高一期末数学压轴题
高一数学压轴题强化训练题学生版

高一数学压轴题强化训练题1.已知集合P={x|x 2≤1},M={a}.若P∪M=P,则a 的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)2.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是()A .-3≤m ≤4B .-3<m <4C .2<m <4D .2<m ≤43.已知非空集合A,B 满足以下两个条件:(i)A∪B={1,2,3,4,5,6},A∩B=∅(ii)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A.12B.13C.14D.154.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“好元素”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有().A .6个B .12个C .9个D .5个5.如果具有下述性质的x 都是集合M 中的元素,其中:),,(2Q b a b a x ∈+=则下列元素中不属于集合M 的元素的个数是由()①.,0=x ②,2=x ③,223π-=x ④,2231-=x ⑤246246++-=x .A.1个 B.2个 C.3个 D.4个6.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是()A .x 0∈NB .x 0∉NC .x 0∈N 或x 0∉ND .不能确定7.已知z y x ,,是非零实数,代数式xyz z z y y x x +++的值所组成的集合为M,则下列判断正确的是()A.M ∉0B.M ∈2C.M ∉-4D.M∈48.已知集合M ={x |x x -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于()A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}9.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是()A .-1<a ≤2B .a >2C .a ≥-1D .a >-110.对于集合A ,定义了一种运算“⊕”,使得集合A 中的元素间满足条件:如果存在元素e ∈A ,使得对任意a ∈A ,都有e ⊕a =a ⊕e =a ,则称元素e 是集合A 对运算“⊕”的单位元素.例如:A =R ,运算“⊕”为普通乘法:存在1∈R ,使得对任意a ∈R 都有1×a =a ×1=a ,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A =R ,运算“⊕”为普通减法;②A =R ,运算“⊕”为普通加法;③A ={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为()A .①②B .①③C .①②③D .②③11.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是.12.设全集{1,2,3,4,5,6}U =,用U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.①若}6,3,2{=M ,则C U M 表示的6位字符串为;②若{1,3}A =,集合A B 表示的字符串为101001,则满足条件的集合B 的个数是.13.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.14.设P 是一个数集,且至少含有两个数,若对任意,P b a ∈,都有P b a ab b a b a ∈-+,,,(除数),0≠b 则称P 是一个数域.例如有理数Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③数域必为无限集.其中正确的命题的序号是(把你认为正确的命题的序号都填上)15.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.16.已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件:①A U ⊆;②若x A ∈,则2x A ∉;③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是;(写出一个即可)(2)当7n =时,满足条件的集合A 的个数为.17.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数。
【压轴题】高一数学上期末模拟试题(带答案)

【压轴题】高一数学上期末模拟试题(带答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]3.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .34.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10935.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}6.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .(34D .)34,28.已知01a <<,则方程log xa a x =根的个数为( )A .1个B .2个C .3个D .1个或2个或3根9.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y10.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
高一下册数学 压轴题 汇总

,取最小值时b的值为
.
【2019-2020附中高一下期末】
16已知x,y为正实数,则 X+X2y+2XX+ y的最小值为
【2019-2020一中高一下期末】
16 函数f
x
= ax-a2 -4
a > 0, x E R
,
若 p气矿 =8,
则
f f
q p
的取值范围
勹Hale Waihona Puke 厂为等比数列,其前
n
项和为—n+1-
1 2n
瓦互 @若平行四边形 ABCD 为菱形, 乙 BAD= Dr , 设 an =I
I, 则数列 an 不单调。
飞-
A.G)@
B.@@
C.@@
D.G)
【2019-2020附中高一下期末】
22. 已知数列a
满足a,=-21 ,an+1
=
入an 1+an入
'
咋
N*
( 1 )若入=1 .
pq
pq
果存在,求出可能的p,q的值,如果不存在,请说明理由。
【2019-2020 巴蜀中学高一下期末】
22. (本小题满分12分)数列 an 满足c3i = 0, a2 = 2 , 且对任意 mnE N* 都有
a2m--1 + a加, = 2amt-n-i + 2 m- n 2.
(1) 设 bn = a2n+l — a2n-, nEN* , 证明: bn 是等差数列, 并求 an 的通项公式
(2) 设数列 en 满足Ci = 2, en+1 = acn + 1' 记 x 表示不超过 x 的最大整数,求不等
必修一高一数学压轴题

(x1 x2 )(1 x1x2 ) (1 x12 )(1 x22 )
Q 1 x1 x2 1 x1 x2 0 ,1 x1x2 0 , (1 x12 ) 0 , (1 x22 ) 0
f (x1) f (x2 ) 0 即 f (x1) f (x2 )
2
3
(1 2x 4x ga)2 3(1 22x 42x ga) t4 (a2 3a) 2at3 t2 (2a 2) 2(t 1) t4 (a2 3a2 ) 2at3 t2 (2a 2) 2(t 1) (at 1)2 t2 (at2 1)2 (t 1)2 0 ∴ 2 f (x) f (2x)
a 3x 4 a 3
,若函数 f (x) 与 h(x) 的图象有且只有一个公共点,求实数 a 的取值范围.
10. 若函数 f (x) x2 2x ,则对任意实数 x1, x2 ,下列不等式总成立的是( C )
A. f ( x1 x2 ) f (x1) f (x2 ) B. f ( x1 x2 ) f (x1) f (x2 )
.
15、函数 f (x) log 1 (x2 x 2) 的单调递增区间为
.
2
16、定义在 R 上的奇函数 f (x) 满足:当 x 0 时, f (x) 2009x log2009 x ,则方程 f (x) 0 的实根个数为
.
DC B C B DC B DC C D
二、填空题:( 5 4 20 分)13、4;14、4;15、 (, 1) ;16、3
(3)当 0
a
1, x
0
时, 2 f
第6章 幂函数、指数函数和对数函数【压轴题型专项训练】(解析版)

2021-2022学年高一数学单元复习过过过【压轴题型专项训练】第6章幂函数、指数函数和对数函数一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•迎泽区月考)若函数()log (2)(0a f x ax a =->,1)a ≠在区间(1,3)内单调递增,则a 的取值范围是A .2[3,1)B .(0,2]3C .3(1,)2D .3[,)2+∞【答案】B【解析】令log a y t =,2t ax =-,0a > 2t ax ∴=-在(1,3)上单调递减()log (2)(0a f x ax a =-> ,1)a ≠在区间(1,3)内单调递增∴函数log a y t =是减函数,且()0t x >在(1,3)上成立∴01(3)230a t a <<⎧⎨=-⎩ 203a ∴<故选B .2.(2020•扬州模拟)设方程22|log |1xx = 的两根为1x ,212()x x x <,则A .10x <,20x >B .101x <<,22x >C .121x x >D .1201x x <<【答案】D【解析】若22|log |1x x = 即21|log |2xx =在同一坐标系中同时坐出函数12xy =与2|log |y x =的图象如下图所示由图象可得1213122x x <<<<故答案A ,B 错误且11121log 2xx =⋯①,2221221log log 2x x x ==-⋯②①-②得12112211log ()022xx x x -=> 故1201x x <<故选D .3.(2020•陆良县一模)已知函数2()(||1)1f x ln x x =+++,则使得()(21)f x f x >-的x 的取值范围是A .1(,1)3B .1(,)(1,)3-∞+∞ C .(1,)+∞D .1(,)3-∞【答案】A【解析】 函数2()(||1)1f x ln x x =+++为定义域R 上的偶函数,且在0x 时,函数单调递增,()(21)f x f x ∴>-等价为(||)(|21|)f x f x >-,即|||21|x x >-,两边平方得22(21)x x >-,即23410x x -+<,解得113x <<;∴使得()(21)f x f x >-的x 的取值范围是1(3,1).故选A .4.(2020•沈阳模拟)已知1x 是方程23xx ⋅=的根,2x 是方程2log 3x x =的根,则12x x 的值为A .2B .3C .6D .10【答案】B【解析】方程23x x ⋅=可变形为方程32x x =,方程2log 3x x =可变形为方程23log x x=,1x 是方程23x x ⋅=的根,2x 是方程2log 3x x =的根,1x ∴是函数2x y =与函数3y x =的交点横坐标,2x 是函数2log y x ==与函数3y x=的交点横坐标,函数2x y =与函数2log y x =互为反函数,∴函数2log y x =与函数3y x =的交点横坐标是函数2x y =与函数3y x=的交点纵坐标.又3y x=图象上点的横纵坐标之积为3,123x x ∴=故选B .5.