径的性质定理及其推论.
课堂学习检测
一、基础知识填空
1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.
2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________________________.二、填空题
4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.
5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.
5题图
6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.
6题图
7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.
7题图
8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD 的距离是______.
8题图
9.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.
9题图
10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.
10题图
综合、运用、诊断
11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.
12.已知:如图,试用尺规将它四等分.
13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).
14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.
15.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.
拓广、探究、思考
16.已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是的中点.
(1)在CD上求作一点P,使得AP+PB最短;
(2)若CD=4cm,求AP+PB的最小值.
17.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥?。