(2020•遂川县模拟)已知函数212()log ()f x x ax a =--的值域为R ,且()f x 在(3,1--上是增函数,则a 的取值范围是A .02aB .942a -- C .40a -<<D .0a <【答案】A【解析】当0a >时,△240a a =+ ,解得0a 或4a - ,()f x 在(3,1--上是增函数,∴内层函数2x ax a --在(3,1-上是减函数12a21()|0x x ax a =-- .即2a - ,且2a 综上知实数a 的取值范围是02a 故选A .6.(2020•大连模拟)若()||,0,()()2()2a bf x lgx a b f a f b f +=<<==,则b 的值所在的区间为A .(1,2)B .(2,3)C .(3,4)D .(4,5)【答案】C【解析】01()||01lgxlgx lgx x f x lgx lgxlgx lgx x >>⎧⎧===⎨⎨-<-<⎩⎩故()f x 在(0,1)上是减函数,在(1,)+∞上是增函数,且()0f x >.由0a b <<,f (a )f =(b )得01a <<,1b >,故lga lgb -=,即0lga lgb lgab +==,1ab =.∴12a b+>=,∴02a b lg +>由()2(2a b f b f +=得22(22a b a b lgb lg lg ++==,所以2(2a b b +=由1ab =得214()b b b =+,令g (b )214()b b b=-+,则g (3)0>,g (4)0<,故(3,4)b ∈故选C .7.(2020春•秦州区期末)已知定义在R 上的函数()y f x =对任意的x 都满足(2)()f x f x +=,当11x -< 时,3()f x x =.若函数()()log ||a g x f x x =-恰有6个不同零点,则a 的取值范围是A .1(7,1](55⋃,7]B .1(5,1](53⋃,7]C .1(5,1](33⋃,5]D .1(7,1](35⋃,5]【答案】A【解析】首先将函数()()log ||a g x f x x =-恰有6个零点,这个问题转化成()log ||a f x x =的交点来解决.数形结合:如图,(2)()f x f x +=,知道周期为2,当11x -< 时,3()f x x =图象可以画出来,同理左右平移各2个单位,得到在(7,7)-上面的图象,以下分两种情况:(1)当1a >时,log ||a x 如图所示,左侧有4个交点,右侧2个,此时应满足log 51log 7a a < ,即log 5log log 7a a a a < ,所以57a < .(2)当01a <<时,log ||a x 与()f x 交点,左侧有2个交点,右侧4个,此时应满足log 51a - ,log 71a <-,即log 5log log 7a a a a -> ,所以157a -< ,解得:1175a < ,综上所述,a 的取值范围是:57a < 或1175a < ,故选A .8.(2020•齐齐哈尔三模)设函数()f x 定义域为D ,若满足①()f x 在D 内是单调函数;②存在[a ,]b D ⊆使()f x 在[a ,b]上的值域为[a ,b],那么就称()y f x =为“成功函数”.若函数2()log ()(0xa g x a t a =+>,1)a ≠是定义域为R 的“成功函数”,则t 的取值范围为A .(0,)+∞B .(,0)-∞C .1[0,4D .1(0,)4【答案】D【解析】依题意,函数2()log ()(0x a g x a t a =+>,1)a ≠在定义域上为单调函数,当0t =时,()2g x x =不满足条件②,当20.()x a t log a t x >+=有两个不相等的实数根,即2log ()log x x a a a t a +=,则2x x a t a +=,令x a m =-,则20m m t -+=,△140t =->,解得14t <,∴结合题意,得:104t <<,故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021秋•岳麓区月考)已知互不相等的三个实数a ,b ,c 都大于1,且满足a alga lglgc lg c b⋅=⋅,则a ,b ,c 的大小关系可能是A .a b c <<B .b c a<<C .a c b<<D .b a c<<【答案】ABC【解析】因为互不相等的三个实数a ,b ,c 都大于1,所以0lga >,0lgb >,0lgc >;且a a lga lglgc lg c b⋅=⋅,对于A 选项,若a b c <<,则01a c <<,01a b <<,所以0a lg c <,0alg b<,能满足题意;对于B 选项,若b c a <<,则1a c >,1a b >,所以0a lg c >,0alg b >,能满足题意;对于C 选项,若a c b <<,则01a c <<,01a b <<,所以0a lg c <,0alg b <,能满足题意;对于D 选项,若b a c <<,则01a c <<,1a b >,所以0a lg c <,0alg b>,不能满足题意.故选ABC .10.(2021•湖南模拟)已知lgxa x=,lgyb y=,lgyc x=,lgxd y=,且1x ≠,1y ≠,则A .x ∃,(0,)y ∈+∞,使得a b c d <<<B .x ∀,(0,)y ∈+∞,都有c d=C .x ∃,(0,)y ∈+∞,且x y ≠,使得a b c d ===D .a ,b ,c ,d 中至少有两个大于1【答案】BD【解析】由题意得,2lga lg x =,2lgb lg y =,lgc lgx lgy =⋅,lgd lgx lgy =⋅,x ,(0,)y ∈+∞,都有c d =,B 正确.A ,C 错误;假设a ,b ,c ,d 中最多一个大于1,若10x >,10y >,则a a >,1b >,1c >,1d >,假设不成立,故D 正确.故选BD .11.(2021秋•江苏月考)已知函数()(1)xf x a a =>,()()()g x f x f x =--,若12x x ≠,则A .1212()()()f x f x f x x =+B .1212()()()f x f x f x x +=C .11221221()()()()xg x x g x x g x x g x +>+D .1212()()()22x x g x g x g ++【答案】AC【解析】因为函数()(1)x f x a a =>是单调增函数,所以1()()()()x x x x g x f x f x a a a a-=--=-=-为单调增函数,所以121212()()()x x f x f x a f x x +⋅==+,选项A 正确;又12121212()()()x x x x f x f x a a a f x x ⋅+=+≠=,选项B 错误;因为11122122[()()][()()]x g x x g x x g x x g x ---112212[()()][()()]x g x g x x g x g x =---1212()[()()]x x g x g x =--,12x x ≠,所以12x x >时,12()()g x g x >,11122122[()()][()()]0x g x x g x x g x x g x --->,所以11221221()()()()x g x x g x x g x x g x +>+,选项C 正确;因为函数()x x g x a a -=-为R 上的单调增函数,且图象关于原点对称,以2a =为例,画出函数()22x x g x -=-的图象,如图所示:所以不满足1212()()(22x x g x g x g ++,选项D 错误.故选AC .12.(2020秋•绍兴期末)已知函数()log (1)(0a f x x a =->,且11)()(||)a g x f x ≠=,2()|()|g x f x =,3()|(||)|g x f x =A .函数1()g x ,2()g x ,3()g x 都是偶函数B .若111212()()()g x g x a x x ==<,则214x x ->C .若212212()()()g x g x a x x ==<,则12111x x +=D .若313233341234()()()()()g x g x g x g x x x x x ===<<<,则123411110x x x x +++=【答案】CD【解析】选项A :因为2()|log (1)|a g x x =-的定义域为(1,)+∞,不关于原点对称,所以不是偶函数,故A 错误,选项B :因为1()log |1|a g x x =-,当1x >时,由111212()()()g x g x a x x ==<可得:21a x a =+,同理可得11a x a =--,所以2122a x x a -=+,当12a =时,2124x x -+<,故B 错误,选项C :当|()|f x a =时,有()f x a =或a -,则11a x a -=+,21a x a =+,(0)a >,所以121212111121(1)(1)2a a a a a a a a x x a a a a x x x x a a a a ----+++++++====++++,故C 正确,选项D :由313233341234()()()()()g x g x g x g x x x x x ===<<<,设31()1g x =,则11x a =--,211x a =--,311x a=+,41x a =+,所以1231111,,111a ax a x a x a =-=-=+++,4111x a =+,所以则123411110x x x x +++=,故D 正确,故选CD .三、填空题:本题共4小题,每小题5分,共20分.13.(2021春•乌海期末)已知函数2()|log |f x x =,若f (a )f =(b )且a b <,则21a b+的取值范围为.【答案】(3,)+∞【解析】 函数2()|log |f x x =,且f (a )f =(b ),22log log a b ∴=-,即22log log 0a b +=,即1ab =,又a b < ,01a ∴<<,212a ab a+=+,2y a a=+ 在(0,1)上单调递减,∴2213a a+>+=,故答案为:(3,)+∞.14.(2020•贾汪区模拟)若直角坐标平面内的两个不同点M 、N 满足条件:①M 、N 都在函数()y f x =的图象上;②M 、N 关于原点对称.则称点对[M ,]N 为函数()y f x =的一对“友好点对”.(注:点对[M ,]N 与[N ,]M 为同一“友好点对”),已知函数32log (0)()4(0)x x f x x x x >⎧=⎨--⎩,此函数的“友好点对”有.【答案】2对【解析】根据题意:当0x >时,0x -<,则22()()4()4f x x x x x -=----=-+,则函数24(0)y x x x =-- 的图象关于原点对称的函数是24(0)y x x x =- 由题意知,作出函数24(0)y x x x =- 的图象及函数3()log (0)f x x x =>的图象如下图所示由图可得两个函数图象共有两个交点即()f x 的“友好点对”有:2个.故答案为:215.(2020•衡水二模)如图,已知过原点O 的直线与函数8log y x =的图象交于A ,B 两点,分别过A ,B 作y 轴的平行线与函数2log y x =图象交于C ,D 两点,若//BC x 轴,则四边形ABCD 的面积为.23【解析】设点A 、B 的横坐标分别为1x 、2x 由题设知,11x >,21x >.则点A 、B 纵坐标分别为81log x 、82log x .因为A 、B 在过点O 的直线上,所以818212log x log x x x =,点C 、D 坐标分别为1(x ,21log )x ,2(x ,22log )x.由于BC 平行于x 轴知2182log log x x =,即得21221log log 3x x =,321x x ∴=.代入281182log log x x x x =得3181181log 3log x x x x =.由于11x >知81log 0x ≠,3113x x ∴=.考虑11x >解得1x .于是点A的坐标为,log即A ,162log3)B ∴21log 3)2,C 21log 3)2,D 23log 3)2.∴梯形ABCD 的面积为11()(22S AC BD BC =+⨯=2221log 3log 3)333+⨯=.故答案为:2log 33.16.(2020•沈河区模拟)设函数2()(1)f x lg x ax a =+--,给出下列命题:(1)()f x 有最小值;(2)当0a =时,()f x 的值域为R ;(3)当0a >时,()f x 在区间[2,)+∞上有单调性;(4)若()f x 在区间[2,)+∞上单调递增,则实数a 的取值范围是4a - .则其中正确的命题是.(写上所有正确命题的序号).【答案】(2)(3)【解析】21u x ax a =+-- 的最小值为21(44)04a a -++ ∴函数()f x 的值域为R 为真命题,故(2)正确;但函数()f x 无最小值,故(1)错误;若()f x 在区间[2,)+∞上单调递增,则2,42102a a a -+-->且 解得3a >-,故(3)正确,(4)错误;故答案为:(2)(3).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2020秋•宁县期末)已知函数4()1(0,1)2xf x a a a a =->≠+且(0)0f =.(Ⅰ)求a 的值;(Ⅱ)若函数()(21)()x g x f x k =+⋅+有零点,求实数k 的取值范围;(Ⅲ)当(0,1)x ∈时,()22x f x m >⋅-恒成立,求实数m 的取值范围.【答案】(Ⅰ)对于函数4()1(0,1)2x f x a a a a =->≠+,由4(0)102f a =-=+,求得2a =,故42()1122221x x f x =-=-⋅++.(Ⅱ)若函数()(21)()21221x x x g x f x k k k =+⋅+=+-+=-+有零点,则函数2x y =的图象和直线1y k =-有交点,10k ∴->,求得1k <.(Ⅲ) 当(0,1)x ∈时,()22x f x m >⋅-恒成立,即212221x x m ->⋅-+恒成立.令2x t =,则(1,2)t ∈,且323112(1)(1)1t m t t t t t t t +<-==++++.由于121t t ++在(1,2)t ∈上单调递减,∴1212712216t t +>+=++,76m ∴ .18.(2020秋•越秀区期末)已知函数()log (0,1)a f x x a a =>≠.(1)若120x x <<,试比较12(2x x f +与12()()2f x f x +的大小,并说明理由;(2)若1a >,且(A t ,())f t ,(2B t +,(2))f t +,(4C t +,(4))(2)f t t + 三点在函数()y f x =的图象上,记ABC ∆的面积为S ,求()Sg t =的表达式,并求()g t 的值域.【答案】设12121212()()()()2222a a a log x log x x x f x f x x x K f log ++++=-=-12()2a a x x log log log +=-=1>,12(0)x x <<.(1)对a 进行讨论:当1a >时,0K >,1212()()()22x x f x f x f ++>;当01a <<时,0K <,1212()()()22x x f x f x f ++<;(2)分别过A 、B 、C 作x 轴垂线交x 轴于M 、N 、P ,所以S 等于两梯形面积和与大梯形面积之差,2111(2)4()(()(2))2((2)(4))2(()(4))42log (2)log ()l og (4)()(1)222(4)(4)a a a a a t S g t f t f t f t f t f t f t t t t log log t t t t +==++⋅++++⋅-++⋅=+--+==+++,(2)t ;()g t 的值域为4(0,())3a log.19.(2020秋•西湖区期中)已知函数2()log (1)(01a f x a x =->+且1)a ≠.(Ⅰ)判断函数()f x 的奇偶性并说明理由;(Ⅱ)当01a <<时,判断函数()f x 在(1,)+∞上的单调性,并利用单调性的定义证明;(Ⅲ)是否存在实数a ,使得当()f x 的定义域为[m ,]n 时,值域为[1log a n +,1log ]a m +?若存在,求出实数a 的取值范围;若不存在,请说明理由.【答案】(1)由2101x ->+,可得1x <-或1x >,()f x ∴的定义域为(-∞,1)(1-⋃,)+∞;(21()log (1log )11a a x f x x x -=-=++ ,且(111()log log (log ()()111a a a x x x f x f x x x x --+--===-=--+-+;()f x ∴在定义域上为奇函数.(2)当01a <<时,()f x 在(1,)+∞单调递减,任取1x ,2x 且121x x <<,12121211211(1)(1)()()()()log ()121(1)(1)a a a x x x x f x f x log log x x x x ---+-=-=+++-;由121212(1)(1)(1)(1)2()0x x x x x x -+-+-=-<,1212(1)(1)01(1)(1)x x x x -+∴<<+-,又01a <<,1212(1)(1)log ()0(1)(1)a x x x x -+∴>+-则12()()f x f x >,()f x ∴在(1,)+∞单调递减;(3)假设存在这样的实数a ,使得当()f x 的定义域为[m ,]n 时,值域为[1log a n +,1log ]a m +;由0m n <<,又log 1log 1a a n m +<+,即log log a a n m <,01a ∴<<.由(2)知:()f x 在(1,)+∞单调递减,()f x ∴在(,)m n 单调递减,∴1()()111()()11a a a a m f m log log m m n f n log log n n -⎧==+⎪⎪+⎨-⎪==+⎪+⎩,即m ,n 是方程1log log 11a a x x x -=++的两个实根,即11x ax x -=+在(1,)+∞上有两个互异实根;于是问题转化为关于x 的方程2(1)10ax a x +-+=在(1,)+∞上有两个不同的实数根,令2()(1)1g x ax a x =+-+,则有2(1)40112(1)0a a a a g ⎧=-->⎪-⎪->⎨⎪>⎪⎩,解得03a <<-故存在实数(0,3a ∈-,使得当()f x 的定义域为[m ,]n 时,值域为[1log a n +,1log ]a m +.20.(2020秋•南昌期末)定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M ,都有|()|f x M 成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的一个上界.已知函数11()1()()24x x f x a =++,121()log 1ax g x x -=-.(1)若函数()g x 为奇函数,求实数a 的值;(2)在(1)的条件下,求函数()g x 在区间9[,3]7上的所有上界构成的集合;(3)若函数()f x 在[0,)+∞上是以5为上界的有界函数,求实数a 的取值范围.【答案】(1)因为函数()g x 为奇函数,所以()()g x g x -=-,即112211log log 11ax ax x x +-=----,即1111ax x x ax+-=---,得1a =±,而当1a =时不合题意,故1a =-.(2)由(1)得:121()log 1x g x x +=-,而112212()log log (111x g x x x +==+--,易知()g x 在区间(1,)+∞上单调递增,所以函数121()log 1x g x x +=-在区间9[,3]7上单调递增,所以函数121()log 1x g x x +=-在区间9[,3]7上的值域为[3-,1]-,所以|()|3g x ,故函数()g x 在区间9[,3]7上的所有上界构成集合为[3,)+∞.(3)由题意知,|()|5f x 在[0,)+∞上恒成立,5()5f x - ,1116(()4()424x x x a --- .∴1162(42()22x x x x a -⋅-⋅- 在[0,)+∞上恒成立.∴11[62()][42()]22x x x x max min a -⋅-⋅- 设2x t =,1()6h t t t =--,1()4P t t t=-,由[0x ∈,)+∞,得1t .易知()P t 在[1,)+∞上递增,设121t t < ,21121212()(61)()()0t t t t h t f t t t ---=>,所以()h t 在[1,)+∞上递减,()h t 在[1,)+∞上的最大值为h (1)7=-,()p t 在[1,)+∞上的最小值为p (1)3=,所以实数a 的取值范围为[7-,3].21.(2021秋•金山区期中)已知函数2()32log f x x =-,2()log g x x=(1)如果[1x ∈,2],求函数()[()1]()h x f x g x =+的值域;(2)求函数()()|()()|()2f xg x f x g x M x +--=的最大值.(3)如果对任意[1x ∈,2],不等式2()()f x f k g x > 恒成立,求实数k 的取值范围.【答案】(1)令2log t x =,则()3f x t =-,()g x t =,222()(42log )log 2(1)2h x x x t =-=--+ .[1x ∈ ,2],[0t ∴∈,1],故当1t =时,()h x 取得最大值为2,当2t =时,函数取得最小值为0,()h x ∴的值域为[0,2].(2)函数(),()()()()|()()|()(),()()2g x f x g x f x g x f x g x M x f x f x g x ⎧+--==⎨<⎩,2()()3(1log )f x g x x -=- ,∴当(0x ∈,2]时,()()f x g x 2()log M x x =.当(2,)x ∈+∞时,()()f x g x <2()32log M x x =-.即22log ,02()32log ,2x x M x x x <⎧=⎨->⎩ .当02x < 时,()M x 最大值为1;当2x >时,()1M x <.综上:当2x =时,()M x 取到最大值为1.(3) 对任意[1x ∈,2],不等式2()()f x f k g x > 恒成立,即222(34log )(3log )log x x k x -->.[1x ∈ ,2],[0t ∴∈,1],(34)(3)t t kt ∴-->对一切[0t ∈,1]恒成立.①当0t =时,k R ∈.②当(0t ∈,1],9415k t t <+-,9()415h t t t=+- 在(0,1]上是减函数,()2min h t ∴=-,(1t =时),2k ∴<-.综述,k 的取值范围为(,2)-∞-.22.(2020秋•东湖区期中)已知函数()f x为对数函数,并且它的图象经过点3)2,函数2()[()]2()3g x f x bf x =-+在区间上的最小值为h (b ),其中b R ∈.(1)求函数()f x 的解析式;(2)求函数()y g x =的最小值h (b )的表达式;(3)是否存在实数m 、n 同时满足以下条件:①4m n >>;②当h (b )的定义域为[n ,]m 时,值域为2[n ,2]m .若存在,求出m 、n 的值;若不存在,说明理由.【答案】(1)()f x的图象经过点32,∴32f =,即3log 2a =∴33222a ==,即22()log (0)a f x x x =∴=>(2)设2()log t f x x ==,16x ,∴22log log 16x ∴1()42f x ,即142t 则222()23()3y g t t bt t b b ==-+=-+-,1(4)2t ,对称轴为t b =①当12b <时,()y g t =在1[,4]2上是增函数,113(24min y h b ==-②当142b 时,()y g t =在1[,]2b 上是减函数,在(b ,4]上是增函数,2()3min y h b b ==-③当4b >时,()y g t =在1[,4]2上是减函数,min y h =(4)198b =-综上所述,2131,4213,42198,4minb b y b b b b ⎧-<⎪⎪⎪=-⎨⎪->⎪⎪⎩ (3)4m n >> ,[b n ∈,]m ,h ∴(b )198b =-.h (b )的定义域为[n ,]m ,值域为2[n ,2]m ,且h (b )为减函数,∴22198198m n n m⎧-=⎨-=⎩两式相减得8()()()m n m n m n -=-+,m n > ,0m n ∴-≠,得8m n +=,但这与“4m n >>”矛盾,故满足条件的实数m ,n 不存在.。
2020-2021学年人教版必修二高一数学满分期末冲刺卷07 立体几何 压轴题(浙江解析版)

专题07立体几何压轴题(共38题)一、单选题1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.17B.25C.3D.2【答案】B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,22+= B.4225点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2.如图,已知正方形ABCD和正方形ABEF所在平面成60°的二面角,则直线BD与平面ABEF所成角的正弦值为().A .23B 5C 6D 3 【答案】C 【解析】由题意得DA AB ⊥,FA AB ⊥,可知DAF ∠为平面ABCD 和平面ABEF 所成的二面角,即60DAF ∠=,利用线面垂直判定定理得AB ⊥平面DAF ,取AF 中点M ,连接DM ,利用线面垂直判定定理知DM⊥平面ABEF ,即DBM ∠为直线BD 与平面ABEF 所成角,在直角DMB 中,利用正弦可求得结果.由题意得,平面ABCD 平面ABEF AB =,且DA AB ⊥,FA AB ⊥DAF ∴∠为平面ABCD 和平面ABEF 所成的二面角,即60DAF ∠=,则DAF △为等边三角形,设2AF =又DAAF A =,可知AB ⊥平面DAF取AF 中点M ,连接DM ,则DM AF ⊥,又DM ⊂平面DAF ,则DM AB ⊥又AB AF A =,可知DM ⊥平面ABEF ,DBM ∴∠为直线BD 与平面ABEF 所成角,在直角DMB 中,222222DB =+=,22213DM =-63sin 22DM DBM DB ∴∠===故选:C【点睛】关键点点睛:本题考查二面角定义及求线面角,解题的关键是先利用二面角定义找到平面ABCD 和平面ABEF 所成的二面角,从而利用该角找到边的关系,再利用做辅助线找到线面角,在直角三角形中求角的正弦,考查学生的转化能力,逻辑推理能力与运算求解能力,属于中档题.3.如图,在棱长为2的正方体1111ABCD A B C D -中,M 是11A B 的中点,点P 是侧面11CDD C 上的动点,且1MP AB C ,则线段MP 长度的取值范围是A .2,6⎡⎣B .6,22⎤⎦ C .6,23⎡⎣D .3,6⎡⎣【答案】B 【解析】取CD 的中点N ,1CC 的中点R ,11B C 的中点H ,根据面面平行的判定定理,得到平面//MNRH平面1AB C ,确定线段MP 扫过的图形是MNR ,再由题中数据,得到MRN ∠是直角,进而即可求出结果.取CD 的中点N ,1CC 的中点R ,11B C 的中点H ,则1////MN B C HR ,//MH AC ,∴平面//MNRH平面1AB C ,∴MP ⊂平面MNRH ,线段MP 扫过的图形是MNR∵2AB =,∴22,2,6MN NR MR ===,∴222MN NR MR =+,∴MRN ∠是直角, ∴线段MP 长度的取值范围是6,22⎡⎤⎣⎦.故选B. 【点睛】本题主要考查面面平行的判定,熟记面面平行的判定定理即可,属于常考题型. 4.如图,正方形ABCD 和正方形ADEF 成60︒的二面角,将DEF 绕DE 旋转,在旋转过程中(1)对任意位置,总有直线AC 与平面DEF 相交;(2)对任意位置,平面DEF 与平面ABCD 所成角大于或等于60︒; (3)存在某个位置,使DF ⊥平面ABCD ;(4)存在某个位置,使DF BC ⊥.其中正确的是( ). A .(1)(3) B .(2)(3)C .(2)(4)D .(3)(4)【答案】C 【解析】采用逐一验证法,根据线线、线面、面面之间的位置关系,可得结果.过D 作AC 的平行线l , 如图当平面DEF 过l 时,直线AC 与平面DEF 平行,故(1)错误;DEF 绕DE 旋转形成一个以DE 为高,EF 为底面半径的圆锥,设平面ABCD 的法向量为n ,平面DEF 的法向量为r , 则向量n 所在直线与圆锥底面所成角为60︒, 向量r 所在直线为圆锥底面的半径所在直线,根据最小角原理,n 与r 的夹角大于或等于60︒,故(2)正确; 若有DF⊥平面ABCD ,则AD DF ⊥,∴AD ⊥平面DEF ,则F 在平面DEC 内, 此时DF 与平面ABCD 所成角为15︒或75︒,矛盾, 故(3)错误;当AD DF ⊥,∴AD ⊥平面DEF 时,AD DF ⊥, ∴DFBC ⊥,故(4)正确.故选:C 【点睛】本题考查立体几何中存在性问题,重在考查空间想象能力,属基础题.5.如图,在长方形ABCD 中,AD CD <,现将ACD △沿AC 折至1ACD △,使得二面角1A CD B --为锐二面角,设直线1AD 与直线BC 所成角的大小为α,直线1BD 与平面ABC 所成角的大小为β,二面角1A CD B --的大小为γ,则,,αβγ的大小关系是( )A .αβγ>>B .αγβ>>C .γαβ>>D .不能确定【答案】B【解析】先证明最小角定理,再过点1D 作1D O ⊥平面ABC ,过点B 作BO '⊥平面1ACD ,连接OB ,过O '作1O H CD '⊥,连接BH ,可得BHO γ'∠=,1D BO β∠=,由等体积法可得1BO D O '=,进而可得βγ,的大小,在平面1AD C 内,111,AD D C O H D C '⊥⊥,所以1//AD O H '.所以α等于直线O H '与BC 所成的角BHO '∠也为直线O H '与平面1BCD 所成的角,根据上面已证的最小角定理有BHO α'∠<,从而得到答案.解决本题,先来了解最小角定理:平面外的一条斜线和它在平面内的射影所成的锐角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角平面斜交的直线与它在该平面内的射影的夹角不大于直线与平面内其他直线的夹角. 证明如下: 直线AB 与平面α斜交,斜足为B ,AO ⊥平面α,BC OC ⊥,由AO ⊥平面α,BCOC ⊥,可证明BC ⊥平面AOC , 则BCAC ⊥.则cos BOABO AB ∠=, cos BCABC AB ∠=,cos BCOBC BO∠=,所以cos cos BO BC BCABO OBCAB BO AB∠⋅∠=⨯=, 即cos cos cos ABC ABO OBC ∠=∠⋅∠, 故cos cos ABC ABO ∠<∠,ABC ABO ∠>∠.过点1D 作1D O ⊥平面ABC ,过点B 作BO '⊥平面1ACD , 连接OB . 过O '作1O HCD '⊥,连接BH ,如图:则1D BO ∠为直线1BD 与平面ABC 所成角, 即1D BO β∠=, 由BO '⊥平面1ACD , 则1BO CD '⊥, 又1O HCD '⊥,且BO O H O '''⋂=所以1D C ⊥平面BO H ', 则1CD BH ⊥所以BHO '∠为二面角1A CD B --的平面角, 即BHO γ'∠=, 又11D ABC B AD C V V --=,即111133ABC AD C S OD S O B '⨯⨯=⨯⨯△△, 且112AD C ABCD S ABC S S ==矩形△△,所以1BO D O '=.由sin ,BO BHO BH''∠=111sin D OD BO BD ∠=, 由1BHBD <,所以sin BHO '∠> 1sin D BO ∠,即BHO '∠> 1D BO ∠,也即γβ>. 又在平面1AD C 内,111,AD D C O H D C '⊥⊥,所以1//AD O H '.所以α等于直线O H '与BC 所成的角,BHO '∠也为直线O H '与平面1BCD 所成的角.根据上面已证的最小角定理有BHO α'∠<. 所以αγβ>>, 故选:B. 【点睛】方法点睛:最小角定理:平面外的一条斜线和它在平面内的射影所成的锐角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角平面斜交的直线与它在该平面内的射影的夹角不大于直线与平面内其他直线的夹角. 6.已知直四棱柱1111ABCD A B C D -,其底面ABCD 是平行四边形,外接球体积为36π,若1AC BD ⊥,则其外接球被平面11AB D 截得图形面积的最小值为( ) A .8π B .24310π C .8110π D .6π【答案】A 【解析】由条件可得ABCD 为矩形,进而可得BD ⊥平面1ACC ,所以BD AC ⊥,则四边形ABCD 为正方形,所以直四棱柱1111ABCD A B C D -为正四棱柱,设1,AB AD a CC b ===,由余弦定理可得11cos AD B ∠的值,求出11sin AD B ∠的值,由正弦定理可得11AB D的外接圆的半径为2r=,由均值不等式可得r 的最小值,从而得出答案.由直四棱柱1111ABCD A B C D -内接于球,则,,,A B C D 四点在球面上, 所以四边形ABCD 为球的一截面圆的内接四边形,所以对角互补. 又四边形ABCD 是平行四边形,所以ABCD 为矩形.在直四棱柱1111ABCD A B C D -中,1CC ⊥平面ABCD ,所以1CC BD ⊥ 又1AC BD ⊥,111AC CC C =,所以BD ⊥平面1ACC ,所以BD AC ⊥所以四边形ABCD 为正方形,所以直四棱柱1111ABCD A B C D -为正四棱柱. 由外接球体积为34363R ππ=,则球的半径为3R =, 由1AC 为该外接球的直径,则16AC =设1,AB AD a CC b ===,则2221236AC a b =+=,则22362b a =-在11AB D 中,11AB AD ====11B D =由余弦定理可得2222111111111cos 2AD B D AB AD B AD B D +-∠===⋅所以11sin AD B ∠===设11AB D 的外接圆的半径为r,由正弦定理可得2111362sin a AB r AD B -===∠所以22r ⎫===≥==,即a=r 的最小值为其外接球被平面11AB D 截得图形面积的最小值为:28S r ππ== 故选:A【点睛】关键点睛:本题考查几何体的外接球的截面面积问题,解答本题的关键是先由线面垂直关系得出直四棱柱1111ABCD A B C D -为正四棱柱,然后由余弦定理和正弦定理得出11AB D 的外接圆的半径22624r a=-,由均值不等式求出最小值,属于难题.7.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点,则下列结论错误的是A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+【答案】C 试题分析:∵111AD DC ⊥,11A B DC ⊥,∴1DC ⊥面11A BCD ,1D P ⊂面11A BCD ,∴11DC D P ⊥,A 正确;∵平面11D A P 即为平面11D A BC ,平面1A AP 即为平面11A ABB ,且11D A ⊥平面11A ABB , ∴平面11D A BC ⊥平面11A ABB ,∴平面11D A P ⊥平面1A AP ,∴B 正确;当1202A P <<时,1APD ∠为钝角,∴C 错;将面1AA B 与面11A BCD 沿1A B 展成平面图形,线段1AD 即为1AP PD +的最小值,在11D A A ∆中,11135D A A ∠=,利用余弦定理解三角形得122AD =+即122AP PD +≥+,∴D 正确,故选C .考点:立体几何中的动态问题.【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:1.求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离. 8.已知正方体1111ABCD A B C D -的棱长为1,P 是空间中任意一点,下列说法错误的个数是( ) ①若P 为棱1CC 中点,则异面直线AP 与CD 所成角的正切值为5;②若P 在线段1A B 上运动,则1AP PD +的最小值为622+;③若P 在半圆弧CD 上运动,当三棱锥P ABC -的体积最大时,三棱柱P ABC -外接球的表面积为2π;④若过点P 的平面α与正方形每条棱所成角相等,则α截此正方体所得截面面积的最大值为33A .1个B .2个C .3个D .4个【答案】A【解析】 根据异面直线的夹角求解,棱锥外接球的求解,以及正方体截面的性质,对选项进行逐一分析即可.对于①,如图所示,由//AB CD ,可知BAP ∠即为异面直线AP 与CD 所成的角.设正方体的棱长为2,连接BP ,则在RT BAP 中,2AB =,2222215BP BC CP =+=+= 5tan 2BP BAP AB ∠==,故①正确 对于②,将三角形1AA B 与四边形11A BCD 沿1A B 展开到同一个平面上,如图所示.由图可知,线段1AD 的长度即为1AP PD +的最小值.在11AA D 中,利用余弦定理可得122AD=+,故②错误.对于③,如下图所示:当P 为CD 中点时,三棱锥P ABC -体积最大,此时,三棱锥P ABC-的外接球球心是AC中点,半径为22﹐其表面积为2π.故③正确.对于④﹐平面α与正方体的每条棱所在直线所成的角都相等,只需与过同一顶点的三条棱所成的角相等即可,如图所示:AP AR AQ==.则平面PQR与正方体过点A的三条棱所成的角相等.若点E,F,G,H,M,N分别为相应棱的中点,可得平面EFGHMN平行于平面PQR,且六边形EFGHMN为正六边形.正方体棱长为1,所以正六边形EFGHMN的边长为22,可得此正六边形的面积为334,为截面最大面积.故④正确.故选:A【点睛】本题考查异面直线夹角的求解,棱锥外接球表面积,正方体截面问题,属较难题.9.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C 的中点,则在△ADE翻折过程中,下面四个命题中不正确的是()A .线段BM 的长度是定值B .点M 在某个球面上运动C .存在某个位置,使DE ⊥A 1CD .存在某个位置,使MB 平面A 1DE【答案】C【解析】取CD 中点N ,连接MN ,BN ,利用线面平行的判定定理和性质定理可以证明MB 平面A 1DE 恒成立,从而判定D 正确;利用三角形MNB 中的边角定值分析可得BM 是定值,从而判定A 、B 正确;根据排除法,或者利用面面垂直的判定定理与性质,证明OC 与DE 不垂直.从而判定C 不正确.解:取CD 中点N ,连接MN ,BN ,则MN DA 1,BN DE ,所以平面MBN 平面A 1DE ,所以MB平面A 1DE ,故D 正确; 由∠A 1DE =∠MNB ,MN =12A 1D =定值,NB =DE =定值, 由余弦定理可得2222?·MB MN NB MN NB cos MNB =+-∠,所以MB 是定值,故A 正确;因为B 是定点,所以M 是在以B 为圆心,MB 为半径的球上,故B 正确;连接AN,EN,设AN,DE 交点为F ,连接1A F ,易知ADNE 为正方形,,BD AN ∴⊥ 又在折叠过程中1A F DE ⊥始终不变,∴直线DE ⊥平面1A AN ,∴平面1A AN ⊥平面ABCD ,根据面面垂直的性质定理可得A 1在平面ABCD 中的射影O 在线段AN 上,A 1C 在平面ABCD 中的射影为OC ,由于CFD ∠是直角,所以OC 与DE 不垂直,∴DE ⊥A 1C 不可能,可得C 不正确.故选:C.【点睛】本题考查线面、面面垂直、平行关系的判定与应用,属中高档题,难度较大.10.唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为2143R π,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,则12V V =( )A .2B .32C .1D .34【答案】A【解析】设酒杯上部分(圆柱)的高为h ,球的半径为R ,则酒杯下部分(半球)的表面积为22R π,结合圆柱和球的体积公式,即可求解.设酒杯上部分(圆柱)的高为h ,球的半径为R ,则酒杯下部分(半球)的表面积为22R π, 酒杯内壁表面积为2143R π,得圆柱侧面积为222148233R R R πππ-=, 酒杯上部分(圆柱)的表面积为2283R h R ππ⨯=,解得43h R = 酒杯下部分(半球)的体积332142233V R R ππ=⨯= 酒杯上部分(圆柱)的体积2314433R V R R ππ=⨯= 所以133224323R V V R ππ==. 故选:A.【点睛】本题主要考查了组合体的结构特征,以及球的表面积和体积、圆柱侧面积和体积的应用,属于中档题. 11.已知点,,,M N P Q 在同一个球面上,3,4,5MN NP MP === ,若四面体MNPQ 体积的最大值为10,则这个球的表面积是( )A .254π B .62516π C .22516π D .1254π 【答案】B【解析】 由已知可得=90PNM ∠︒,从而可得球心O 在过PM 中点'O 与面MNP 垂直的直线上,根据球的几何性质可得,当'O Q 过球心时体积最大,由四面体MNPQ 体积的最大值为10,求出'5O Q =,再利用勾股定理求出球的半径,从而可求出球的表面积解:由3,4,5MN NP MP ===,可得222MN NP MP +=,所以=90PNM ∠︒,则球心O 在过PM 中点'O 与面MNP 垂直的直线上,因为MNP 面积为定值,所以四面体的高最大时体积最大,根据球的几何性质可得,当'O Q 过球心时体积最大,因为四面体Q MNP -的最大体积为10, 所以111'34'10332MNP S O Q O Q ⨯⨯=⨯⨯⨯⨯=,可得'5O Q =, 在'OO P 中,2'2'2OP OO O P =+,所以2225(5)4R R =-+,得258R =, 所以球的表面积为2256254816ππ⎛⎫⨯= ⎪⎝⎭, 故选:B .【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②可以转化为长方体的外接球; ③特殊几何体可以直接找出球心和半径;④设球心(在过底面多边形外接圆圆心与底面垂直的直线上),利用待定系数法求半径.12.在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与A 、1C 不重合),设1A DM ∆的面积为S 则S 的取值范围( )A .23[,23)3B .23(,23]3 C.23(,23)3 D .23[,23]3 【答案】A【解析】连接1AD 交1A D 于点O ,过O 作1OM AC ⊥,得到OM 为异面直线1A D 与1AC 的公垂线,根据11AOE AC D ∆∆,求得6OM =,得到1A DM ∆的最小面积,再由点M 与1C 重合时,求得11A DC ∆的面积,进而得到1A DM ∆的面积的取值范围.连接1AD 交1A D 于点O ,过O 作1OM AC ⊥,在正方体1111ABCD A B C D -中,1AD ⊥平面11ABC D ,所以1AD OM ⊥,所以OM 为异面直线1A D 与1AC 的公垂线,根据11AOM AC D ∆∆,则111OM OA C D AC =,即111226323OA C D OM AC ⋅⨯===, 所以1A DM ∆的最小面积为1111623222233A DM S AD OM ∆=⨯⨯=⨯⨯=, 当点M 与1C 重合时,此时11A DC ∆是边长为22的等边三角形,此时1123(22)234A DC S ∆=⨯=, 又因为点M 与A 、1C 不重合,所以111A DM A DC S S ∆∆<,所以1A DM ∆的面积的取值范围是23[,23)3.【点睛】本题主要考查了正方体的几何结构特征,以及三角形面积的计算,其中解答中合理利用正方体的几何结构特征,结合异面直线的公垂线,求得面积的最小值是解答的关键,着重考查推理与运算能力.13.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童ABCD EFGH -有外接球,且26AB =,22AD =,15EH =,5EF =,平面ABCD 与平面EFGH 间的距离为1,则该刍童外接球的体积为A .12πB .24πC .36πD .48π【答案】C【解析】 假设O 为刍童外接球的球心,连接HF ,EG 交于点1O ,连接AC ,DB 交于点2O ,由球的几何性质可知O ,1O ,2O 在同一条直线上,由题意可知, 1OO ⊥平面ABCD ,1OO ⊥平面EFGH ,设2O O r =,利用勾股定理和球的半径相等的条件列式,求出r 的值,进而求出外接球的半径,即可求出体积.解:假设O 为刍童外接球的球心,连接HF ,EG 交于点1O ,连接AC ,DB 交于点2O ,由球的几何性质可知O ,1O ,2O 在同一条直线上,由题意可知, 1OO ⊥平面ABCD ,1OO ⊥平面EFGH ,211O O =.设2O O r =,在1Rt OGO 中,22211OG OO O G =+,在矩形EFGH 中,()()222215525EG EF FG =+=+=.1152O G EG ==. ∴()222221115OG OO O G r =+=++. 在2Rt OBO 中,22222OB OO O B =+,在矩形ABCD 中,()()2222222642DB AD AB =+=+=21222O B BD ==. ∴()222222222OB OO O B r =+=+.设外接球的半径OG OB R ==, ∴()()()22221522r r ++=+,解得1r =. 则()221223OB =+=.即3R =. 则该刍童外接球的体积334433633V R πππ==⨯=. 故选:C.【点睛】本题考查几何体的外接球体积的求法,考查空间想象能力,找到球心是关键,属于中档题. 14.在长方体1111ABCD A B C D -中,12,1AB BC AA ===,点M 为1AB 的中点,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP PQ +的最小值为 A .22 B 3C .34 D .1【答案】C【解析】画出图形,将平面11AB C 沿1AC 翻折,使其与平面1ACC 在共面,将折线段转化为直线段距离最小,从而求出MP +PQ 的最小值.如图1,显然当Q 是P 在底面ABCD 的射影时MP PQ +才可能最小,将平面11AB C 沿1AC 翻折, 使其与平面1ACC 在共面,如图2所示,此时易得130CAC ∠=,3AM =,显然当,,M P Q 三点共线时,MP PQ +取得最小值,此时min 133sin sin 604MQ AM CAB =∠==. 故选:C. 【点睛】本题考查立体几何翻折问题中的最值问题,考查空间想象能力以及学生的计算能力,难度比较大.15.如图,在棱长为2的正方体1111ABCD A B C D -中,点E 、F 分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面AEF ,则线段1A P 长度的取值范围是( )A .52,⎦B .325⎣⎦C .325⎣D .522⎡⎢⎣ 【答案】C 【解析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.如下图所示,分别取棱1BB ,11B C 的中点M 、N ,连MN ,1BC ,M ,N ,E ,F 分别为所在棱的中点,则1//MN BC ,1//EF BC ,//MN EF ∴,又MN ⊄平面AEF ,EF ⊂平面AEF , //MN ∴平面AEF .1//AA NE ,1AA NE =, ∴四边形1AENA 为平行四边形,1//A N AE ∴,又1A N ⊄平面AEF ,AE ⊂平面AEF ,1//A N ∴平面AEF ,又1A NMN N =,∴平面1//A MN 平面AEF .P 是侧面11BCC B 内一点,且1//A P 平面AEF ,∴点P 必在线段MN 上.在11Rt A B M ∆中,2221111215A MA B B M =+=+=同理,在11Rt A B N ∆中,可得15A N=1A MN ∴∆为等腰三角形.当点P 为MN 中点O 时,1A P MN ⊥,此时1A P 最短;点P 位于M 、N 处时,1A P 最长.()222211232522AO A M OM ⎛⎫=-=-= ⎪ ⎪⎝⎭,115AM A N =. ∴线段1A P 长度的取值范围是3252⎡⎢⎣.【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P 点位置.16.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90︒榫卯起来,如图,若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)A .21πB .40πC .41πD .84π【答案】D 【解析】根据题给的限制条件与球的对称性,分析出该几何体也是同样处于对称的状态时,其外接球最小.由题意知,当该球为底面边长分别为4、2,高为8的长方体的外接球时,球的半径取最小值,所以,该球形容器的半径的最小值为184641642R =++=84S π=. 故选:D. 【点睛】本题考查球的表面积,结合传统文化,考查实际问题的理解能力,属于创新题.17.已知四棱锥-S ABCD 中,四边形ABCD 为等腰梯形,//AD BC ,120BAD ︒∠=,ΔSAD 是等边三角形,且23SA AB ==P 在四棱锥-S ABCD 的外接球面上运动,记点P 到平面ABCD 的距离为d ,若平面SAD ⊥平面ABCD ,则d 的最大值为() A 131 B 132 C 151+D 152【解析】根据平面SAD ⊥平面ABCD ,四边形ABCD 为等腰梯形,则球心在过BC 的中点E 的面的垂线上,又ΔSAD 是等边三角形,所以球心也在过SAD ∆的外心F 面的垂线上,从而找到球心,再根据已知量求解即可.依题意如图所示:取BC 的中点E ,则E 是等腰梯形ABCD 外接圆的圆心, 取F 是SAD ∆的外心,作OE ⊥平面,ABCD OF⊥平面SAB ,则O 是四棱锥S ABCD -的外接球球心,且3,2==OF SF , 设四棱锥S ABCD -的外接球半径为R ,则22213R SF OF =+=,而1OE =,所以max 131d R OE =+=+, 故选:A. 【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.18.正方体1111ABCD A B C D -的棱长为1,M ,N 为线段BC ,1CC 上的动点,过点1A ,M ,N 的平面截该正方体所得截面记为S ,则下列命题正确的个数是( ) ①当0BM =且01CN <<时,S 为等腰梯形;②当M ,N 分别为BC ,1CC 的中点时,几何体11A D MN 的体积为112;③当M ,N 分别为BC ,1CC 的中点时,异面直线AC 与MN 成角60°;④无论M 在线段BC 任何位置,恒有平面11A D M ⊥平面1BC D A .1B .2C .3D .4【解析】根据异面直线的夹角及平面与平面垂直的判定,四棱锥体积公式可依次判断选项.对于①,当0BM =时,M 与B重合,01CN<<, 过点1A ,,M N 的平面截正方体所得截面S 如下图所示:由平面与平面平行的性质可知1//A B QN 且1A B QN ≠,1A Q BN =则截面S 为等腰梯形,所以①正确;对于②,当M,N 分别为BC,1CC 的中点时,位置关系如下图所示:作111,NED C MF A D ⊥⊥,因为111,NEA D NE D C ⊥⊥,且1111A D D C D ⋂=所以NE ⊥平面11A D CM 所以NE 为四棱锥11NA D M -的高则112MF =+=,2224NENC ==此时2222111131122D M A M AA AB BM ⎛⎫==++=++= ⎪⎝⎭则111111212222A D MS A D MF ∆=⨯⨯=⨯⨯= 所以四棱锥11NA D M -的体积为111111221332412N A D M A D M V S NE -∆=⨯⨯=⨯⨯=,所以②正确;对于③,当M,N 分别为BC,1CC 的中点时,连接11,AD D C由M,N 分别为BC,1CC 的中点,可知1//MN AD 则1AD 与AC 所成的角即为异面直线AC 与MN 所成的角.根据正方体的性质可知,1AD C ∆为等边三角形,即160AD C ∠=因而异面直线AC 与MN 所成的角为60,所以③正确;对于④无论M 在线段BC 任何位置,平面11A D CB 即为平面11A D M 因为11111,C D D C A D C D ⊥⊥且1111A D D C D ⋂=所以1C D ⊥平面11A D CB 而1C D ⊂平面1BC D所以平面11A D CB ⊥平面1BC D 即平面11A D M ⊥平面1BC D 所以④正确.综上可知,正确的有①②③④ 故选:D 【点睛】本题考查了空间中平面与平面垂直的判定,异面直线夹角的求法,四棱锥的体积求法,综合性强,对空间想象能力和空间思维能力要求高,属于难题.二、多选题19.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( ) A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【解析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D.对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ===,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确;对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD ,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误;对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又1OA =,∴球心O 到面11A C B==,又球心与截面圆心的连线垂直于截面,∴截面圆的半径为6a =,又截面圆的面积2246S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题. 20.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( ) A .11//A D 平面EFGH B .1A C ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【解析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否.如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为226>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H . 因为OAE △为直角三角形,故22651AE OE OA =-=-=,故E 为棱AB 的中点.同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF 因为11A D ⊄平面EFGH ,EF⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,122A B =2BC = ,190A BC ∠=︒,1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥,因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒,故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.21.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EFAD ==,则下述正确的是( )A .//OF 平面BCEB .BF⊥平面ADFC .点A 到平面CDFE 21D .三棱锥C BEF -5π 【答案】ABC 【解析】 由1EFOB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB为圆O 的直径,所以BFFA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为217,C正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误.解:1EFOB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE , OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD平面ABEFAB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =,所以BF⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===,//DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,3BF =22312CF CB BF +=+=,22112DF DA AF =+=+=2AB CD ==,CDF 是等腰三角形,CDF 的边DF 22222142222DF CF ⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 11472222CDF S =⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC 平面ADF ,点C 到平面ADF 的距离为3BF = 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,111733232h ⨯=⨯⨯, 所以21h ,故C 正确.。
【压轴题】高一数学上期末模拟试题及答案

【压轴题】高一数学上期末模拟试题及答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>3.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦4.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .15.若函数()2log ,? 0,?0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( )A .1eB .eC .21eD .2e6.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( )A .1B .2C .3D .47.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U8.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
【压轴题】高一数学下期末第一次模拟试题附答案

【压轴题】高一数学下期末第一次模拟试题附答案一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a |x |有六个不同的根,则a 的范围为( ) A .()6,10B .()6,22C .()2,22D .(2,4)4.已知集合 ,则A .B .C .D .5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m6.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)7.已知{}n a 的前n 项和241n S n n =-+,则1210a a a +++=L ( )A .68B .67C .61D .608.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .609.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .410.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .3 B .3(0,]4C .3D .3[,1)411.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒二、填空题13.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 剟时,()21x f x =-,则()2log 11f =______.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 15.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.16.等边ABC ∆的边长为2,则AB u u u v在BC uuu v方向上的投影为________.17.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==u u u v u u u v u u u v u u u v,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN u u u u v的最小值是_____.18.在四面体ABCD 中,=2,60,90AB AD BAD BCD =∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为__________. 19.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.20.某三棱锥的三视图如下图所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是 .三、解答题21.已知直线12:210:280,l x y l ax y a ,++=+++=且12l l //. (1)求直线12,l l 之间的距离;(2)已知圆C 与直线2l 相切于点A ,且点A 的横坐标为2-,若圆心C 在直线1l 上,求圆C 的标准方程.22.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率; (Ⅱ)求取出的两个球上标号之积能被3整除的概率.23.在ABC V 中,a ,b ,c 分别为内角,,A B C 所对的边,已知cos a A R =,其中R 为ABC V 外接圆的半径,22243a cb S +-=,其中S 为ABC V 的面积. (1)求sin C ;(2)若23a b -=-,求ABC V 的周长. 24.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表: 年份20102011201220132014时间代号t12345储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程^^^t yb a =+(Ⅱ)用所求回归方程预测该地区2015年(6t =)的人民币储蓄存款.附:回归方程^^^t y b a =+中1122211()(),{().n niii ii i nni i i i x x y y x y nxyb x x x nx a y bx ====---==--=-∑∑∑∑25.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.26.如图,在等腰直角OPQ ∆中,090POQ ∠=,22OP =,点M 在线段PQ 上.(Ⅰ) 若5OM =,求PM 的长;(Ⅱ)若点N 在线段MQ 上,且030MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C3.A解析:A 【解析】由()4f x f x -=()得:4T =,当010]x ∈(,时,函数的图象如图:()()()26102f f f ===,再由关于x 的方程()log a f x x =有六个不同的根,则关于x 的方程()log a f x x =有三个不同的根,可得log 62log 102a a<⎧⎨>⎩,解得610a ∈(,),故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出()f x 的周期是4,画出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于a 的不等式,解得即可.4.D解析:D 【解析】 试题分析:由得,所以,因为,所以,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.5.B解析:B 【解析】 【分析】利用,l α可能平行判断A ,利用线面平行的性质判断B ,利用//l m 或l 与m 异面判断C ,l 与m 可能平行、相交、异面,判断D .【详解】l m ⊥,m α⊂,则,l α可能平行,A 错;l α⊥,//l m ,由线面平行的性质可得m α⊥,B 正确; //l α,m α⊂,则//l m , l 与m 异面;C 错,//l α,//m α,l 与m 可能平行、相交、异面,D 错,.故选B. 【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C. 7.B解析:B 【解析】 【分析】首先运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出通项n a ,判断n a 的正负情况,再运用1022S S -即可得到答案. 【详解】当1n =时,112S a ==-;当2n ≥时,()()()22141141125n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦, 故2,125,2n n a n n -=⎧=⎨-≥⎩;所以,当2n ≤时,0n a <,当2n >时,0n a >. 因此,()()()12101234101022612367a a a a a a a a S S +++=-+++++=-=-⨯-=L L .故选:B . 【点睛】本题考查了由数列的前n 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分1n =和2n ≥两种情形,第二要掌握()12n n n a S S n -=-≥这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.8.B解析:B 【解析】 【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.9.B解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.10.A解析:A 【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF 是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以0c <≤0c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.11.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.12.B解析:B 【解析】 【分析】由已知三边,利用余弦定理可得1cos 2B =,结合b c <,B 为锐角,可得B ,利用三角形内角和定理即可求AC +的值. 【详解】在ABC ∆中,5a =Q ,7b =,8c =,∴由余弦定理可得:2222564491cos 22582a cb B ac +-+-===⨯⨯,b c <Q ,故B 为锐角,可得60B =︒,18060120A C ∴+=︒-︒=︒,故选B . 【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.二、填空题13.【解析】【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【解析】 【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 剟时,()21x f x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则解析:4 【解析】 【分析】 【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=16.【解析】【分析】建立直角坐标系结合向量的坐标运算求解在方向上的投影即可【详解】建立如图所示的平面直角坐标系由题意可知:则:且据此可知在方向上的投影为【点睛】本题主要考查平面向量数量积的坐标运算向量投 解析:1-【解析】 【分析】建立直角坐标系,结合向量的坐标运算求解AB u u u r 在BC uuu r方向上的投影即可. 【详解】建立如图所示的平面直角坐标系,由题意可知:()0,0A ,()2,0B ,(C ,则:()2,0AB =uu u r ,(BC =-u u u v ,2AB BC ⋅=-u u u r u u u r且2AB =u u u r ,BC =u u u v据此可知AB u u u r 在BC uuu r 方向上的投影为212AB BC AB⋅-==-u u u v u u u vu u uv .【点睛】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.17.【解析】【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数 解析:77【解析】 【分析】根据条件及向量数量积运算求得AB AC ⋅uu u r uuu r,连接,AM AN ,由三角形中线的性质表示出,AM AN u u u u r u u u r .根据向量的线性运算及数量积公式表示出2MN u u u u r ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=-ou u u r u u u r u u u r u u u r线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+u u u u r u u u r u u u r u u ur u u u r()12AN AB AC =+u u u r u u u r u u u r由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+- ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r u u u u r u u u r u u u r所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦u u u u r u u u r u u u r222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭u u u r u u u r u u ur u u u r 221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭u u u u r因为(),0,1λμ∈ 所以当17μ=时, 2MN u u u u r 取得最小值17因而min7MN==u u u u r故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.18.【解析】画出图象如下图所示其中为等边三角形边的中点为等边三角形的中心(等边三角形四心合一);球心在点的正上方也在点的正上方依题意知在中所以外接圆半径【解析】画出图象如下图所示,其中E 为等边三角形BD 边的中点,1O 为等边三角形的中心(等边三角形四心合一);球心O 在E 点的正上方,也在1O 点的正上方.依题意知11132360,,33OEO O E O A ∠===o ,在1Rt OO E ∆中11tan 601OO O E ==o,所以外接圆半径2211421133r OA OO O A ==+=+=.19.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③ 【解析】 【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫ ⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫=⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误. 【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确;对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫ ⎪⎝⎭上单调递减,命题②错误;对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫=⎪⎝⎭Q ,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>, 由于该函数为偶函数,当0x π-<<时,()0f x >, 又()()()00ff f ππ=-==Q ,所以,该函数在区间[],ππ-上有且只有三个零点.因此,正确命题的序号为①③. 故答案为:①③. 【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题.20.【解析】试题分析:该三棱锥底面是边长为2的正三角形面积为有两个侧面是底边为2高为2的直角三角形面积为2另一个侧面是底边为2腰为的等腰三角形面积为所以面积最大的面的面积是考点:三视图【解析】试题分析:该三棱锥底面是边长为2,有两个侧面是底边为2,高为2的直角三角形,面积为2,另一个侧面是底边为2,腰为.考点:三视图.三、解答题21.(12)22x (y 1)5++=. 【解析】 【分析】()1先由两直线平行解得a 4=,再由平行直线间的距离公式可求得;()2代x 2=-得()A 2,2--,可得AC 的方程,与1l 联立得()C 0,1-,再求得圆的半径,从而可得圆的标准方程. 【详解】解:()121l //l Q ,a 28a 211+∴=≠,解得a 4=,1l ∴:2x y 10++=,2l :2x y 60++=,故直线1l 与2l 的距离2261d 5512-===+. ()2当x 2=-代入2x y 60++=,得y 2=-, 所以切点A 的坐标为()2,2--,从而直线AC 的方程为()1y 2x 22+=+,得x 2y 20--=, 联立2x y 10++=得()C 0,1-. 由()1知C e 的半径为5,所以所求圆的标准方程为:22x (y 1)5++=. 【点睛】本题考查了直线与圆的位置关系,考查了两条平行线的距离公式,属中档题. 22.(1) . (2).【解析】 【分析】 【详解】设从甲、乙两个盒子中各取1个球,其数字分别为x ,y . 用(x ,y )表示抽取结果,则所有可能的结果有16种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(1)设“取出的两个球上的标号相同”为事件A , 则A ={(1,1),(2,2),(3,3),(4,4)}. 事件A 由4个基本事件组成,故所求概率P (A )==.(2)设“取出的两个球上标号的数字之积能被3整除”为事件B ,则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)} 事件B 由7个基本事件组成,故所求概率P (A )=.考点:古典概型的概率计算 23.(1)264;(23263 【解析】 【分析】(1)由正弦可得R 2sin aA=,进而可得sin21A =,从而得A ,结合余弦定理可得B ,再由()sin sin C A B =+即可得解; (2)由正弦定理得sin sin a A b B ==,从而可得a b ,,结合sin C 由正弦定理可得c ,从而得解. 【详解】(1)由正弦定理得cos 2sin aa A A=,sin21A ∴=,又022A π<<, 22A π∴=,则4A π=.由2221csin 2a c b a B +-=⋅,由余弦定理可得2cos sin ac B B =,tan B ∴=0B π<<,=3B π∴,()sin sin sin 434C A B ππ⎛⎫∴=+=+=⎪⎝⎭. (2)由正弦定理得sin sin a A b B ==,又a b -=a b ⎧=⎪∴⎨=⎪⎩又sin C =2c ∴==a b c ∴++=+. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.24.(Ⅰ) 1.2.6ˆ3yt =+,(Ⅱ)10.8千亿元. 【解析】试题分析:(Ⅰ)列表分别计算出,x y ,211,.nnnt iny i i i i l tnt l t y nty ===-=-∑∑的值,然后代入ˆny ntl bl =求得ˆb,再代入ˆˆa y bt =-求出ˆa 值,从而就可得到回归方程 1.2.6ˆ3y t =+,(Ⅱ)将6t =代入回归方程 1.2.6ˆ3yt =+可预测该地区2015年的人民币储蓄存款. 试题解析: (1)列表计算如下这里111365,3,7.2.55n i i i i n t t y y n n =========∑∑ 又2211555310,120537.212.nnnt iny i i i i l tnt l t y nty ===-=-⨯==-=-⨯⨯=∑∑从而12 1.2,7.2 1.23 3.610ˆˆˆny nt l b a y bt l ====-=-⨯=. 故所求回归方程为 1.2.6ˆ3yt =+. (2)将6t =代入回归方程可预测该地区2015年的人民币储蓄存款为1.26 3.610.8(ˆ).y=⨯+=千亿元 考点:线性回归方程. 25.(Ⅰ)516.(Ⅱ)小亮获得水杯的概率大于获得饮料的概率. 【解析】 【分析】 【详解】(Ⅰ)两次记录的所有结果为(1,1),(1,,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 满足xy≤3的有(1,1),(1,,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516. (Ⅱ) 满足xy≥8的有(2,4),(3,,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为616; 小亮获得饮料的概率为5651161616--=,所以小亮获得水杯的概率大于获得饮料的概率. 26.(Ⅰ)1MP =或3MP =(Ⅱ)当30POM ∠=︒时, OMN ∆的面积的最小值为8-【解析】 【分析】 【详解】解:(1)在△OMP 中,∠OPM=45°, 由余弦定理得,OM 2=OP 2+MP 2-2OP·MP·cos45°, 得MP 2-4MP+3=0, 解得MP=1或MP=3. (2)设∠POM=α,0°≤α≤60°, 在△OMP 中,由正弦定理, 得sin OM OPM ∠=sin OMOPM∠,所以OM=()sin 45sin 45+OP α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20、已知函数1()22x x f x =- (1)设集合15()4A x f x ⎧⎫=≤⎨⎬⎩⎭,{}
260B x x x p =-+<,若A B ⋂≠∅,求实数p 的取值范围;
(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围
21、已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =-,若x 、[1,1]y ∈-,0x y +≠,则()()0f x f x x y
+<+ (1)用定义证明,()f x 在[1,1]-上是减函数;
(2)解不等式:11()()12
f f x x <+-; (3)若2()21f x t at ≥--对所有[1,1]x ∈-,[1,1]a ∈-均成立,求实数t 的取值范围
22、设函数()a f x x x
=+,2()22g x x x a =-+-,其中0a > (1)若1x =是关于x 的不等式()()f x g x >的解,求a 的取值范围;
(2)求函数()a f x x x
=+在(0,2]x ∈上的最小值; (3)若对任意的1x ,2(0,2]x ∈,不等式12()()f x g x >恒成立,求a 的取值范围;
(4)当32a =时,令()()()h x f x g x =+,试研究函数()h x 在(0,)x ∈+∞上的单调性,并求()h x 在该区间上的最小值
18.(本题满分10分)本大题共2个小题,每小题5分.
(A 组题)已知函数()2log 1.f x x =-
(1)作出函数()f x 的大致图像;
(2)指出函数()f x 的奇偶性、单调区间及零点.
(B组题)已知()()2.f x x x =-
(1)作出函数()f x 的大致图像,并指出其单调区间;
(2)若函数()f x c =恰有三个不同的解,试确定实数c 的取值范围.
19.(本题满分10分)
如图,在半径为40cm 的平面图形(O 为圆心)铝皮上截取一块矩形材料A BC D,其中点A,B 在直径上,点C,D 在圆周上.
(1)设AD x =,将矩形A BCD的面积表示成y 的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD 的面积最大?并求出最大面积.
20.(本题满分12分)本题共3个小题,每小题4分.(请考生务必看清自己应答的试题)
(A组题)已知函数()12x
f x ⎛⎫= ⎪⎝⎭的图象与函数()y
g x =的图象关于直线y x =对称.
(1)若()()
26f g x x =-,求实数x 的值; (2)若函数()()2
y g f x =的定义域为[](),0m n m ≥,值域为[]2,2m n ,求实数,m n 的值; (3)当[]1,1x ∈-时,求函数()()2
23y f x af x =-+⎡⎤⎣⎦的最小值()h a .
(B 组题)已知函数()()log 0,1a f x b x a a =+>≠的图象经过点()8,2和()1,1.- (1)求()f x 的解析式;
(2)若()()23f x f x =⎡⎤⎣⎦,求实数x 的值;
(3)令()()()21y g x f x f x ==+-,求()y g x =的最小值及其取最小值时x 的值.
本题共2小题,第(1)小题4分,第(2)小题6分.
设函数()()20,1.x x x a a a a ϕ=->≠
(1)求()x ϕ在[]2,2-上的最大值;
(2)当a =,()222x t mt ϕ≤-+对所有的[]2,2x ∈-及[]1,1m ∈-恒成立,求实数m 的取值范围.。